Skip navigation

DSpace

機構典藏 DSpace 系統致力於保存各式數位資料(如:文字、圖片、PDF)並使其易於取用。

點此認識 DSpace
DSpace logo
English
中文
  • 瀏覽論文
    • 校院系所
    • 出版年
    • 作者
    • 標題
    • 關鍵字
    • 指導教授
  • 搜尋 TDR
  • 授權 Q&A
    • 我的頁面
    • 接受 E-mail 通知
    • 編輯個人資料
  1. NTU Theses and Dissertations Repository
  2. 理學院
  3. 地質科學系
請用此 Handle URI 來引用此文件: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/40281
完整後設資料紀錄
DC 欄位值語言
dc.contributor.advisor魏國彥
dc.contributor.authorChih-Kai Chuangen
dc.contributor.author莊智凱zh_TW
dc.date.accessioned2021-06-14T16:43:58Z-
dc.date.available2008-09-01
dc.date.copyright2008-08-04
dc.date.issued2008
dc.date.submitted2008-07-31
dc.identifier.citation中文部分
陳妙珍 (2000) Ocean Drilling Program (ODP) 184航次南海北坡1146站位晚中新世至晚上新世超微化石的古海洋意義。國立臺灣大學海洋研究所碩士論文。
陳俐陵 (2001) 西南太平洋中緯度DSDP 594與ODP 1125站位上上新統至更新統鈣質超微化石生物地層研究。國立臺灣大學地質科學研究所碩士論文。
柯惠親、李孟陽、米泓生、魏國彥 (2005) 西太平洋暖池晚第四紀氧碳同位素地層紀錄:ODP Site 1115B(摘要)。中國地質學會九十四年年會,中壢,大會手冊及論文摘要,p.304。(CD-ROM)
陳國峰 (2006) 南海岩芯MD012396之磁學研究:46萬年來南海的環境變遷。國立臺灣大學海洋研究所碩士論文。
羅立 (2007) 七十四萬年來地軸傾角與西太平洋暖池擴張-收縮史。國立臺灣大學地質科學研究所碩士論文。(內文以英文撰寫)
洪崇勝、謝凱旋 (2007) 臺灣第四紀磁生物地層及蓬萊造山運動事件。中央地質調查所特刊第18號:臺灣第四紀研究─回顧與前瞻,第51-83頁。
林家昌、李孟陽、李徳貴 (2008) 西菲律賓海MD06-3049之Réunion事件辨析 (摘要)。中華民國地質學會暨中國地球物理學會九十七年年會暨學術研討會,國立成功大學,大會手冊及論文摘要。(CD-ROM)
陳貞吟 (2008) 浮游有孔蟲 Globigerinoides fistulosus 絕滅與熱帶太平洋表水水文變化關係。國立臺灣大學地質科學研究所碩士論文。
柯惠親 (2008) 西赤道太平洋所羅門海ODP 1115B岩芯之氧碳同位素地層記錄。國立臺灣師範大學地球科學研究所碩士論文。

英文部分
Backman, J. and Shackleton, N. J. (1983) Quantitative biochronology of Pliocene and early Pleistocene calcareous nannofossil from the Atlantic, Indian and Pacific Oceans. Marine Micropaleontology. 8, 141-170.
Bartoli, G., Sarnthein, M., Weinelt, M., Erlenkeuser, H., Garbe-Schönberg D., and Lea, D. W. (2005) Final closure of Panama and the onset of northern hemisphere glaciation. Earth and Planetary Science Letters. 237, 33-44.
Bassinot, F. C., Labeyrie, L. D., Vincent, E., Quidelleur, X., Shackleton, N. J., and Lancelot, Y. (1994) The astronomical theory of climate and the age of the Brunhes-Matuyama magnetic reversal. Earth and Planetary Science Letters. 126, 91-108.
Berger, W. H., Yasuda, M. K., and Lange, C. B. (1994) Quaternary time scale for the Ontong Java Plateau: Milankovitch template for Ocean Drilling Program site 806. Geology. 22, 463-467.
Berggren, W. A., Hilgen, F. J., Langereis, C.G.., Kent, D.V., Obradovich, J. D., Raffi, I., Raymo, M. E., and Shackleton, N. J. (1995) Late Neogene chronology: new perspectives in high-resolution stratigraphy. Geological Society of America Bulletin. 107, 1272-1287.
