請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/40298完整後設資料紀錄
| DC 欄位 | 值 | 語言 |
|---|---|---|
| dc.contributor.advisor | 姚宗珍(Chung-Chen Yao) | |
| dc.contributor.author | Li-Fang Hsu | en |
| dc.contributor.author | 徐儷芳 | zh_TW |
| dc.date.accessioned | 2021-06-14T16:44:18Z | - |
| dc.date.available | 2013-10-05 | |
| dc.date.copyright | 2011-10-05 | |
| dc.date.issued | 2011 | |
| dc.date.submitted | 2011-08-12 | |
| dc.identifier.citation | Altan, B. A., O. Sokucu, et al. (2010). 'Metrical and histological investigation of the effects of low-level laser therapy on orthodontic tooth movement.' Lasers Med Sci.
Alves, J. B., C. L. Ferreira, et al. (2009). 'Local delivery of EGF-liposome mediated bone modeling in orthodontic tooth movement by increasing RANKL expression.' Life Sci 85(19-20): 693-699. Andrade, I., Jr., T. A. Silva, et al. (2007). 'The role of tumor necrosis factor receptor type 1 in orthodontic tooth movement.' J Dent Res 86(11): 1089-1094. Arai, C., Y. Nomura, et al. (2010). 'HSPA1A is upregulated in periodontal ligament at early stage of tooth movement in rats.' Histochem Cell Biol 134(4): 337-343. Baba, S., N. Kuroda, et al. (2010). 'Immunocompetent cells and cytokine expression in the rat periodontal ligament at the initial stage of orthodontic tooth movement.' Arch Oral Biol. Baloul, S. S., L. C. Gerstenfeld, et al. (2011). 'Mechanism of action and morphologic changes in the alveolar bone in response to selective alveolar decortication-facilitated tooth movement.' Am J Orthod Dentofacial Orthop 139(4 Suppl): S83-101. Basford, J. R., C. G. Sheffield, et al. (1999). 'Laser therapy: a randomized, controlled trial of the effects of low-intensity Nd:YAG laser irradiation on musculoskeletal back pain.' Arch Phys Med Rehabil 80(6): 647-652. Bertolucci, L. E. and T. Grey (1995). 'Clinical analysis of mid-laser versus placebo treatment of arthralgic TMJ degenerative joints.' Cranio 13(1): 26-29. Bjordal, J. M., M. I. Johnson, et al. (2007). 'Short-term efficacy of physical interventions in osteoarthritic knee pain. A systematic review and meta-analysis of randomised placebo-controlled trials.' BMC Musculoskelet Disord 8: 51. Bjordal, J. M., R. A. Lopes-Martins, et al. (2006). 'A randomised, placebo controlled trial of low level laser therapy for activated Achilles tendinitis with microdialysis measurement of peritendinous prostaglandin E2 concentrations.' Br J Sports Med 40(1): 76-80; discussion 76-80. Bjorne, A. and G. Agerberg (2003). 'Symptom relief after treatment of temporomandibular and cervical spine disorders in patients with Meniere's disease: a three-year follow-up.' Cranio 21(1): 50-60. Bletsa, A., E. Berggreen, et al. (2006). 'Interleukin-1alpha and tumor necrosis factor-alpha expression during the early phases of orthodontic tooth movement in rats.' Eur J Oral Sci 114(5): 423-429. Brooks, P. J., D. Nilforoushan, et al. (2009). 'Molecular markers of early orthodontic tooth movement.' Angle Orthod 79(6): 1108-1113. Brown, G. C. (2001). 'Regulation of mitochondrial respiration by nitric oxide inhibition of cytochrome c oxidase.' Biochim Biophys Acta 1504(1): 46-57. Chow, R. T., G. Z. Heller, et al. (2006). 'The effect of 300 mW, 830 nm laser on chronic neck pain: a double-blind, randomized, placebo-controlled study.' Pain 124(1-2): 201-210. Dunn, M. D., C. H. Park, et al. (2007). 