請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/40307
完整後設資料紀錄
DC 欄位 | 值 | 語言 |
---|---|---|
dc.contributor.advisor | 張耀乾(Yao-Chien Alex Chang) | |
dc.contributor.author | Ying-Chun Peng | en |
dc.contributor.author | 彭穎君 | zh_TW |
dc.date.accessioned | 2021-06-14T16:44:29Z | - |
dc.date.available | 2011-08-04 | |
dc.date.copyright | 2008-08-04 | |
dc.date.issued | 2008 | |
dc.date.submitted | 2008-08-01 | |
dc.identifier.citation | 么煥英. 2007. 應用Pour-through介質溶液測定法於水草栽培之蝴蝶蘭. 國立臺灣大學園藝學研究所碩士論文.
李嘉慧. 1990. 蝴蝶蘭型態解剖及光度、花芽發育對碳水化合物含量之影響. 國立臺灣大學園藝學研究所碩士論文. 李嘉惠、李哖. 1991. 台灣蝴蝶蘭根和葉的型態與解剖的特性. 中國園藝 37: 237-248. Argo, W. R. and J. A. Biernbaum. 1997. Lime, water sources, and fertilizer nitrogen form affect medium pH and nitrogen accumulation and uptake. HortScience 32: 71-74. Barker, A. V. and H. A. Mills. 1980. Ammonium and nitrate nutrition of horticultural corps. Hort. Rev. 2: 395-423. Barrie, A. and M. Lemley. 1989. Automated 15N/13C analysis of biological materials. American Laboratory 21:54-63. Bierman, P. M., C. J. Rosen, and H. F. Wilkins. 1990. Leaf edge burn and axillary shoot growth of vegetative poinsettia plant: Influence of calcium, nitrogen form, and molybdenum. J. Amer. Soc. Hort. Sci. 115: 73-78. Breland, T. A. and S. Hansen. 1995. Comparison of the difference method and 15N technique for studying the fate of nitrogen from plant residues in soil. Biol. Fert. Soil 26: 164-168. Cabrera, R. I., R. Y. Evans, and J. L. Paul. 1995. Nitrogen partitioning in rose plants over a flowering cycle. Sci. Hort. 63: 67-76. Cox, D. A. and J. G. Seeley. 1984. Ammonium injury to poinsettia: Effects of NH4-N: NO3-N ratio and pH control in solution culture on growth, N absorption, and N utilization. J. Amer. Soc. Hort. Sci. 109: 57-62. Findenegg, G. R. 1987. A comparative study of ammonium toxicity at different constant pH of the nutrient solution. Plant Soil 103: 239-243. Fry, B. 2006. Stable Isotope Ecology. Springer Science, New York, N. Y. Gaffney, J. M., R. S. Lindstrom, A. R. McDaniel, and A. J. Lewis. 1982. Effect of ammonium and nitrate nitrogen on growth of poinsettia. HortScience 17: 603-604. Hew, C. S. and J. W. H. Yong. 2004. The physiology of tropical orchids in relation to the industry. World Scientific Publishing Co. Pte. Ltd. Singapore. Hew, C. S., L. Y. Lim, and C. M. Low. 1993. Nitrogen uptake by tropical orchids. Environ. Expt. Bot. 33: 273-281. Hopkins, W. G. and N. P. A. Hüner. 2003. Nitogen assimilation, P. 167-185. In: W. G. Hopkins and N. P. A. Hüner (eds.). Introduction to plant physiology. Wiley. London , U. K. Kraimer, R. A., W.C. Lindemann, and E. A. Herrera. 2001. Distribution of 15N-labeled fertilizer applied to pecan: A case study. HortScience 36: 308-312. Kubota, S., K. Yoneda, and Y. Suzuki. 2000. Effects of ammonium to nitrate ratio in culture medium on growth and nutrient absorption of Phalaenopsis seedlings in vitro. Environ. Control Biol. 38: 281-284. Ladd, J. N., J. M. Oades, and M. Amato. 