Bown, P. R. and Young, J. R. (1998) Calcareous nannofossil biostragraphy. Kluwer Academic Publishers. 1-314.
Cande, S. C. and Kent, D. V. (1995) Revised calibration of the geomagnetic polarity timescale for the Late Cretaceous and Cenozoic. Journal of Geophysical Research. 100, 6093-6095.
Channell, J. E. T., Labs, J., and Raymo, M. E. (2003) The Réunion Subchronozone at ODP Site 981 (Feni Drift, North Atlantic). Earth and Planetary Science Letters. 215, 1-12.
Chapman, M. R. and Chepstow-Lusty, A. J. (1997) Late Pliocene climate change and the global extinction of the discoasters: an independent using oxygen isotope records. Palaeogeography, Palaeoclimatology, Palaeoecology. 134, 109-125.
Cheng, X., Tian, J., and Wang, P. (2004) Data report: stable isotopes from site 1143. In: prell, W.L., Wang, P., Blum, P., Rea, D. K., and Clements, S. C. (Eds.), Proceedings of the Ocean Drilling Program, Scientific Results 184, 1-8 (online).
Chiyonobu, S., Sato, T., Narikiyo, R., and Yamasaki, M. (2006) Floral changes in calcareous nannofossil and their paleoceanographic significance in the equatorial Pacific Ocean during the last 500 000 years. Island Arc. 15, 476-482.
Clemens, S. C. and Prell, W. L. (2003) Data report: oxygen and carbon isotopes from site 1146, northern South China Sea. In: prell, W.L., Wang, P., Blum, P., Rea, D. K., Clements, S. C. (Eds.), Proceedings of the Ocean Drilling Program, Scientific Results 184, 1-8 (online).
Dowsett, H., Barron, J., and Poore, R. (1996) Middle Pliocene sea surface temperatures: a global reconstruction. Marine Micropaleontology. 27, 13-25.
Flores J.-A., Sierro F. J., and Raffi, I. (1995) Evolution of the calcareous nannofossil assemblage as a response to the Paleoceanographic change in the eastean equatorial ocean from 4 to 2 Ma (leg 138, sites 849 and 852). Proceedings of the Ocean Drilling Program, Scientific Results. 138, 163-175.
Flores, J.-A., Gersonde, R., Sierro, F. J., and Niebler, H.-S. (2000) Southern Ocean Pleistocene calcareous nannofossil events: calibration with isotope and geomagnetic stratigraphies. Marine Micropaleontology. 40, 377-402.
Gartner, S. (1977) Calcareous nannofossil biostratigraphy and revised zonation of Pleistocene. Marine Micropaleontology. 2, 1-25.
Gibbs, S., Shackleton, N. J., and Young, J. (2004) Orbitally forced climate signals in mid-Pliocene nannofossil assemblages. Marine Micropaleontology. 51, 39-56.
Gradstein, F., Smith, A. G., and Ogg, J. G. (Eds.) (2004) A Geological Time Scale 2004. Cambridge University Press. Cambridge, UK. 1-589.
Guilderson, T. P., Schrag, D. P., and Cane, M. A. (2004) Surface water mixing in the Solomon Sea as documented by high-resolutuion coral 14C record. Journal of Climate. 17, 1147-1156.
Haug, G. H., Ganopolski, A., Sigman, D. M., Rosell-Mele, A., Swaan, G. E. A., Tiedemann, R., Jaccard, S. L., Bollmann, J., Maslin, M. A., Leng, M. J., and Eglinton, G. (2005) North Pacific seasonality and the glaciation of North America 2.7 million years ago. Nature. 433, 821-825
Horng, C.–S., Lee, M.-Y., Palike, H., Wei, K,-Y., Liang, Y., and Torri, M. (2002) Astronomically caliboated ages for geomagnetic reversals within the Matuyama Chron. Earth Planets Space. 54, 679-690.
Ishikawa, N. and Frost, G. M. (2002) Magnetic properties of sediments from Ocean Drill Program sites 1109, 1115, and 1118 (Leg 180), Woodlark Basic (Papua New Guinea). Earth Planets Space. 54, 883-897.
Kameo, K. and Takayama, T. (1999) Biostratigraphic significance of sequential size variation of the calcareous genus Reticulofenestra in the Upper Pliocene of the North Atlantic. Marine Micropaleontology. 37, 41-52.