'Local delivery of osteoprotegerin inhibits mechanically mediated bone modeling in orthodontic tooth movement.' Bone 41(3): 446-455. Favaro-Pipi, E., S. M. Feitosa, et al. (2010). 'Comparative study of the effects of low-intensity pulsed ultrasound and low-level laser therapy on bone defects in tibias of rats.' Lasers Med Sci 25(5): 727-732. Fujihara, S., M. Yokozeki, et al. (2006). 'Function and regulation of osteopontin in response to mechanical stress.' J Bone Miner Res 21(6): 956-964. Gama, S. K., F. A. Habib, et al. (2010). 'Tooth movement after infrared laser phototherapy: clinical study in rodents.' Photomed Laser Surg 28 Suppl 2: S79-83. Garlet, T. P., U. Coelho, et al. (2008). 'Differential expression of osteoblast and osteoclast chemmoatractants in compression and tension sides during orthodontic movement.' Cytokine 42(3): 330-335. Gluhak-Heinrich, J., L. Ye, et al. (2003). 'Mechanical loading stimulates dentin matrix protein 1 (DMP1) expression in osteocytes in vivo.' J Bone Miner Res 18(5): 807-817. Grieve, W. G., 3rd, G. K. Johnson, et al. (1994). 'Prostaglandin E (PGE) and interleukin-1 beta (IL-1 beta) levels in gingival crevicular fluid during human orthodontic tooth movement.' Am J Orthod Dentofacial Orthop 105(4): 369-374. Habib, F. A., S. K. Gama, et al. (2010). 'Laser-induced alveolar bone changes during orthodontic movement: a histological study on rodents.' Photomed Laser Surg 28(6): 823-830. Harazaki, M. and Y. Isshiki (1997). 'Soft laser irradiation effects on pain reduction in orthodontic treatment.' Bull Tokyo Dent Coll 38(4): 291-295. Hashimoto, F., Y. Kobayashi, et al. (2001). 'Administration of osteocalcin accelerates orthodontic tooth movement induced by a closed coil spring in rats.' Eur J Orthod 23(5): 535-545. Huang, Y. Y., A. C. Chen, et al. (2009). 'Biphasic dose response in low level light therapy.' Dose Response 7(4): 358-383. Insoft, M., G. J. King, et al. (1996). 'The measurement of acid and alkaline phosphatase in gingival crevicular fluid during orthodontic tooth movement.' Am J Orthod Dentofacial Orthop 109(3): 287-296. Iwasaki, L. R., J. E. Haack, et al. (2000). 'Human tooth movement in response to continuous stress of low magnitude.' Am J Orthod Dentofacial Orthop 117(2): 175-183. Jager, A., D. Zhang, et al. (2005). 'Soluble cytokine receptor treatment in experimental orthodontic tooth movement in the rat.' Eur J Orthod 27(1): 1-11. Kaku, M., M. Motokawa, et al. (2008). 'VEGF and M-CSF levels in periodontal tissue during tooth movement.' Biomed Res 29(4): 181-187. Karu, T. (1989). 'Laser biostimulation: a photobiological phenomenon.' J Photochem Photobiol B 3(4): 638-640. Karu, T. (1999). 'Primary and secondary mechanisms of action of visible to near-IR radiation on cells.' J Photochem Photobiol B 49(1): 1-17. Kawasaki, K. and N. Shimizu (2000). 'Effects of low-energy laser irradiation on bone remodeling during experimental tooth movement in rats.' Lasers Surg Med 26(3): 282-291. Kheralla, Y., W. Gotz, et al. (2010). 'IGF-I, IGF-IR and IRS1 expression as an early reaction of PDL cells to experimental tooth movement in the rat.' Arch Oral Biol 55(3): 215-222. Kim, Y. D., S. S. Kim, et al. (2007). 