1981. Microbial biomass form 14C, 15N-labelled plant material decomposing in soils in the field. Soil Biol. Biochem. 13: 119-126. Lajtha, K. and R. H. Michener. 1994. Stable isotopes in ecology and environmental science. Blackwell Scientific Publications, London, U. K. Lea-Cox, J. D. and J. P. Syvertsen. 1995. Nitrogen uptake by citrus leaves. J. Amer. Soc. Hort. Sci. 120: 505-509. Lea-Cox, J. D., J. P. Syvertsen, and D. A. Graetz. 2001. Springtime 15nitrogen uptake, partitioning, and leaching losses from young bearing citrus trees of differing nitrogen status. J. Amer. Soc. Hort. Sci. 126: 242-251. Ledgard, S. F., G. S. Smith, and M. S. Sprosen. 1992. Fate of 15N-labelled nitrogen fertilizer applied to kiwifruit (Actinidia deliciosa) vines. I. 15N recovery in Plant Soil. Plant Soil 147: 49-57. Majerowicz, N., G. B. Kerbauy, C. C. Nievola, and R. M. Suzuki. 2000. Growth and nitrogen metabolism of Catasetum fimbriatum (orchidaceae) grown with different nitrogen sources. Environ. Expt. Bot. 44: 195–206. Marschner. H. 1997. Mineral nutrition of higher plants. Second edition. San Diego, CA. USA. Marti, H. R. and H. A. Mills. 1991. Calcium uptake and concentration in bell pepper plants as influenced by nitrogen form and stages of development. J. Plant Nutr. 14: 1177-1185. Maynard, D. N. and A. V. Barker. 1969. Studies on the tolerance of plants to ammonium nutrition. J. Amer. Soc. Hort. Sci. 94: 235-239. Muñoz, N., J. Guerri, F. Legaz, and E. Primo-Millo. 1993. Seasonal uptake of 15N-nitrate and distribution of absorbed nitrogen in peach trees. Plant Soil 150: 263-269. Pill, W. G. and Lambeth, V. N. 1977. Effects of NH4 and NO3 nutrition with and without pH adjustment on tomato growth, ion composition, and water relations. J. Amer. Soc. Hort. Sci. 102: 78-81. Pill, W. G., Lambeth, V. N. and T. M. Hinckley. 1978. Effects of nitrogen form and level on ion concentrations, water stress, and blossom-end rot incidence in tomato. J. Amer. Soc. Hort. Sci. 103: 265-268. Poole, H. A. and J. G. seeley. 1978. Nitrogen, potassium and magnesium nutrition of three orchid genera. J. Amer. Soc. Hort. Sci. 103: 485-488. Poole, H. A. and T. J. Sheehan. 1982. Mineral nutrition of orchids, p.195-212. In: J. Arditti (ed.). Orchid biology: review and perspectives. Vol II. Cornell Univ. Press, Ithaca, New York. Poole, H. A. and T. J. Sheehan. 1974. Chemical composition of plant parts of Phalaenopsis orchid. Amer. Orchid. Soc. Bull. 43: 242-247. Retamales, J. B. and E. J. Hanson. 1989. Fate of 15N-labeled urea applied to mature highbush blueberries. J. Amer. Soc. Hort. Sci. 114: 920-923. Rey, A., W. C. Lindemann, and M. D. Remmenga. 2006. Recovery of 15N fertilizer applied at different stages of pecan kernel fill. HortScience 41: 794-798. Roude, N., T. A. Nell, and J. E. Barrett. 