Kennent, J. P. (1982) Marine Geology. Prentice-Hall. 1-813.
Kidane, T., Otofuji, Y. I., Brown, F. H., Takamoto, K., and Eshete, G. (2007) Two normal paleomagnetic polarity intervals in the lower Matuyama Chron recorded in the Shungura Formation (Omo Valley, Southwest Ethiopia). Earth and Planetary Science Letters. 262, 240-256.
Lanphere, M. A., Champion, D. E., Christiansen, R. L., Izett, G. A., and Obradovich, J. D. (2002) Revised ages for tuff of the Yellowstone Plateau volcanic field: assignment of the Huckleberry Ridge Tuff to a new geomagnetic polarity event. Geological Society of America Bulletin. 114, 559-568.
Lee, M.-Y. and Wei, K.-Y. (2000) Australasian microtektites in the South China Sea and the west Philippine Sea: Implications for the age, size and location of impact crater. Meteorities and Planetary Sciences. 35, 1151-1155.
Lee, M.-Y., Wei, K.-Y., and Chen, Y.-G. (2001) Astronomically tuned late Pliocene-Pleistocene benthic δ18O chronostratigraphy for the subtropical western Pacific and its paleoclimatic significance. Western Pacific Earth Sciences. 1, 443-458.
Lee, M.-Y., Chen, C.-H., Wei, K.-Y., Iizuka, Y., and Carey, S. (2004) First Toba supereruption revival. Geology. 32, 61-64.
Lisiecki, L. E. and Raymo, M. E. (2005) A Pliocene-Pleistocene stack of 57 globally distributed benthic δ18O records. Paleoceanography 20, PA1003.
Li, B., Jian, Z., Li, Q., Tian, J., and Wang, P. (2005) Paleoceanography of the South China Sea since the middle Miocene: evidence from planktonic foraminifera. Marine Micropaleontology. 54, 49-62
Martini, E. (1971) Standard Tertiary and Quaternary calcareous nannoplankton zonation. In: Farinacci A., Proceedings Ⅱ Planktonic Conference, Roma 1970, (2): 739-785.
Matsuoka, H. and Okada H. (1989) Quantitative analysis of Quaternary nannoplankton in the snbtropical northwestern Pacific ocean. Marine Micropaleontology. 14, 97-118.
Mix, A. C., Pisias, N. G., Rugh, W., Wilson, J., Morey, A., and Hagelberg, T. (1995) Benthic foraminifera stable isotope record form Site 849, (0-5 Ma): local and glodal climate change. Proceedings of the Ocean Drilling Program, Scientific Results. 138, 317-412.
McGregor, H. V., Gagan M. K., McCulloch, M. T., Hodge, E., and Mortimer G. (2008) Mid-Holocence variability on the marine 14C reservoir age for northern coastal Papua New Guinea. Quaternary Geochronology. 3, 213-225.
Molfino, B. and McIntyre, A. (1990) Precessional forcing of nutricline dynamics in the equatorial Atlantic. Science. 249, 766-769.
Okada, H. and Bukry, D., (1980) Supplementary modification and introduction of code numbers to the low-latitude coccolith biostratigraphic zonation (Bukry, 1973; 1975). Marine Micropaleontology 5, 321-325.
Paillard, D., Labeyrie, L., and Yiou, F. (1996) Macintosh program performs time-series analysis. Eos Trans, AGU. 77, 379.
Perch-Neilson, K. (1985) Cenozoic calcareous nannofossils. In: Boilli, H. M. et al. Plankton Stratigraphy. Cambridge University Press, 329-426.
Raffi, I., Backman, J., Fornaciari, E., Pälike, H., Rio, D., Lourens, L., and Hilgen, F. (2006) A review of calcareous nannofossil astrobiochronology encompassing the past 25 million years. Quaternary Science Reviews. 25, 3113-3137.
Raffi, I. (2002) Revision of the early-middle Pleistocene calcareous nannofossil biochronology (1.75-0.85 Ma). Marine Micropaleontology. 45, 25-55.
Raffi, I. and Flores, J.-A. (1995) Pleistocene through Miocene calcareous nannofossil from eastern equatorial Pacific Ocean (Leg 138). Proceedings of the Ocean Drilling Program, Scientific Results. 138, 233-286.
Raffi, I., Backman, J., Rio, D. and Shankleton, N. J. (1993) Plio-Pleistocene nannofossil biostratigraphy and calibration to oxygen isotope stratigraphies from Deep sea Drilling Project Site 607 and Ocean Drilling Project Site 677. Paleoceanography. 8, 387-408.
Resig, J. M., Frost, G. M., Ishikawa, N., and Perembo, R. C. B. (2001) Micropalaeontological and palaeomagnetic approaches to stratigraphic anomalies in rift basins: ODP Site 1109, Woodlark Basin. Geological Society, London, Special Publications. 187, 389-404.
Shackleton, N. J., Berger, A., and Peltier, W. R. (1990) An alternative astronomical calibration of the lower Pleistocene timescale based on ODP site 677. Transactions of the Royal Society of Edinburgh: Earth Sciences. 81, 251-261.
Siesser, W. G. (2001) Pliocene paleoclimatology at ODP site 1115, Solomon sea (southwestern Pacific Ocean), based on calcareous nannofossils. Proceedings of the Ocean Drilling Program, Scientific Results. 180, 1-15[CD-ROM].
Su, X., Xu, Y., and Tu, Q. (2004) Early Oligocene-Pleistocene calcareous nannofossil biostratigraphy of the northern South China Sea (leg 184, sites 1146-1148). In: prell, W.L., Wang, P., Blum, P., Rea, D. K., Clements, S. C. (Eds.), Proceedings of the Ocean Drilling Program, Scientific Results 184, 1-24 (online).
Takahashi K. and Okada H. (2001) Paleoceanography for the last 195,000 years in the Solomon Sea (ODP Site 1109) by means of calcareous nannofossils. Marine Micropaleontology. 42, 45-59.
Takayama, T. (1993) Notes on Neogene calcareous nannofossil biostratigraphy of the Ontong Java Plateau and size variations of Reticulofenestra coccoliths. Proceedings of the Ocean Drilling Program, Scientific Results. 130, 179-229.
Taylor, B., Huchou, P., Klaus, A., et al. (Eds.) (1999) Chapter 9: Site 1115. Proceedings of the Ocean Drilling Program, Initial Reports. 180, 1-226 [CD-ROM]
Taylor, B. and Huchou, P. (2002) Active continental extension in the western Woodlark Basin: a synthesis of leg 180 results. In Taylor, B., Huchou, P., Klaus, A., et al. (Eds.), Proceedings of the Ocean Drilling Program, Scientific Reports. 180, 1-36.
Thompson, P. R., Be, A. W. H., Duplessy, J.-C., and Shackleton, N. J., (1979) Disappearance of pink-pigmented Globigerinoides ruber at 120,000 yr BP in the Indian and Pacific Oceans. Nature. 280, 554-558.
Tian, J., Wang, P., Chen, X., and Li, Q. (2002) Astronomically tuned Plio-Pleistocene benthic δ18O records from South China Sea and Atlantic-Pacific comparison. Earth and Planetary Science Letters. 203, 1015-1029.
Wang, P., Prell, W. L., et al. (Eds.) (2000) Chapter 4: Site 1143. Proceedings of the Ocean Drilling Program, Initial Results. 184, 1-103(online)
Wara, M. W., Ravelo, A. C., and Delaney, M. L. (2005) Permanent El. Niño-like conditions during the Pliocene warm period. Science. 309, 758-761.
Wei, K-Y. and Lee, T –Q. (1998) Nannofossil biochronology of Tephra layers in core MD972143, Benham rise, western Philippine sea. TAO. 9, 153-163.
Wei, W. (1993) Calibration of upper Pliocene-lower Pleistocene nannofossil events with oxygen isotope stratigraphy. Paleoceanography. 8, 85-99.
Young, J. R. (1990) Size variation of Neogene Reticulofenestra coccolith from Indian Ocean DSDP cores. Journal of Micropaleontology. V.9, 71-85.
dc.identifier.urihttp://tdr.lib.ntu.edu.tw/jspui/handle/123456789/40281-
dc.description.abstract西太平洋暖池 (Western Pacific Warm Pool, WPWP) 為全球重要的熱量及水氣來源,近年來探討西太平洋暖池的研究日益增多,本研究利用海洋鑽探計畫 (Ocean Drilling Program) 第180航次於西太平洋暖池南緣的所羅門海域所鑽取的ODP 1115B海洋岩芯(9 o 11.382’S, 151 o 34.437’E, 水深1149公尺),檢視深度0至216.43公尺的鈣質超微化石,自種屬組合來討論晚上新世迄今的生物事件,輔以重新判讀的磁地層,與前人研究的氧同位素地層做交叉對比,使其年代模式更加精確,以提供後續研究之用。再者鈣質超微化石的豐度分佈,可視為良好的氣候參數代用指標,對尚缺乏詳細鈣質超微化石研究的西赤道太平洋而言,不啻能成為該地區第一個高解析度鈣質超微化石生物地層研究的典範。
在ODP 1115B 216.43公尺的岩芯樣品中總計可定出十四個鈣質超微化石生物事件。其中FO (First Occurrence) Emiliania huxleyi、LO (Last Occurrence) Pseudoemiliania lacunosa、LO Reticulofenestra asanoi、LO large Gephyrocapsa、FO large Gephyrocapsa、LO Calcidiscus macintyrei、LO Discoaster brouweri等七個生物事件具全球等時性。非等時性的生物事件中,reen (reentrance) medium Gephyrocapsa因該種屬對暖水溫的偏好而與緯度分佈具高度相關;FO medium Gephyrocapsa在西太平洋相近岩芯發揮良好對比特性;而FO Reticulofenestra asanoi、LO Helicosphaera sellii、LO Discoaster pentaradiatus、LO Discoaster surculus and LO Discoaster tamalis等五個生物事件則呈現不規律的異時性。
鈣質超微化石豐度亦可作為氣候參數代用指標,首先暖水種Discoaster屬的豐度變化可作為海水溫度的代用指標,指示自三百萬年前巴拿馬地峽關閉之後,西赤道太平洋地區受北半球冰蓋發育影響的過程。而Florisphaera profunda的豐度變化可指出三百萬年來此地區赤道表面海流與湧升流的強弱消長。Reticulofenestra asanoi的絕滅和暖水種Gephyrocapsa omega豐度的急劇減少則可呼應九十萬年前的中更新世事件,此事件導因於第四紀冰期與間冰期的旋回週期從四萬年的地軸傾斜角轉變為十萬年的繞日偏心率變化,且振幅加劇,可能由於全球冰川體積增加,使得適應暖水之海洋浮游生物絕滅。
zh_TW
dc.description.abstractThe Western Pacific Warm Pool (WPWP) is the largest source of heat and moisture on the Earth surface. For its importance the paleoceanographic studies of the WPWP have increased dramatically during the past decade. In an attempt to improve the resolution and accuracy of chronology of the stratigraphic records in the WPWP for the last 3 million years, the current study establishes calcareous nannofossil biostratigraphy of ODP site 1115B (9o11.382’S, 151 o 34.437’E, water depth 1149 m) in the Solomon Sea with a newly modified magnetostratigraphy of the Upper Pliocene-Pleistocene. The existing, unpublished oxygen isotope stratigraphy (Ke, 2008) provides a stratigraphic framework in which the chronological significances of the 14 recognized bioevents were evaluated against published results of other sites. Semi-quantitative estimations of relative abundances of environmentally-sensitive nannofossil taxa are used to infer paleoceanographic changes.
The nannofossils in samples of the upper 216.43 mbsf of ODP1115B were identified under a light microscope at 1250X magnification augmented with additional scanning electronic microscopy when necessary. Among the 14 recognized bioevents, seven are of good correlation markers because of their global synchroniety. They are the first occurrence (FO) of Emiliania huxleyi, the last occurrence (LO) of Pseudoemiliania lacunosa, LO Reticulofenestra asanoi, LO large Gephyrocapsa, FO large Gephyrocapsa, LO Calcidiscus macintyrei and LO Discoaster brouweri. Seven of the bioevents are considered to be diachronous, including the reentrance (reen) of medium Gephyrocapsa, FO Reticulofenestra asanoi, LO Helicosphaera sellii, FO medium Gephyrocapsa, LO Discoaster pentaradiatus, LO D. surculus and LO D. tamalis. The reason of reen medium Gephyrocapsa being diachronous is that the medium-sized Gephyrocapsa omega (= G. parallela) favored warm water conditions and thereby shows a latitudinal heterogeneity of their first occurrence during marine oxygen isotope stages (MIS) 25-29.
Changes in nannofossil assemblage composition signify several major climatic changes during the past 3 million years. The abundance of Discoaster spp. is used as an indicator of warm conditions. The major drops of Discoaster abundance during 2.8-2.6 Ma and 2.5-2.4 Ma are indicative of decrease of sea-surface temperature as resulted from the onset of northern Hemisphere glaciation and its subsequent major ice-sheet expansion. The relative abundance of Florisphaera profunda may indicate the strength of upwelling and therefore change in thermocline depth. The extinction of Reticulofenestra asanoi and the dramatic reduction of Gephyrocapsa omega at about 0.9 Ma related to the mid-Pleistocene revolution when the dominant periodicity of global climatic variation changes from 41 ka to 100 ka, as well as a major step-wise increase of global ice volume took place.
en
dc.description.provenanceMade available in DSpace on 2021-06-14T16:43:58Z (GMT). No. of bitstreams: 1
ntu-97-R91224109-1.pdf: 3273951 bytes, checksum: 87fb33f0f36d3d37d288533a71df2455 (MD5)
Previous issue date: 2008
en
dc.description.tableofcontents口試委員會審定書
誌 謝 I
中文摘要 II
英文摘要 III
目 錄 V
圖 目 錄 VII
表 目 錄 VIII
第一章 緒論 1
1.1、前言 1
1.2、新近紀鈣質超微化石生物地層學 2
1.3、西太平洋地區新近紀生物地層之前人研究 4
1.4、ODP1115岩芯位置、所羅門海地質與水文背景 5
1.5、ODP1115B前人研究 8
1.6、研究目的 10
第二章 研究材料與方法 11
2.1、岩芯材料 11
2.2、岩芯深度換算 12
2.3、標本採樣、標本處理與檢視 12
2.4、種屬鑑定 14
2.5、磁地層之重新驗證 15
第三章 地磁 ─ 生物 ─ 化學地層學 17
3.1、鈣質超微化石生物地層 17
3.2、氧同位素地層 21
3.3、磁地層 22
3.4、其他輔助證據 (放射性同位素絕對定年、浮游性有孔蟲生物地層與亞澳微雷公墨事件) 28
3.5、地磁 ─ 生物 ─ 化學地層整合 31
3.6、鈣質超微化石生物事件之等時性與異時性 36
第四章 鈣質超微化石豐度變化之古海洋隱示 50
4.1、北半球冰蓋發育 50
4.2、表面水體的水文變化 52
4.3、中更新世事件 54
第五章 結論 56
參考文獻 57
附錄一、ODP Site 1115B每根鑽孔的岩芯覆蓋率 63
附錄二、ODP 1115B岩芯鈣質超微化石標本深度換算與標號 64
附錄三、ODP 1115B鈣質超微化石豐度紀錄 67
附錄四、本研究化石檢視種屬列表 72
dc.language.isozh-TW
dc.subject生物地層zh_TW
dc.subject第四紀zh_TW
dc.subject西太平洋暖池zh_TW
dc.subjectODP1115Bzh_TW
dc.subject鈣質超微化石zh_TW
dc.subject Quaternaryen
dc.subject biostratigraphyen
dc.subject calcareous nannofossilen
dc.subjectwestern pacific warm poolen
dc.subject ODP1115Ben
dc.title西赤道太平洋所羅門海ODP1115B站位上部上新統至更新統鈣質超微化石生物地層硏究zh_TW
dc.titleUpper Pliocene-Pleistocene calcareous nannofossil biostratigraphy of ODP1115B in the Solomon Sea, western equatorial Pacific.en
dc.typeThesis
dc.date.schoolyear96-2
dc.description.degree碩士
dc.contributor.oralexamcommittee李?貴,米泓生,李孟陽
dc.subject.keyword西太平洋暖池,ODP1115B,第四紀,鈣質超微化石,生物地層,zh_TW
dc.subject.keywordwestern pacific warm pool, ODP1115B, Quaternary, calcareous nannofossil, biostratigraphy,en
dc.relation.page62
dc.rights.note有償授權
dc.date.accepted2008-08-01
dc.contributor.author-college理學院zh_TW
dc.contributor.author-dept地質科學研究所zh_TW
顯示於系所單位:地質科學系

文件中的檔案:
檔案 大小格式 
ntu-97-1.pdf
  未授權公開取用
3.2 MBAdobe PDF
顯示文件簡單紀錄


系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved