Skip navigation

DSpace

機構典藏 DSpace 系統致力於保存各式數位資料(如:文字、圖片、PDF)並使其易於取用。

點此認識 DSpace
DSpace logo
English
中文
  • 瀏覽論文
    • 校院系所
    • 出版年
    • 作者
    • 標題
    • 關鍵字
    • 指導教授
  • 搜尋 TDR
  • 授權 Q&A
    • 我的頁面
    • 接受 E-mail 通知
    • 編輯個人資料
  1. NTU Theses and Dissertations Repository
  2. 生命科學院
  3. 生化科技學系
請用此 Handle URI 來引用此文件: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/40287
完整後設資料紀錄
DC 欄位值語言
dc.contributor.advisor李昆達
dc.contributor.authorHsiu-Chi Linen
dc.contributor.author林修齊zh_TW
dc.date.accessioned2021-06-14T16:44:05Z-
dc.date.available2016-08-20
dc.date.copyright2011-08-20
dc.date.issued2011
dc.date.submitted2011-08-12
dc.identifier.citationArulanandam, B. P., Mittler, J. N., Lee, W. T., O'Toole, M., and Metzger, D. W. (2000). Neonatal administration of IL-12 enhances the protective efficacy of antiviral vaccines. J Immunol, 164(7), 3698-3704.
Austin, A. J., Jones, C. E., and Van Heeke, G. (1998). Production of human tissue factor using the Pichia pastoris expression system. Protein Expression Purif, 13(1), 136-142.
Boehm, T., Pirie-Shepherd, S., Trinh, L. B., Shiloach, J., and Folkman, J. (1999). Disruption of the KEX1 gene in Pichia pastoris allows expression of full-length murine and human endostatin. Yeast, 15(7), 563-572.
Bretthauer, R. K., and Castellino, F. J. (1999). Glycosylation of Pichia pastoris-derived proteins. Biotechnol Appl Biochem, 30 ( Pt 3), 193-200.
Cereghino, G. P. L., Cereghino, J. L., Sunga, A. J., Johnson, M. A., Lim, M., Gleeson, M. A. G., and Cregg, J. M. (2001). New selectable marker/auxotrophic host strain combinations for molecular genetic manipulation of Pichia pastoris. Gene, 263(1-2), 159-169.
Cereghino, J. L., and Cregg, J. M. (2000). Heterologous protein expression in the methylotrophic yeast Pichia pastoris. FEMS Microbiol Rev, 24(1), 45-66.
Chen, Y., Jin, M., Egborge, T., Coppola, G., Andre, J., and Calhoun, D. H. (2000). Expression and characterization of glycosylated and catalytically active recombinant human alpha-galactosidase A produced in Pichia pastoris. Protein Expr Purif, 20(3), 472-484.
Chiruvolu, V., Cregg, J. M., and Meagher, M. M. (1997). Recombinant protein production in an alcohol oxidase-defective strain of Pichia pastoris in fedbatch fermentations. Enzyme Microb Technol, 21(4), 277-283.
Clare, J. J., Romanos, M. A., Rayment, F. B., Rowedder, J. E., Smith, M. A., Payne, M. M., Sreekrishna, K., and Henwood, C. A. (1991a). Production of mouse epidermal growth factor in yeast: high-level secretion using Pichia pastoris strains containing multiple gene copies. Gene, 105(2), 205-212.
Clare, J. J., Romanos, M. A., Rayment, F. B., Rowedder, J. E., Smith, M. A., Payne, M. M., Sreekrishna, K., and Henwood, C. A. (1991b). Production of mouse epidermal growth factor in yeast: high-level secretion using Pichia pastoris strains containing multiple gene copies. Gene, 105(2), 205-212.
Colombo, M. P., and Trinchieri, G. (2002). Interleukin-12 in anti-tumor immunity and immunotherapy. Cytokine Growth Factor Rev, 13(2), 155-168.
Cregg, J. M., Madden, K. R., Barringer, K. J., Thill, G. P., and Stillman, C. A. (1989). Functional characterization of the two alcohol oxidase genes from the yeast Pichia pastoris. Mol Cell Biol, 9(3), 1316-1323.
Del Vecchio, M., Bajetta, E., Canova, S., Lotze, M. T., Wesa, A., Parmiani, G., and Anichini, A. (2007). Interleukin-12: Biological properties and clinical application. Clin Cancer Res, 13(16), 4677-4685.
Ellis, S. B., Brust, P. F., Koutz, P. J., Waters, A. F., Harpold, M. M., and Gingeras, T. R. (1985). Isolation of alcohol oxidase and two other methanol regulatable genes from the yeast Pichia pastoris. Mol Cell Biol, 5(5), 1111-1121.
Emtage, P. C., Wan, Y., Hitt, M., Graham, F. L., Muller, W. J., Zlotnik, A., and Gauldie, J. (1999). Adenoviral vectors expressing lymphotactin and interleukin 2 or lymphotactin and interleukin 12 synergize to facilitate tumor regression in murine breast cancer models. Hum Gene Ther, 10(5), 697-709.
Flynn, J. L., Goldstein, M. M., Triebold, K. J., Sypek, J., Wolf, S., and Bloom, B. R. (1995). IL-12 increases resistance of BALB/c mice to Mycobacterium tuberculosis infection. J Immunol, 155(5), 2515-2524.
Foss, D. L., Moody, M. D., Murphy, K. P., Jr., Pazmany, C., Zilliox, M. J., and Murtaugh, M. P. (1999). In vitro and in vivo bioactivity of single-chain interleukin-12. Scand J Immunol, 50(6), 596-604.
Galvao da Silva, A. P., and de Almeida Abrahamsohn, I. (2001). Interleukin-12 stimulation of lymphoproliferative responses in Trypanosoma cruzi infection. Immunology, 104(3), 349-354.
Gasser, B., Maurer, M., Gach, J., Kunert, R., and Mattanovich, D. (2006). Engineering of Pichia pastoris for improved production of antibody fragments. Biotechnol Bioeng, 94(2), 353-361.
Gavett, S. H., Ohearn, D. J., Li, X. M., Huang, S. K., Finkelman, F. D., and Willskarp, M. (1995). Interleukin-12 inhibits antigen-induced airway hyperresponsiveness, inflammation, and Th2 cytokine expression in mice. J Exp Med, 182(5), 1527-1536.
Gemmill, T. R., and Trimble, R. B. (1999). Overview of N- and O-linked oligosaccharide structures found in various yeast species. Biochimica Et Biophysica Acta-General Subjects, 1426(2), 227-237.
Gillessen, S., Carvajal, D., Ling, P., Podlaski, F. J., Stremlo, D. L., Familletti, P. C., Gubler, U., Presky, D. H., Stern, A. S., and Gately, M. K. (1995). Mouse Interleukin-12 (Il-12) P40 Homodimer - a potent Il-12 antagonist. Eur J Immunol, 25(1), 200-206.
Grinna, L. S., and Tschopp, J. F. (1989). Size distribution and general structural features of N-linked oligosaccharides from the methylotrophic yeast, Pichia pastoris. Yeast, 5(2), 107-115.
Gubler, U., Chua, A. O., Schoenhaut, D. S., Dwyer, C. M., Mccomas, W., Motyka, R., Nabavi, N., Wolitzky, A. G., Quinn, P. M., Familletti, P. C., et al. (1991). Coexpression of 2 distinct genes is required to generate secreted bioactive cytotoxic lymphocyte maturation factor. Proc Natl Acad Sci U S A, 88(10), 4143-4147.
Gustavsson, M., Lehtio, J., Denman, S., Teeri, T. T., Hult, K., and Martinelle, M. (2001). Stable linker peptides for a cellulose-binding domain-lipase fusion protein expressed in Pichia pastoris. Protein Eng, 14(9), 711-715.
Gutierrez-Ortega, A., Avila-Moreno, F., Saucedo-Arias, L. J., Sanchez-Torres, C., and Gomez-Lim, M. A. (2004). Expression of a single-chain human interleukin-12 gene in transgenic tobacco plants and functional studies. Biotechnol Bioeng, 85(7), 734-740.
Gutierrez-Ortega, A., Sandoval-Montes, C., de Olivera-Flores, T. J., Santos-Argumedo, L., and Gomez-Lim, M. A. (2005). Expression of functional interleukin-12 from mouse in transgenic tomato plants. Transgenic Res, 14(6), 877-885.
Hamilton, S. R., Bobrowicz, P., Bobrowicz, B., Davidson, R. C., Li, H. J., Mitchell, T., Nett, J. H., Rausch, S., Stadheim, T. A., Wischnewski, H., et al. (2003). Production of complex human glycoproteins in yeast. Science, 301(5637), 1244-1246.
Hart, P. H. (2001). Regulation of the inflammatory response in asthma by mast cell products. Immunol Cell Biol, 79(2), 149-153.
Heinzel, F. P., Schoenhaut, D. S., Rerko, R. M., Rosser, L. E., and Gately, M. K. (1993). Recombinant Interleukin-12 cures mice infected with Leishmania-major. J Exp Med, 177(5), 1505-1509.