'Effect of low-level laser treatment after installation of dental titanium implant-immunohistochemical study of RANKL, RANK, OPG: an experimental study in rats.' Lasers Surg Med 39(5): 441-450. Kim, Y. D., S. S. Kim, et al. (2010). 'Low-level laser irradiation facilitates fibronectin and collagen type I turnover during tooth movement in rats.' Lasers Med Sci 25(1): 25-31. Kimura, Y., P. Wilder-Smith, et al. (2000). 'Treatment of dentine hypersensitivity by lasers: a review.' J Clin Periodontol 27(10): 715-721. King, G. J., S. D. Keeling, et al. (1991). 'Measuring dental drift and orthodontic tooth movement in response to various initial forces in adult rats.' Am J Orthod Dentofacial Orthop 99(5): 456-465. King, G. J., L. Latta, et al. (1995). 'Alveolar bone turnover in male rats: site- and age-specific changes.' Anat Rec 242(3): 321-328. Kobayashi, Y., F. Hashimoto, et al. (2000). 'Force-induced osteoclast apoptosis in vivo is accompanied by elevation in transforming growth factor beta and osteoprotegerin expression.' J Bone Miner Res 15(10): 1924-1934. Kohno, S., M. Kaku, et al. (2005). 'Neutralizing effects of an anti-vascular endothelial growth factor antibody on tooth movement.' Angle Orthod 75(5): 797-804. Kohno, S., M. Kaku, et al. (2003). 'Expression of vascular endothelial growth factor and the effects on bone remodeling during experimental tooth movement.' J Dent Res 82(3): 177-182. Lampl, Y., J. A. Zivin, et al. (2007). 'Infrared laser therapy for ischemic stroke: a new treatment strategy: results of the NeuroThera Effectiveness and Safety Trial-1 (NEST-1).' Stroke 38(6): 1843-1849. Lane, N. (2006). 'Cell biology: power games.' Nature 443(7114): 901-903. Leal Junior, E. C., R. A. Lopes-Martins, et al. (2009). 'Effect of 830 nm low-level laser therapy applied before high-intensity exercises on skeletal muscle recovery in athletes.' Lasers Med Sci 24(6): 857-863. Lee, T. Y., K. J. Lee, et al. (2009). 'Expression of IL-1beta, MMP-9 and TIMP-1 on the pressure side of gingiva under orthodontic loading.' Angle Orthod 79(4): 733-739. Li, Y., W. Zheng, et al. (2011). 'Expression of osteoclastogenesis inducers in a tissue model of periodontal ligament under compression.' J Dent Res 90(1): 115-120. Lirani-Galvao, A. P., V. Jorgetti, et al. (2006). 'Comparative study of how low-level laser therapy and low-intensity pulsed ultrasound affect bone repair in rats.' Photomed Laser Surg 24(6): 735-740. Low, E., H. Zoellner, et al. (2005). 'Expression of mRNA for osteoprotegerin and receptor activator of nuclear factor kappa beta ligand (RANKL) during root resorption induced by the application of heavy orthodontic forces on rat molars.' Am J Orthod Dentofacial Orthop 128(4): 497-503. Meikle, M. C., S. Bord, et al. (1992). 'Human osteoblasts in culture synthesize collagenase and other matrix metalloproteinases in response to osteotropic hormones and cytokines.' J Cell Sci 103 ( Pt 4): 1093-1099. Mester, E., S. Nagylucskay, et al. (1976). 'Laser stimulation of wound healing.' Acta Chir Acad Sci Hung 17(1): 49-55. Miloro, M. and M. Repasky (2000). 'Low-level laser effect on neurosensory recovery after sagittal ramus osteotomy.' Oral Surg Oral Med Oral Pathol Oral Radiol Endod 89(1): 12-18. Miyagawa, A., M. Chiba, et al. (2009). 'Compressive Force Induces VEGF Production in Periodontal Tissues.' Journal of Dental Research 88(8): 752-756. Ohba, Y., T. Ohba, et al. (2000). 'Expression of cathepsin K mRNA during experimental tooth movement in rat as revealed by in situ hybridization.' Arch Oral Biol 45(1): 63-69. Ozcelik, O., M. Cenk Haytac, et al. (2008). 'Improved wound healing by low-level laser irradiation after gingivectomy operations: a controlled clinical pilot study.' J Clin Periodontol 35(3): 250-254. Pinheiro, A. L. and M. E. Gerbi (2006). 'Photoengineering of bone repair processes.' Photomed Laser Surg 24(2): 169-178. Re Poppi, R., A. L. Da Silva, et al. (2011). 'Evaluation of the osteogenic effect of low-level laser therapy (808 nm and 660 nm) on bone defects induced in the femurs of female rats submitted to ovariectomy.' Lasers Med Sci. Reitan, K. and E. Kvam (1971). 'Comparative behavior of human and animal tissue during experimental tooth movement.' Angle Orthod 41(1): 1-14. Ren, Y., J. C. Maltha, et al. (2003). 'Optimum force magnitude for orthodontic tooth movement: a systematic literature review.' Angle Orthod 73(1): 86-92. Ren, Y., J. C. Maltha, et al. (2004). 'The rat as a model for orthodontic tooth movement--a critical review and a proposed solution.' Eur J Orthod 26(5): 483-490. Rochkind, S., V. Drory, et al. (2007). 'Laser phototherapy (780 nm), a new modality in treatment of long-term incomplete peripheral nerve injury: a randomized double-blind placebo-controlled study.' Photomed Laser Surg 25(5): 436-442. Roodman, G. D. (1996). 'Advances in bone biology: the osteoclast.' Endocr Rev 17(4): 308-332. Rygh, P. (1974). 'Hyalinization of the periodontal ligament incident to orthodontic tooth movement.' Nor Tannlaegeforen Tid 84(9): 352-357. Saddi, K. R., G. D. Alves, et al. (2008). 'Epidermal growth factor in liposomes may enhance osteoclast recruitment during tooth movement in rats.' Angle Orthod 78(4): 604-609. Saito, S. and N. Shimizu (1997). 'Stimulatory effects of low-power laser irradiation on bone regeneration in midpalatal suture during expansion in the rat.' Am J Orthod Dentofacial Orthop 111(5): 525-532. Schindl, A. and R. Neumann (1999). 'Low-intensity laser therapy is an effective treatment for recurrent herpes simplex infection. Results from a randomized double-blind placebo-controlled study.' J Invest Dermatol 113(2): 221-223. Seifi, M., H. A. Shafeei, et al. (2007). 'Effects of two types of low-level laser wave lengths (850 and 630 nm) on the orthodontic tooth movements in rabbits.' Lasers Med Sci 22(4): 261-264. Shiva, S. and M. T. Gladwin (2009). 'Shining a light on tissue NO stores: near infrared release of NO from nitrite and nitrosylated hemes.' J Mol Cell Cardiol 46(1): 1-3. Silva Junior, A. N., A. L. Pinheiro, et al. (2002). 'Computerized morphometric assessment of the effect of low-level laser therapy on bone repair: an experimental animal study.' J Clin Laser Med Surg 20(2): 83-87. Sun, G. and J. Tuner (2004). 'Low-level laser therapy in dentistry.' Dent Clin North Am 48(4): 1061-1076, viii. Takahashi, I., K. Onodera, et al. (2006). 'Expression of genes for gelatinases and tissue inhibitors of metalloproteinases in periodontal tissues during orthodontic tooth movement.' J Mol Histol 37(8-9): 333-342. Takano-Yamamoto, T., M. Kawakami, et al. (1992). 'Effect of age on the rate of tooth movement in combination with local use of 1,25(OH)2D3 and mechanical force in the rat.' J Dent Res 71(8): 1487-1492. Takeda, Y. (1988). 'Irradiation effect of low-energy laser on alveolar bone after tooth extraction. Experimental study in rats.' Int J Oral Maxillofac Surg 17(6): 388-391. Trelles, M. A. and E. Mayayo (1987). 'Bone fracture consolidates faster with low-power laser.' Lasers Surg Med 7(1): 36-45. Tyrovola, J. B. and M. N. Spyropoulos (2001). 'Effects of drugs and systemic factors on orthodontic treatment.' Quintessence Int 32(5): 365-371. Vilela, R. G., K. Gjerde, et al. (2011). 'Histomorphometric analysis of inflammatory response and necrosis in re-implanted central incisor of rats treated with low-level laser therapy.' Lasers Med Sci. Yamaguchi, M., M. Hayashi, et al. (2010). 'Low-energy laser irradiation facilitates the velocity of tooth movement and the expressions of matrix metalloproteinase-9, cathepsin K, and alpha(v) beta(3) integrin in rats.' Eur J Orthod 32(2): 131-139. Yamasaki, K., Y. Shibata, et al. (1984). 'Clinical application of prostaglandin E1 (PGE1) upon orthodontic tooth movement.' Am J Orthod 85(6): 508-518. Yoshida, T., M. Yamaguchi, et al. (2009). 'Low-energy laser irradiation accelerates the velocity of tooth movement via stimulation of the alveolar bone remodeling.' Orthod Craniofac Res 12(4): 289-298. Zhang, J., D. Xing, et al. (2008). 'Low-power laser irradiation activates Src tyrosine kinase through reactive oxygen species-mediated signaling pathway.' J Cell Physiol 217(2): 518-528. | |
| dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/40298 | - |
| dc.description.abstract | 近幾年來,有矯正需求的患者有與日俱增的趨勢;不論是恢復顏面美觀、重建咬合功能,或是因牙周或補綴需求而輔助的協同性治療,矯正治療都是不可或缺的一環。但就大部分患者而言,動輒一、兩年冗長的治療時間往往是其對矯正治療卻步的主因;也因此近十年來,學者們對於加速矯正牙齒移動方面有廣泛性的諸多嘗試嚐試與實驗。本研究建立一大鼠的矯正牙齒移動模型,期能以此模型探究各種影響牙齒移動速率因子的效果,並利用波長970nm的低能量二極體雷射,在兩周的實驗周間內探討其對牙齒移動速率之影響。在實驗組及對照組均在其上顎左側裝置關閉空間彈簧,並在實驗組的第0、1、4、7、11天的時間點進行雷射照射,於實驗開始後第14天進行動物犧牲。在牙齒移動速率以印模材在第4、7、11、14天分別取模後,倒出石膏模型並分別測量其牙齒移動距離;在組織學方面以免疫組織化學染色標定基質金屬蛋白酶-3 (MMP-3)、TRAP、以及osteocalcin三種蛋白質;在犧牲後的大鼠頭顱骨並利用顯微斷層掃描,分析其骨量比率與骨礦物質密度於實驗組及對照組間變化。實驗結果在牙齒移動距離方面,實驗組均高於對照組,並在第14天達到統計上顯著;在免疫組織化學染色方面在osteocalcin蛋白質的標定在實驗組有明顯高於對照組,顯示其骨生成量較多,而在MMP-3及TRAP的標定上兩組則沒有明顯差異;在顯微斷層掃描部分,骨量比率與骨礦物質密度均在實驗組略低於對照組,顯示其骨代謝量較為增加,但差異並沒有達到統計上顯著。本研究結果顯示970nm之低能量雷射治療於兩周的大鼠實驗中能顯著增加牙齒移動速率,並在骨生成量與骨代謝量有略高於對照組,此結果尚待進一步的動物與人體實驗來證實其療效與制定最佳治療效果的照射劑量範圍。 | zh_TW |
| dc.description.abstract | There are increasing needs orthodontic demands upon fororthodontic treatment recently. Among them are needs of better estheticss、needs of , occlusal functionsrehabilitation、, and/or needs of preparation for future implant / prosthetic treatments. Although there are evident benefits for from orthodontic treatmenttooth movement (OTM), patients in face of it usually hesitate try to avoid the due to prolonged long treatment time associated with it. In this study, we used rat model to demonstrate the effect of 970nm low level laser therapy (LLLT) to on orthodontic tooth movement rateOTM. There were 13 rats divided to: 7 for experimental group (n=7) and 6 for control group (n=6). , and Ni-Ti closed coil springs were used to perform orthodontic tooth movement over L’t side of maxilla from incisors to first molars of both groups. LLLT was done in experimental group for 14 day OTMonly on day 0, 1, 4, 7, 11 under general anesthesia, and the experiment duration was 14 days. Silicon impressions material and pour up models was used for rat maxilla impression were taken on day 4, 7, 11, 14; then stone casts were made and . Tmeasurement of tooth movement was donemeasured between the first and second molars with enlarged photos taken on the dental models. Immnohistochemistry Immnohistochemical analysis for MMP-3、, TRAP、, and osteocalcin expression was done on paraffin sections, and m. MicroCT analysis of rat maxilla after sacrifice was used to measure done to demonstrate differences of bone minereal density and bone volume/ total volume in the furcation areas of the maxillary first molars.. The results showed that tooth movement distance was higher in the experimental group than in control group, with day 14 reached statistical significance on day 14. The immunohistochemistry showed the levels of osteocalcin expressed morehigher in experimental group than in control group, with while other two proteins (MMP-3 and TRAP) showed no significant difference. The microCT results showed slightly lower BMD and BV/TV in experimental group than in control group, but both of them though it didn’t reach statistical significant levelce. The results suggested that the 970nm LLLT used in this study may increase orthodontic tooth movement rate, but . However, further more animal and human studies would be needed for further determination of its optimal timing and doseage. | en |
| dc.description.provenance | Made available in DSpace on 2021-06-14T16:44:18Z (GMT). No. of bitstreams: 1 ntu-100-R97422012-1.pdf: 2374474 bytes, checksum: 367a963e4ed4ba308d6534361ec0129c (MD5) Previous issue date: 2011 | en |
| dc.description.tableofcontents | 第一章 引言 9
1.1機械力量於牙周組織之效應 9 1.2雷射的簡介 15 1.3 選擇大鼠的原因 23 第二章 實驗目的 25 第三章 實驗材料與方法 26 3.1先導性實驗一與二 26 3.2正式實驗 28 3.3石膏模型牙齒移動距離測量 31 3.4顯微斷層掃描照射(micro-CT examination) 31 3.5免疫組織化學染色(Immunohistochemistry staining) 32 3.6統計分析 33 第四章 實驗結果 34 4.1 先導性實驗一 34 4.2 先導性實驗二 36 4.3 正式實驗 55 第五章 討論 75 5.1 實驗動物的選擇 75 5.2 實驗裝置與施予牙齒力量探討 76 5.3 低能量雷射之波長與照射劑量探討 78 5.4 低能量雷射於牙齒移動速率之影響 79 5.5組織學觀察與免疫組織化學染色變化探討 80 5.6 顯微斷層掃描於骨量比率(BV/TV)、骨礦物質密度(BMD)之結果探討 83 5.7 低能量雷射於牙齒移動模型對骨質重塑之影響 85 第六章 結論 87 第七章 參考文獻 88 | |
| dc.language.iso | zh-TW | |
| dc.subject | 顯微斷層掃描 | zh_TW |
| dc.subject | 低能量雷射 | zh_TW |
| dc.subject | 骨質重塑 | zh_TW |
| dc.subject | 矯正牙齒移動 | zh_TW |
| dc.subject | low level laser therapy | en |
| dc.subject | microCT | en |
| dc.subject | OTM | en |
| dc.subject | LELI | en |
| dc.subject | LLLT | en |
| dc.title | 以動物實驗模型探討低能量雷射治療對矯正牙齒移動的影響 | zh_TW |
| dc.title | The effect of low level laser therapy on orthodontic tooth movement in a rat model | en |
| dc.type | Thesis | |
| dc.date.schoolyear | 99-2 | |
| dc.description.degree | 碩士 | |
| dc.contributor.oralexamcommittee | 陳羿貞(Yi-Jane Chen),張博鈞(Po-Chun Chang) | |
| dc.subject.keyword | 低能量雷射,骨質重塑,矯正牙齒移動,顯微斷層掃描, | zh_TW |
| dc.subject.keyword | low level laser therapy,LLLT,LELI,OTM,microCT, | en |
| dc.relation.page | 93 | |
| dc.rights.note | 有償授權 | |
| dc.date.accepted | 2011-08-14 | |
| dc.contributor.author-college | 牙醫專業學院 | zh_TW |
| dc.contributor.author-dept | 臨床牙醫學研究所 | zh_TW |
| 顯示於系所單位: | 臨床牙醫學研究所 | |
文件中的檔案:
| 檔案 | 大小 | 格式 | |
|---|---|---|---|
| ntu-100-1.pdf 未授權公開取用 | 2.32 MB | Adobe PDF |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。