1991. Longevity of potted chrysanthemums at various nitrogen and potassium concentrations and NH4 : NO3 ratios. HortScience 26: 163-165. Sandrock, D. R., T. L. Righetti, and A. N. Azarenko. 2005. Isotopic and nonisotopic estimation of nitrogen uptake efficiency in container-grown woody ornamentals. HortScience 40: 665-669. Strik, B., T. Righetti, and G. Buller. 2004. Influence of rate, timing, and method of nitrogen fertilizer application on uptake and use of fertilizer nitrogen, growth, and yield of june-bearing strawberry. J. Amer. Soc. Hort. Sci. 129: 165-174. Throop, P. A. and E. J. Hanson. 1997. Effect of application date on absorption of 15nitrogen by highbush blueberry. J. Amer. Soc. Hort. Sci. 122: 422-426. Torbert, H. A., R. L. Mulvaney, R. M. Vanden Heuvel, and R. G. Hoeft. 1992. Soil type and moisture regime effects on fertilizer efficiency calculation methods in a nitrogen-15 tracer study. Agron. J. 84: 66-70. Wang, Y. T. 2008. High NO3-N to NH4-N ratios promote growth and flowering of a hybrid Phalanopsis growth in two root substrates. HortScience 43: 350-353. Wang, Y. T. and L. L. Gregg. 1994. Medium and fertilizer affect the performance of Phalaenopsis orchids during two flowering cycles. HortScience 29: 269-271. Weinbaum, S. A., I. Klein, F. E. Broudbent, W. C. Micke, and T. T. Muraoka. 1984. Effects of time of nitrogen application and soil texture on the availability of isotopically labeled fertilizer nitrogen to reproductive and vegetative tissue of mature almond trees. J. Amer. Soc. Hort. Sci. 109: 339-343. Weinbaum, S. A., I. Klein, and T. T. Muraoka. 1987. Use of nitrogen isotopes and a light-textured soil to assess annual contributions of nitrogen from soil and storage pools in mature almond trees. J. Amer. Soc. Hort. Sci. 112: 526-529. Westerman, R. L. and L. T. Kurtz. 1974. Isotopic and nonisotopic estimations of fertilizer nitrogen uptake by sudangrass in field experiments. Soil Sci. Soc. Amer. Proc. 38: 107-109. Yoneda, K., M. Usui, and S. Kubota. 1997. Effect of nutrition deficiency on growth and flowering of Phalaenopsis. J. Jpn. Soc. Hort. Sci. 66: 141-147. | |
dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/40307 | - |
dc.description.abstract | 為瞭解蝴蝶蘭營養及生殖生長階段對氮素型態的需求,本試驗以大白花蝴蝶蘭(Phalaenopsis Sogo Yukidian ‘V3’)之大苗與中苗為材料,施用五種氮素型態比例之肥料(NH4+:NO3- = 0:100﹔ 25:75﹔50:50﹔75:25﹔100:0),進行為期兩年之試驗。於兩個開花周期中,不同氮素型態比例對蝴蝶蘭大苗至抽梗、花苞可見、開花所需天數無顯著影響﹔然而於第二開花周期時,持續施用銨態氮比例超過50%之處理,會降低植株之總花朵數、花梗直徑及長度。至於營養生長,蝴蝶蘭大苗及中苗之鮮重、葉片數及葉面積會隨著銨態氮比例的增加而減少。根部對於陽離子的吸收於肥料中銨態氮比例超過50%時受到抑制,使得蝴蝶蘭植體中鈣、鎂濃度下降,並造成植株生長遲滯、葉片黃化及根部壞死等銨毒害現象。建議使用NH4+與NO3-比例為25:75之肥料,可使蝴蝶蘭有最高之抽梗率、鮮重及葉片數。
為瞭解蝴蝶蘭對氮素之吸收運移,各器官於不同時期之功能與角色,以及花梗之氮素來源,本研究利用氮同位素(15N)作為標定氮肥之示蹤原子,分別於大白花蝴蝶蘭(Phalaenopsis Sogo Yukidian ‘V3’)之營養或生殖生長時期、營養充足或缺乏狀況,以及植體不同部位施用。蝴蝶蘭之葉面與根部均具有吸收氮素之功能,且氮素吸收後會運往新生葉片與新生根這兩個強積儲。對氮素之吸收效率最佳者為新根,老根其次,葉片較差﹔葉片之上表皮與下表皮對於氮素之吸收效率並無差異。蝴蝶蘭於營養或生殖生長期,對於氮素的吸收無顯著差異,然植體對氮素之分配則隨當時各器官積儲之強弱而定。於營養生長時期,蝴蝶蘭對氮素最強之積儲為新生葉片,且積儲之強度隨葉齡之增加而下降﹔而生殖生長時期最強之積儲則為花梗。由花梗發育至花苞可見階段所需之氮素,在根域營養充足情況下,29%來自於先前儲存於植體的氮素,71%來自於花梗發育時植體所吸收之肥料氮。成熟葉與根部均具有儲存氮素與提供氮素給強積儲之功能,而兩者供應氮素之比例,則視植株當時營養狀況之不同而異。 綜合上述,蝴蝶蘭之成熟葉與根部具有儲存與供給氮素之功能,故短期之營養缺乏對植株生長的影響並不大,然而若使蝴蝶蘭長期處於缺乏或不適當之營養狀況,會使其生長不良,開花品質降低。使用NH4+與NO3-比例為25:75之肥料,並於營養與生殖生長時期持續給予充足之營養,可使蝴蝶蘭有良好之生長及開花品質。 | zh_TW |
dc.description.abstract | In order to realize the demand of nitrogen form ratio during the vegetative and reproductive growth stages in Phalaenopsis Sogo Yukidian ‘V3’, five fertilizers with different nitrogen form ratio (NH4+: NO3- = 0:100, 25:75, 50:50, 75:25, 100:0) were applied to 8.5-cm and 10.5-cm pots for two flowering cycles. The days to spiking, visible buds, and anthesis were not affected by nitrogen from ratio during two flowering cycles. However, the number of flowers, the diameter and length of stalk in the second flowering cycle were decreased when plant received more than 50% NH4+-N. The fresh weight, leaf number and area decreased with the increase of NH4+-N ratio. When plants were provided with 50% or higher ratio of NH4+-N, the absorption of cations by roots was inhibited, the concentrations of calcium and magnesium in Phalaenopsis decreased, and the symptom of ammonium toxicity occurred, such as growth retardation, chlorosis leaves, and necrotic roots. It is recommended to provide Phalaenopsis with 75% nitrate and 25% ammonium nitrogen in order to have the highest percentage of spiking, fresh weight, and leaf numbers
In order to understand the uptake and partitioning of nitrogen, the roles of organs in sink and source relationship during different stages, and the nitrogen sources of stalks in Phalaenopsis, the isotopic nitrogen (15N) was used as a tracer. Isotopic nitrogen was applied to Phalaenopsis Sogo Yukidian ‘V3’ during the vegetative or reproductive growth stage, in a nutrition deficiency or abundance situation, and different parts of plants. Both leaves and roots were able to utilize nitrogen, and the absorbed nitrogen was distributed to two major sinks: newly grown leaves and newly grown roots. Nitrogen uptake efficiency was highest in new roots, lower in old roots, and lowest in leaves. No difference of nitrogen uptake efficiency was found in the upper or lower epidermis of leaves. The absorption of nitrogen did not differ between the vegetative and reproductive growth stages, and the partitioning of nitrogen depended on the sink strength. During the vegetative growth stage, newly grown leaves were the major sinks. Strength of sink decreased with the increase of leaf age. Stalk was the major sink during the reproductive growth stage. For the nitrogen demand of stalks from spiking to visible buds stage, 29% were provided from the nitrogen previously stored, and 71% from the recent fertilizer applications. Mature leaves and roots were the major sources where nitrogen stored. However, the percentage of nitrogen supply from these two organs depended on the nutrition situation of plants. In summary, mature leaves and roots had the functions of nitrogen store and supply, therefore, a short-term nutrient deficiency did not retard the growth of Phalaenopsis. However, a deficient or improper nutrition level for a long period reduced plant growth and flowering quality. Providing fertilizer with the ratio of 75% nitrate and 25% ammonium nitrogen throughout the vegetative and reproductive growth stages to Phalaenopsis will result in the best product quality. | en |
dc.description.provenance | Made available in DSpace on 2021-06-14T16:44:29Z (GMT). No. of bitstreams: 1 ntu-97-R94628134-1.pdf: 1204926 bytes, checksum: a7f20c1c2acd6728880172c6019c1a1f (MD5) Previous issue date: 2008 | en |
dc.description.tableofcontents | 口試委員審定書 i
致謝 ii 摘要 iii Summary v 目錄 vii 表目錄 x 圖目錄 xiv 前言(Introduction) 1 前人研究(Literature Review) 3 一、植物對氮素之吸收與同化 3 二、氮素型態對一般作物生長之影響 5 三、氮素與氮素型態對蘭科植物生長之影響 6 四、穩定氮同位素的自然豐度變化及其應用 8 五、穩定氮同位素含量之表示方法 10 六、穩定氮同位素之分析 10 七、穩定氮同位素追蹤法與一般分析方法之比較 12 八、穩定氮同位素追蹤法於植物上之研究 12 材料與方法(Materials and Methods) 14 一、氮素型態對蝴蝶蘭生殖生長與營養生長之影響 14 (一) 植物材料與試驗場所 14 (二) 肥培管理 14 (三) 試驗設計 15 1. 氮素型態對蝴蝶蘭大苗生殖生長與營養生長之影響 15 2. 氮素型態對蝴蝶蘭中苗營養生長之影響 15 (四) 無機營養之分析方法 16 1. 取樣與前處理 16 2. 無機態氮的分析 16 3. 磷的分析 17 4. 其他元素分析 18 二、蝴蝶蘭對氮素之吸收與氮在植體內的運移 19 (一) 試驗材料 19 (二) 15N標識肥料之施用劑量 19 (三) 試驗設計 19 1. 蝴蝶蘭在營養及生殖生長階段對氮素之吸收及植體氮素之分布 19 2. 氮素被蝴蝶蘭吸收後運移至葉片中分布的情形 20 3. 蝴蝶蘭在低溫催花期前後對氮素之吸收及植體之氮素分布 21 4. 斷肥處理對蝴蝶蘭生殖生長期氮素吸收及植體氮素分布之影響 22 5. 剪根處理對蝴蝶蘭生殖生長期氮素吸收及植體內氮素分布之影響 23 6. 蝴蝶蘭葉片與根部對氮素吸收效率之差異及植體內之氮素分布 24 (四) 氮素及氮同位素之分析方式 25 (五) 碳水化合物之分析方式 25 1. 可溶性醣的萃取 25 2. 澱粉的萃取 26 3. 碳水化合物的分析 26 結果 (Results) 32 一、氮素型態對蝴蝶蘭生殖生長與營養生長之影響 32 1. 氮素型態對蝴蝶蘭大苗生殖生長與營養生長之影響 32 2. 氮素型態對蝴蝶蘭中苗營養生長之影響 36 二、蝴蝶蘭對氮素之吸收與氮在植體內的運移 57 1. 蝴蝶蘭在營養及生殖生長階段對氮素之吸收及植體內之氮素分布 57 2. 氮素被蝴蝶蘭吸收後運移至葉片中分布的情形 58 3. 蝴蝶蘭在低溫催花期前後對氮素之吸收及植體內之氮素分布 59 4. 斷肥處理對蝴蝶蘭生殖生長期氮素吸收及植體內氮素分布之影響 62 5. 剪根處理對蝴蝶蘭生殖生長期氮素吸收及植體內氮素分布之影響 65 6. 蝴蝶蘭葉片與根部對氮素吸收效率之差異及植體內之氮素分布 69 討論(Discussion) 110 一、氮素型態對蝴蝶蘭生殖生長與營養生長的影響 110 二、蝴蝶蘭對氮素之吸收與氮在植體內的運移 113 1. 蝴蝶蘭在營養及生殖生長階段對氮素之吸收及植體內之氮素分布 113 2. 氮素被蝴蝶蘭吸收後運移至葉片中分布的情形 114 3. 蝴蝶蘭在低溫催花期前後對氮素之吸收及植體內之氮素分布 115 4. 斷肥處理對蝴蝶蘭生殖生長期氮素吸收及植體內氮素分布之影響 117 5. 剪根處理對蝴蝶蘭生殖生長期氮素吸收及植體內氮素分布之影響 118 6. 蝴蝶蘭葉片與根部對氮素吸收效率之差異及植體內之氮素分布 121 7. 綜合討論 123 參考文獻 126 | |
dc.language.iso | zh-TW | |
dc.title | 大白花蝴蝶蘭 ‘V3’ 對氮素之吸收、運移及利用 | zh_TW |
dc.title | The Uptake, Partitioning, and Uses of Nitrogen in Phalaenopsis Sogo Yukidian ‘V3’ | en |
dc.type | Thesis | |
dc.date.schoolyear | 96-2 | |
dc.description.degree | 碩士 | |
dc.contributor.oralexamcommittee | 邱志郁,沈再木,陳文輝 | |
dc.subject.keyword | 蝴蝶蘭,氮素,同位素, | zh_TW |
dc.subject.keyword | Phaleanopsis,Nitrogen,Isotope, | en |
dc.relation.page | 131 | |
dc.rights.note | 有償授權 | |
dc.date.accepted | 2008-08-01 | |
dc.contributor.author-college | 生物資源暨農學院 | zh_TW |
dc.contributor.author-dept | 園藝學研究所 | zh_TW |
顯示於系所單位: | 園藝暨景觀學系 |
文件中的檔案:
檔案 | 大小 | 格式 | |
---|---|---|---|
ntu-97-1.pdf 目前未授權公開取用 | 1.18 MB | Adobe PDF |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。