Heo, J. H., Hong, W. K., Cho, E. Y., Kim, M. W., Kim, J. Y., Kim, C. H., Rhee, S. K., and Kang, H. A. (2003). Properties of the Hansenula polymorpha-derived constitutive GAP promoter, assessed using an HSA reporter gene. FEMS Yeast Res, 4(2), 175-184.
Hilt, W., and Wolf, D. H. (1992). Stress-induced proteolysis in yeast. Mol Microbiol, 6(17), 2437-2442.
Hohenblum, H., Gasser, B., Maurer, M., Borth, N., and Mattanovich, D. (2004). Effects of gene dosage, promoters, and substrates on unfolded protein stress of recombinant Pichia pastoris. Biotechnol Bioeng, 85(4), 367-375.
Houard, S., Heinderyckx, M., and Bollen, A. (2002). Engineering of non-conventional yeasts for efficient synthesis of macromolecules: the methylotrophic genera. Biochimie, 84(11), 1089-1093.
Jacobs, P. P., Geysens, S., Vervecken, W., Contreras, R., and Callewaert, N. (2009). Engineering complex-type N-glycosylation in Pichia pastoris using GlycoSwitch technology. Nat Protoc, 4(1), 58-70.
Jia, S. F., Worth, L. L., Densmore, C. L., Xu, B., Zhou, Z., and Kleinerman, E. S. (2002). Eradication of osteosarcoma lung metastases following intranasal interleukin-12 gene therapy using a nonviral polyethylenimine vector. Cancer Gene Ther, 9(3), 260-266.
Kang, B. Y., Kim, E., and Kim, T. S. (2005). Regulatory mechanisms and their therapeutic implications of interleukin-12 production in immune cells. Cell Signal, 17(6), 665-673.
Kauffman, K. J., Pridgen, E. M., Doyle, F. J., 3rd, Dhurjati, P. S., and Robinson, A. S. (2002). Decreased protein expression and intermittent recoveries in BiP levels result from cellular stress during heterologous protein expression in Saccharomyces cerevisiae. Biotechnol Prog, 18(5), 942-950.
Kobayashi, K., Kuwae, S., Ohya, T., Ohda, T., Ohyama, M., Ohi, H., Tomomitsu, K., and Ohmura, T. (2000). High-level expression of recombinant human serum albumin from the methylotrophic yeast Pichia pastoris with minimal protease production and activation. J Biosci Bioeng, 89(1), 55-61.
Kobayashi, M., Fitz, L., Ryan, M., Hewick, R. M., Clark, S. C., Chan, S., Loudon, R., Sherman, F., Perussia, B., and Trinchieri, G. (1989). Identification and purification of natural killer cell stimulatory factor (NKSF), a cytokine with multiple biologic effects on human lymphocytes. J Exp Med, 170(3), 827-845.
Kobayashi, T., Shiiba, K., Satoh, M., Hashimoto, W., Mizoi, T., Matsuno, S., and Takeda, K. (2002). Interleukin-12 administration is more effective for preventing metastasis than for inhibiting primary established tumors in a murine model of spontaneous hepatic metastasis (vol 32, pg 236, 2002). Surg Today, 32(6), 571-571.
Koutz, P., Davis, G. R., Stillman, C., Barringer, K., Cregg, J., and Thill, G. (1989). Structural comparison of the Pichia pastoris alcohol oxidase genes. Yeast, 5(3), 167-177.
Kuipers, H., Heirman, C., Hijdra, D., Muskens, F., Willart, M., van Meirvenne, S., Thielemans, K., Hoogsteden, H. C., and Lambrecht, B. N. (2004). Dendritic cells retrovirally overexpressing IL-12 induce strong Th1 responses to inhaled antigen in the lung but fail to revert established Th2 sensitization. J Leukocyte Biol, 76(5), 1028-1038.
Kurjan, J., and Herskowitz, I. (1982). Structure of a yeast pheromone gene (MF alpha): a putative alpha-factor precursor contains four tandem copies of mature alpha-factor. Cell, 30(3), 933-943.
Leonard, P., and Sur, S. (2003). Interleukin-12 - Potential role in asthma therapy. BioDrugs, 17(1), 1-7.
Li, Z. J., Xiong, F., Lin, Q. S., d'Anjou, M., Daugulis, A. J., Yang, D. S. C., and Hew, C. L. (2001). Low-temperature increases the yield of biologically active herring antifreeze protein in Pichia pastoris. Protein Expression Purif, 21(3), 438-445.
Liao, C. K. (2006). Expression of Single-chain human interleukin-12 gene in transgenic tomato plants. Master thesis, Department of Life Science. Fu Jen Catholic University.
Ling, P., Gately, M. K., Gubler, U., Stern, A. S., Lin, P., Hollfelder, K., Su, C., Pan, Y. C. E., and Hakimi, J. (1995). Human Il-12 P40 homodimer binds to the Il-12 receptor but does not mediate biologic activity. J Immunol, 154(1), 116-127.
Liu, H., Tan, X., Russell, K. A., Veenhuis, M., and Cregg, J. M. (1995). PER3, a gene required for peroxisome biogenesis in Pichia pastoris, encodes a peroxisomal membrane protein involved in protein import. J Biol Chem, 270(18), 10940-10951.
Liu, J., Dolan, M. C., Reidy, M., and Cramer, C. L. (2008). Expression of bioactive single-chain murine IL-12 in transgenic plants. J Interferon Cytokine Res, 28(6), 381-392.
Lucas, M. L., and Heller, R. (2003). IL-12 gene therapy using an electrically mediated nonviral approach reduces metastatic growth of melanoma. DNA Cell Biol, 22(12), 755-763.
Luster, A. D., Afshar, R., and Medoff, B. D. (2008). Allergic asthma: a tale of many T cells. Clin Exp Allergy, 38(12), 1847-1857.
Lynch, J. M., Briles, D. E., and Metzger, D. W. (2003). Increased protection against pneumococcal disease by mucosal administration of conjugate vaccine plus interleukin-12. Infect Immun, 71(8), 4780-4788.
Macauley-Patrick, S., Fazenda, M. L., McNeil, B., and Harvey, L. M. (2005). Heterologous protein production using the Pichia pastoris expression system. Yeast, 22(4), 249-270.
Martinet, W., Van den Plas, D., Raes, H., Reekmans, R., and Contreras, R. (1999). Bax-induced cell death in Pichia pastoris. Biotechnol Lett, 21(9), 821-829.
Melo, R. C. N., Spencer, L. A., Perez, S. A. C., Neves, J. S., Bafford, S. P., Morgan, E. S., Dvorak, A. M., and Weller, P. F. (2009). Vesicle-mediated secretion of human eosinophil granule-derived major basic protein. Lab Invest, 89(7), 769-781.
Metzger, D. W., McNutt, R. M., Collins, J. T., Buchanan, J. M., VanCleave, V. H., and Dunnick, W. A. (1997). Interleukin-12 acts as an adjuvant for humoral immunity through interferon-gamma-dependent and -independent mechanisms. Eur J Immunol, 27(8), 1958-1965.
Naume, B., Gately, M., and Espevik, T. (1992). A comparative-study of IL-12 (cytotoxic lymphocyte maturation factor)-induced, IL-2-induced, and IL-7-induced effects on immunomagnetically purified CD56+ NK cells. J Immunol, 148(8), 2429-2436.
Nowakowska-Waszczuk, A., and Pietka, M. (1983). Taxonomic study of four yeast strains assimilating methanol. Acta Microbiol Pol, 32(1), 73-85.
Ogata, K., Nishikaw.H, and Ohsugi, M. (1969). A yeast capable of utilizing methanol. Agric Biol Chem, 33(10), 1519-&.
Portielje, J. E., Kruit, W. H., Eerenberg, A. J., Schuler, M., Sparreboom, A., Lamers, C. H., Gratama, J. W., Stoter, G., Huber, C., and Hack, C. E. (2005). Subcutaneous injection of interleukin 12 induces systemic inflammatory responses in humans: implications for the use of IL-12 as vaccine adjuvant. Cancer Immunol Immunother, 54(1), 37-43.
Rengarajan, J., Szabo, S. J., and Glimcher, L. H. (2000). Transcriptional regulation of Th1/Th2 polarization. Immunol Today, 21(10), 479-483.
Resina, D., Serrano, A., Valero, F., and Ferrer, P. (2004). Expression of a Rhizopus oryzae lipase in Pichia pastoris under control of the nitrogen source-regulated formaldehyde dehydrogenase promoter. J Biotechnol, 109(1-2), 103-113.
Rossol, S., Marinos, G., Carucci, P., Singer, M. V., Williams, R., and Naoumov, N. V. (1997). Interleukin-12 induction of Th1 cytokines is important for viral clearance in chronic hepatitis B. J Clin Invest, 99(12), 3025-3033.
Ruitenberg, K. M., Gilkerson, J. R., Wellington, J. E., Love, D. N., and Whalley, J. M. (2001). Equine herpesvirus 1 glycoprotein D expressed in Pichia pastoris is hyperglycosylated and elicits a protective immune response in the mouse model of EHV-1 disease. Virus Res, 79(1-2), 125-135.
Saldarriaga, O. A., Perez, L. E., Travi, B. L., and Melby, P. C. (2006). Selective enhancement of the type 1 cytokine response by expression of a canine interleukin (IL)-12 fused heterodimeric DNA. Vet Immunol Immunopathol, 110(3-4), 377-388.
Scorer, C. A., Buckholz, R. G., Clare, J. J., and Romanos, M. A. (1993). The intracellular production and secretion of HIV-1 envelope protein in the methylotrophic yeast Pichia pastoris. Gene, 136(1-2), 111-119.
Segev, N., Mulholland, J., and Botstein, D. (1988). The yeast GTP-binding YPT1 protein and a mammalian counterpart are associated with the secretion machinery. Cell, 52(6), 915-924.
Sgadari, C., Angiolillo, A. L., and Tosato, G. (1996). Inhibition of angiogenesis by interleukin-12 is mediated by the interferon-inducible protein 10. Blood, 87(9), 3877-3882.
Sieburth, D., Jabs, E. W., Warrington, J. A., Li, X., Lasota, J., Laforgia, S., Kelleher, K., Huebner, K., Wasmuth, J. J., and Wolf, S. F. (1992). Assignment of genes encoding a unique cytokine (IL-12) composed of 2 unrelated subunits to chromosome-3 and chromosome-5. Genomics, 14(1), 59-62.
Sinha, J., Plantz, B. A., Inan, M., and Meagher, M. M. (2005). Causes of proteolytic degradation of secreted recombinant proteins produced in methylotrophic yeast Pichia pastoris: Case study with recombinant ovine interferon-tau. Biotechnol Bioeng, 89(1), 102-112.
Sinha, J., Plantz, B. A., Zhang, W. H., Gouthro, M., Schlegel, V., Liu, C. P., and Meagher, M. M. (2003). Improved production of recombinant ovine interferon-tau by Mut(+) strain of Pichia pastoris using an optimized methanol feed profile. Biotechnol Prog, 19(3), 794-802.
Smyth, M. J., Taniguchi, M., and Street, S. E. A. (2000). The anti-tumor activity of IL-12: Mechanisms of innate immunity that are model and dose dependent. J Immunol, 165(5), 2665-2670.
Sreekrishna, K., Brankamp, R. G., Kropp, K. E., Blankenship, D. T., Tsay, J. T., Smith, P. L., Wierschke, J. D., Subramaniam, A., and Birkenberger, L. A. (1997). Strategies for optimal synthesis and secretion of heterologous proteins in the methylotrophic yeast Pichia pastoris. Gene, 190(1), 55-62.
Sreekrishna, K., Nelles, L., Potenz, R., Cruze, J., Mazzaferro, P., Fish, W., Fuke, M., Holden, K., Phelps, D., Wood, P., et al. (1989). High-level expression, purification, and characterization of recombinant human tumor necrosis factor synthesized in the methylotrophic yeast Pichia pastoris. Biochemistry (Mosc), 28(9), 4117-4125.
Stern, A. S., Podlaski, F. J., Hulmes, J. D., Pan, Y. C. E., Quinn, P. M., Wolitzky, A. G., Familletti, P. C., Stremlo, D. L., Truitt, T., Chizzonite, R., et al. (1990). Purification to homogeneity and partial characterization of cytotoxic lymphocyte maturation factor from human B-lymphoblastoid cells. Proc Natl Acad Sci U S A, 87(17), 6808-6812.
Stylianou, E., Aukrust, P., Nordoy, I., Muller, F., and Froland, S. S. (2000). Enhancement of lymphocyte proliferation induced by interleukin-12 and anti-interleukin-10 in HIV-infected patients during highly active antiretroviral therapy. APMIS, 108(9), 601-607.
Takehara, K., Nagata, T., Kikuma, R., Takanashi, T., Yoshiya, S., Yamaga, A., Yokomizo, Y., and Nakamura, M. (2000). Expression of a bioactive bovine interleukin-12 using baculovirus. Vet Immunol Immunopathol, 77(1-2), 15-25.
Thomas, J. D., Morris, K. R., Godfrey, D. I., Lowenthal, J. W., and Bean, A. G. (2008). Expression, purification and characterisation of recombinant Escherichia coli derived chicken interleukin-12. Vet Immunol Immunopathol, 126(3-4), 403-406.
Trinchieri, G. (1994). Interleukin-12 - a cytokine produced by antigen-presenting cells with immunoregulatory functions in the generation of T-helper cells Type-1 and cytotoxic lymphocytes. Blood, 84(12), 4008-4027.
Trinchieri, G. (1998). Interleukin-12: A cytokine at the interface of inflammation and immunity. Advances in Immunology, Vol 70, 70, 83-243.
Trinchieri, G. (2003). Interleukin-12 and the regulation of innate resistance and adaptive immunity. Nature Reviews Immunology, 3(2), 133-146.
Trinchieri, G., and Sher, A. (2007). Cooperation of Toll-like receptor signals in innate immune defence. Nature Reviews Immunology, 7(3), 179-190.
VanDenHazel, H. B., KiellandBrandt, M. C., and Winther, J. R. (1996). Biosynthesis and function of yeast vacuolar proteases - Review. Yeast, 12(1), 1-16.
Vassileva, A., Chugh, D. A., Swaminathan, S., and Khanna, N. (2001). Effect of copy number on the expression levels of hepatitis B surface antigen in the methylotrophic yeast Pichia pastoris. Protein Expr Purif, 21(1), 71-80.
Voest, E. E., Kenyon, B. B., Oreilly, M. S., Truitt, G., Damato, R. J., and Folkman, J. (1995). Inhibition of angiogenesis in-vivo by Interleukin-12. J Natl Cancer Inst, 87(8), 581-586.
Waterham, H. R., Digan, M. E., Koutz, P. J., Lair, S. V., and Cregg, J. M. (1997). Isolation of the Pichia pastoris glyceraldehyde-3-phosphate dehydrogenase gene and regulation and use of its promoter. Gene, 186(1), 37-44.
Wegner, G. H. (1990). Emerging applications of the methylotrophic yeasts. FEMS Microbiol Rev, 87(3-4), 279-283.
Werten, M. W. T., Van den Bosch, T. J., Wind, R. D., Mooibroek, H., and De Wolf, F. A. (1999). High-yield secretion of recombinant gelatins by Pichia pastoris. Yeast, 15(11), 1087-1096.
Yang, J., Zhou, X., and Zhang, Y. (2004). Improvement of recombinant hirudin production by controlling NH4+ concentration in Pichia pastoris fermentation. Biotechnol Lett, 26(12), 1013-1017.
Yao, L., Pike, S. E., Setsuda, J., Parekh, J., Gupta, G., Raffeld, M., Jaffe, E. S., and Tosato, G. (2000). Effective targeting of tumor vasculature by the angiogenesis inhibitors vasostatin and interleukin-12. Blood, 96(5), 1900-1905.
Ye, Y. L., Huang, W. C., Lee, Y. L., and Chiang, B. L. (2002). Interleukin-12 inhibits eotaxin secretion of cultured primary lung cells and alleviates airway inflammation in vivo. Cytokine, 19(2), 76-84.
Yoon, C., Johnston, S. C., Tang, J., Stahl, M., Tobin, J. F., and Somers, W. S. (2000). Charged residues dominate a unique interlocking topography in the heterodimeric cytokine interleukin-12. EMBO J, 19(14), 3530-3541.
Zhang, R. S., and DeGroot, L. J. (2003). Gene therapy of a rat follicular thyroid carcinoma model with adenoviral vectors transducing murine interleukin-12. Endocrinology, 144(4), 1393-1398.
Zhao, L. L., Linden, A., Sjostrand, M., Cui, Z. H., Lotvall, J., and Jordana, M. (2000). IL-12 regulates bone marrow eosinophilia and airway eotaxin levels induced by airway allergen exposure. Allergy, 55(8), 749-756.
Zheng, L. Y., Mou, L., Lin, S., Lu, R. M., and Luo, E. J. (2005). Enhancing DNA vaccine potency against hantavirus by co-administration of interleukin-12 expression vector as a genetic adjuvant. Chin Med J (Engl), 118(4), 313-319.
Zhou, X. S., and Zhang, Y. X. (2002). Decrease of proteolytic degradation of recombinant hirudin produced by Pichia pastoris by controlling the specific growth rate. Biotechnol Lett, 24(17), 1449-1453.
dc.identifier.urihttp://tdr.lib.ntu.edu.tw/jspui/handle/123456789/40287-
dc.description.abstract嗜甲醇酵母菌 Pichia pastoris,具有容易進行基因操作,可以進行細胞高密度培養等優點,且 P. pastoris 屬於真核表現系統,可以對蛋白質進行轉譯後修飾,培養成本比動物及昆蟲細胞表現系統便宜;同時 P. pastoris 具有將異源蛋白質分泌至細胞外的能力。本研究之目的在利用 P. pastoris 生產重組人類介白素-12。介白素-12是一個細胞激素,由兩個次單位 ─ p35 及 p40 以雙硫鍵結合而成,介白素-12 可以促進 T helper 1 細胞的分化,對於細胞型免疫扮演著關鍵的角色。輔大蘇睿智老師研究室建構了單鏈人類介白素-12融合基因,本研究則進一步將此單鏈人類介白素-12基因分別建構於嗜甲醇酵母菌 P. pastoris 之誘導型載體 pPICZαC 和持續表現型載體 pGAPZαC,並轉殖至原生型 X33 菌株進行異源表現。結果顯示,GAP 啟動子 (持續表現型) 之介白素-12表現量高於 AOX1 誘導型啟動子 (Dunn’s test,p<0.05)。接著,用人類介白素-12專一性之三明治酵素連結免疫分析法,挑選出高表現量的轉形株於 Hinton 氏搖瓶以 YPG 培養基培養,其產量為 2771 pg/mL,細胞乾重 20.3 g DCW L-1。此外,在 Hinton 氏搖瓶培養中,添加 1 mM phenylmethanesulfonylfluoride (PMSF)、1 mM ethylenediaminetetraacetic acid (EDTA) 蛋白酶抑制劑,或是 1% 蛋白酶受質 casamino acid 來比較對重組人類介白素-12之產量影響。結果顯示,添加蛋白酶受質 casamino acid 可有效減緩重組蛋白質之降解。若從第 0 個小時起每天添加 2% casamino acid,細胞乾重可達 23.7 g DCW L-1,產量可達 4588 pg/mL,分別比未添加 casamino acid 時增加了 20% 和 71%。而在發酵槽中以 BSM 培養基經由細胞高密度培養,其細胞乾重可達 118.4 g DCW L-1,重組人類介白素-12的產量則為 390 ng/L,為在 Hinton 氏搖瓶以 BSM 培養基培養時之 9.9 倍。此外,若於發酵槽中第 0 個小時起每天添加 2% 之 casamino acid,重組人類介白素-12產量則比未添加 casamino acid 時增加了 115%。zh_TW
dc.description.abstractPichia. pastoris has advantages of manipulating genes easily and growing to high density. As a eukaryote, P. pastoris provides post-translational modifications. In addition, it is less expensive than other eukaryotic expression systems, such as CHO cells and insect cells. Meanwhile, P. pastoris has the ability to secrete recombinant proteins into medium. The aim of this study is to produce recombinant human interleukin-12 in P. pastoris. Interleukin-12 (IL-12) is a cytokine, comprising two disulfide-linked subunits, p35 and p40. IL-12 acts as a key regulator of cell-mediated immune responses through the induction of T helper 1 cell differentiation. Dr. Su’s lab constructed a single-chain human IL-12 (schIL-12) fusion gene. The IL-12 gene, we were constructed in pPICZαC and pGAPZαC vectors, and transformed into the P. pastoris X33. Then, we have been expressed in the P. pastoris X33 with the inducible AOX1 promoter and the constitutive GAP promoter. The recombinant human IL-12 expression from GAP promoter was significantly better compared to the AOX1 promoter made by Dunn's test (p<0.05). We selected a highest productivity transformant which is for further research by using a sandwich-ELISA assay specific to human IL-12. By using YPG medium, the productivity of the recombinant human IL-12 was 2771 pg/mL in Hinton’s flasks and dry cell weight reached to 20.3 g DCW L-1. In addition, the effects of different protease inhibitors, 1 mM phenylmethanesulfonylfluoride (PMSF), 1 mM ethylenediaminetetraacetic acid (EDTA), or 1% protease substrate casamino acid, on the productivity of recombinant human IL-12 were compared respectively in Hinton’s flasks. For these experiments, we concluded that addition of protease substrate casamino acid, could reduce proteolytic degradation. By adding 2% of casamino acid per day from 0 hour, the biomass reached to 23.7 g DCW L-1 and the production of recombinant human IL-12 was 4588 pg/mL in Hinton’s flasks. These results were 20% and 71% higher compared to the control which was without casamino acid respectively. Through a high cell density culture in the Bioflo110 fermentor by BSM medium, dry biomass reached to 118.4 g DCW L-1 and the production of IL-12 was 390 ng/L, which were 9.9 times more than the production in Hinton’s flasks by BSM medium. When adding 2% of casamino acid every day in the fermentor from 0 hour, the production of recombinant human IL-12 was 115% higher than those in medium without casamino acid.en
dc.description.provenanceMade available in DSpace on 2021-06-14T16:44:05Z (GMT). No. of bitstreams: 1
ntu-100-R98b47107-1.pdf: 2759807 bytes, checksum: d3adf7e692908299c8b2801bd01812d7 (MD5)
Previous issue date: 2011
en
dc.description.tableofcontents口試委員審定書 I
謝誌 II
中文摘要 III
Abstract IV
縮寫表 VI
專有名詞 中英文對照表 VII
目錄 VIII
圖表目錄 XI
第一章 前言 1
1.1 介白素-12之結構 2
1.2 介白素-12在免疫上扮演之角色 2
1.3 介白素-12之功能 3
1.3.1 抗腫瘤 3
1.3.2 增強對病源菌之抵抗力 4
1.3.3 抑制過敏性氣喘 5
1.3.4 做為疫苗佐劑 6
1.4 嗜甲醇酵母 Pichia pastoris 表現系統 7
1.4.1 嗜甲醇酵母 Pichia pastoris 簡介 7
1.4.2 P. pastoris菌株簡介 8
1.4.3 啟動子 9
1.4.4 P. pastoris 表現載體 9
1.5 P. pastoris 表現重組醫藥用蛋白質之發展 11
1.5.1 N型醣基化 11
1.5.2 以 P. pastoris 表現醫藥用蛋白質 11
1.6 蛋白質降解 12
1.6.1 降解成因 12
1.6.2 抑制蛋白質降解之策略 13
1.6.3 蛋白酶抑制劑 13
1.7 異源表現介白素-12之相關研究 14
1.8 研究動機與目的 15
1.9 研究大綱 16
第二章 材料與方法 17
2.1 微生物及載體 18
2.2 P. pastoris 表現載體之建構 18
2.2.1 置換限制酶切位 18
2.2.2 E. coli 轉形及篩選 19
2.2.3 持續表現型及誘導型載體之建構 19
2.2.4 挖膠純化 20
2.3 酵母菌之轉形 20
2.3.1 質體 DNA 抽取 20
2.3.2 線性質體之製備 21
2.3.3 酵母菌之電穿孔法 22
2.3.4 以 PCR 確認轉形株 23
2.4 酵母菌Genome之抽取 23
2.5 IL-12 之 mRNA 確認 24
2.5.1 抽取Total RNA 24
2.5.2 去除殘留DNA 24
2.5.3 反轉錄 PCR (Reverse transcription PCR) 25
2.6 選擇適當的表現菌株 26
2.6.1 篩選高拷貝數之轉形株 26
2.6.2 小量培養篩選高表現量之菌株 26
2.7 Hinton 氏搖瓶小量培養 26
2.8 蛋白酶抑制劑之比較 27
2.9 發酵槽培養 27
2.10 三明治酵素連結免疫分析法 28
2.11 SDS-聚丙醯胺膠體電泳 29
2.12 西方墨點轉漬法 29
第三章 結果 30
3.1 P. pastoris 之IL-12基因轉形株建立 31
3.1.1 中間載體 yT&A-IL12 之建構 31
3.1.2 表現載體 pPICZαC-IL12 和 pGAPZαC-IL12 之建構 31
3.1.3 IL-12轉形株之確認 31
3.2 IL-12 之 mRNA 確認 32
3.3 篩選高表現量菌株 32
3.4 啟動子 AOX1 及 GAP 之比較 33
3.5 西方墨點轉漬法檢測結果 33
3.6 不同培養基於 Hinton 氏搖瓶之比較 34
3.7 蛋白酶抑制劑之比較 34
3.8 Casamino acid添加次數及濃度之最適化 34
3.9 發酵槽培養 35
第四章 討論與結論 37
4.1 討論 38
4.2 結論 43
圖表 44
參考文獻 64
附錄 74
dc.language.isozh-TW
dc.subject抑制劑zh_TW
dc.subject畢赤酵母菌zh_TW
dc.subject重組人類介白素-12zh_TW
dc.subject蛋白&#37238zh_TW
dc.subject細胞高密度培養zh_TW
dc.subjectPichia pastorisen
dc.subjectHigh cell density cultureen
dc.subjectProtease inhibitoren
dc.subjectRecombinant human IL-12en
dc.title以 Pichia pastoris 生產重組人類介白素-12zh_TW
dc.titleProduction of recombinant human Interleukin-12 using Pichia pastorisen
dc.typeThesis
dc.date.schoolyear99-2
dc.description.degree碩士
dc.contributor.oralexamcommittee蘇遠志,黃健雄,江伯倫,蘇睿智
dc.subject.keyword畢赤酵母菌,重組人類介白素-12,蛋白&#37238,抑制劑,細胞高密度培養,zh_TW
dc.subject.keywordPichia pastoris,Recombinant human IL-12,Protease inhibitor,High cell density culture,en
dc.relation.page79
dc.rights.note有償授權
dc.date.accepted2011-08-14
dc.contributor.author-college生命科學院zh_TW
dc.contributor.author-dept生化科技學系zh_TW
顯示於系所單位:生化科技學系

文件中的檔案:
檔案 大小格式 
ntu-100-1.pdf
  未授權公開取用
2.7 MBAdobe PDF
顯示文件簡單紀錄


系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved