Skip navigation

DSpace

機構典藏 DSpace 系統致力於保存各式數位資料(如:文字、圖片、PDF)並使其易於取用。

點此認識 DSpace
DSpace logo
English
中文
  • 瀏覽論文
    • 校院系所
    • 出版年
    • 作者
    • 標題
    • 關鍵字
    • 指導教授
  • 搜尋 TDR
  • 授權 Q&A
    • 我的頁面
    • 接受 E-mail 通知
    • 編輯個人資料
  1. NTU Theses and Dissertations Repository
  2. 生命科學院
  3. 動物學研究所
請用此 Handle URI 來引用此文件: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/40276
完整後設資料紀錄
DC 欄位值語言
dc.contributor.advisor潘建源
dc.contributor.authorChin Linen
dc.contributor.author林靖zh_TW
dc.date.accessioned2021-06-14T16:43:52Z-
dc.date.available2013-08-15
dc.date.copyright2011-08-15
dc.date.issued2011
dc.date.submitted2011-08-12
dc.identifier.citationBenfenati, F., Valtorta, F., Bähler, M., and Greengard, P. (1989). Synapsin I, a neuron-specific phosphoprotein interacting with small synaptic vesicles and F-actin. Cell Biology International Reports 13, 1007-1021.
Brenner, S.L., and Korn, E.D. (1980). The effects of cytochalasins on actin polymerization and actin ATPase provide insights into the mechanism of polymerization. Journal of Biological Chemistry 255, 841-844.
Brose, N., Petrenko, A.G., Sudhof, T.C., and Jahn, R. (1992). Synaptotagmin: A calcium sensor on the synaptic vesicle surface. Science 256, 1021-1025.
Bubb, M.R., Spector, I., Beyer, B.B., and Fosen, K.M. (2000). Effects of jasplakinolide on the kinetics of actin polymerization. An explanation for certain in vivo observations. Journal of Biological Chemistry 275, 5163-5170.
Chou, J.J., Li, S., Klee, C.B., and Bax, A. (2001). Solution structure of Ca2+-calmodulin reveals flexible hand-like properties of its domains. Nature Structural Biology 8, 990-997.
Daly, C., Sugimori, M., Moreira, J.E., Ziff, E.B., and Llinás, R. (2000). Synaptophysin regulates clathrin-independent endocytosis of synaptic vesicles. Proceedings of the National Academy of Sciences of the United States of America 97, 6120-6125.
Darios, F., Connell, E., and Davletov, B. (2007). Phospholipases and fatty acid signalling in exocytosis. Journal of Physiology 585, 699-704.
Dean, C., and Dresbach, T. (2006). Neuroligins and neurexins: Linking cell adhesion, synapse formation and cognitive function. Trends in Neurosciences 29, 21-29.
Dumuis, A., Sebben, M., Haynes, L., Pin, J.P., and Bockaert, J. (1988). NMDA receptors activate the arachidonic acid cascade system in striatal neurons. Nature 336, 68-70.
Findeisen, F., and Minor Jr, D.L. (2010). Progress in the structural understanding of voltage-gated calcium channel (CaV) function and modulation. Channels 4.
Greengard, P. (2001). The neurobiology of slow synaptic transmission. Science 294, 1024-1030.
Guillaud, L., Wong, R., and Hirokawa, N. (2008). Disruption of KIF17-Mint1 interaction by CaMKII-dependent phosphorylation: A molecular model of kinesin-cargo release. Nature Cell Biology 10, 19-29.
Hilfiker, S., Pieribone, V.A., Czernik, A.J., Kao, H.T., Augustine, G.J., and Greengard, P. (1999). Synapsins as regulators of neurotransmitter release. Philosophical Transactions of the Royal Society B: Biological Sciences 354, 269-279.
Hirokawa, N. (1998). Kinesin and dynein superfamily proteins and the mechanism of organelle transport. Science 279, 519-526.
Hirokawa, N., Niwa, S., and Tanaka, Y. (2010). Molecular motors in neurons: Transport mechanisms and roles in brain function, development, and disease. Neuron 68, 610-638.
Holzinger, A. (2009). Jasplakinolide: an actin-specific reagent that promotes actin polymerization. Methods in molecular biology (Clifton, NJ) 586, 71-87.
Jahn, R., Schiebler, W., Ouimet, C., and Greengard, P. (1985). A 38,000-dalton membrane protein (p38) present in synaptic vesicles. Proceedings of the National Academy of Sciences of the United States of America 82, 4137-4141.
Kamin, D., Lauterbach, M.A., Westphal, V., Keller, J., Schönle, A., Hell, S.W., and Rizzoli, S.O. (2010). High- And low-mobility stages in the synaptic vesicle cycle. Biophysical Journal 99, 675-684.
Kotaleski, J.H., and Blackwell, K.T. (2010). Modelling the molecular mechanisms of synaptic plasticity using systems biology approaches. Nature Reviews Neuroscience 11, 239-251.
Kwon, Sung E., and Chapman, Edwin R. (2011). Synaptophysin Regulates the Kinetics of Synaptic Vesicle Endocytosis in Central Neurons. Neuron 70, 847-854.
Löwe, J., Li, H., Downing, K.H., and Nogales, E. (2001). Refined structure of αβ-tubulin at 3.5 Å resolution. Journal of Molecular Biology 313, 1045-1057.
Li, B., Birdwell, C., and Whelan, J. (1994). Antithetic relationship of dietary arachidonic acid and eicosapentaenoic acid on eicosanoid production in vivo. Journal of Lipid Research 35, 1869-1877.
Ma, D., Zhang, M., Larsen, C.P., Xu, F., Hua, W., Yamashima, T., Mao, Y., and Zhou, L. (2010). DHA promotes the neuronal differentiation of rat neural stem cells transfected with GPR40 gene. Brain Research 1330, 1-8.
Martin, S.J., Grimwood, P.D., and Morris, R.G.M. (2000). Synaptic plasticity and memory: An evaluation of the hypothesis, pp. 649-711.
McMahon, H.T., Bolshakov, V.Y., Janz, R., Hammer, R.E., Siegelbaum, S.A., and Südhof, T.C. (1996). Synaptophysin, a major synaptic vesicle protein, is not essential for neurotransmitter release. Proceedings of the National Academy of Sciences of the United States of America 93, 4760-4764.
Morales, M., Colicos, M.A., and Goda, Y. (2000). Actin-dependent regulation of neurotransmitter release at central synapses. Neuron 27, 539-550.
Okuda, S., Saito, H., and Katsuki, H. (1994). Arachidonic acid: Toxic and trophic effects on cultured hippocampal neurons. Neuroscience 63, 691-699.
Patterson, G.H., and Lippincott-Schwartz, J. (2002). A photoactivatable GFP for selective photolabeling of proteins and cells. Science 297, 1873-1877.
Phillis, J.W., and O'Regan, M.H. (2004). A potentially critical role of phospholipases in central nervous system ischemic, traumatic, and neurodegenerative disorders. Brain Research Reviews 44, 13-47.
Rehm, H., Wiedenmann, B., and Betz, H. (1986). Molecular characterization of synaptophysin, a major calcium-binding protein of the synaptic vesicle membrane. The EMBO journal 5, 535-541.
Sanchez-Mejia, R.O., and Mucke, L. (2010). Phospholipase A2 and arachidonic acid in Alzheimer's disease. Biochimica et Biophysica Acta - Molecular and Cell Biology of Lipids 1801, 784-790.
Takamori, S., Holt, M., Stenius, K., Lemke, E.A., Grønborg, M., Riedel, D., Urlaub, H., Schenck, S., Brügger, B., Ringler, P., et al. (2006). Molecular Anatomy of a Trafficking Organelle. Cell 127, 831-846.
Tarsa, L., and Goda, Y. (2002). Synaptophysin regulates activity-dependent synapse formation in cultured hippocampal neurons. Proceedings of the National Academy of Sciences of the United States of America 99, 1012-1016.
Vandecandelaere, A., Martin, S.R., and Engelborghs, Y. (1997). Response of microtubules to the addition of colchicine and tubulin-colchicine: Evaluation of models for the interaction of drugs with microtubules. Biochemical Journal 323, 189-196.
Westphal, V., Rizzoli, S.O., Lauterbach, M.A., Kamin, D., Jahn, R., and Hell, S.W. (2008). Video-rate far-field optical nanoscopy dissects synaptic vesicle movement. Science 320, 246-249.
Williams, J.H., Errington, M.L., Lynch, M.A., and Bliss, T.V.P. (1989). Arachidonic acid induces a long-term activity-dependent enhancement of synaptic transmission in the hippocampus. Nature 341, 739-742.
Wong, R.W.C., Setou, M., Teng, J., Takei, Y., and Hirokawa, N. (2002). Overexpression of motor protein KIF17 enhances spatial and working memory in transgenic mice. Proceedings of the National Academy of Sciences of the United States of America 99, 14500-14505.
Wu, A., Ying, Z., and Gomez-Pinilla, F. (2008). Docosahexaenoic acid dietary supplementation enhances the effects of exercise on synaptic plasticity and cognition. Neuroscience 155, 751-759.
Xia, Z., and Storm, D.R. (2005). The role of calmodulin as a signal integrator for synaptic plasticity. Nature Reviews Neuroscience 6, 267-276.
Ye, X., and Carew, T. (2011). Transsynaptic Coordination of Presynaptic and Postsynaptic Modifications underlying Enduring Synaptic Plasticity. Neuron 70, 379-381.
Yin, X., Takei, Y., Kido, Mizuho A., and Hirokawa, N. (2011). Molecular Motor KIF17 Is Fundamental for Memory and Learning via Differential Support of Synaptic NR2A/2B Levels. Neuron 70, 310-325.
Zhu, Y., Xu, J., and Heinemann, S.F. (2009). Two Pathways of Synaptic Vesicle Retrieval Revealed by Single-Vesicle Imaging. Neuron 61, 397-411.
Zucker, R.S., and Regehr, W.G. (2002). Short-term synaptic plasticity, pp. 355-405.
dc.identifier.urihttp://tdr.lib.ntu.edu.tw/jspui/handle/123456789/40276-
dc.description.abstract突觸小泡儲存神經傳導物質且被運送到軸突末端來參與突觸傳導。我們有興趣於細胞骨架調控小泡運動和突觸傳導。為了觀察小泡運動,將synaptophysin與光活化綠螢光蛋白(PA-GFP)結合,呈現在培養的皮質神經細胞Synaptophysin-PA-GFP位於亮點並且在神經細胞內緩慢移動,用CCD相機擷取亮點運動影像。為了觀察突觸傳導,重複地將紫外光照射在特定的區域來把MNI-caged-glutamate光解刺激目標細胞,使用fluo-2 MA呈現鈣離子的濃度變化。細胞骨架拮抗劑會使小泡移動速度從控制組的~0.7 μm/s下降到實驗組的~0.5 μm/s,並且使得目標細胞與相連鄰近細胞的鈣離子上升量減少。KIF17是驅動蛋白負責運送小泡,把其表現於神經細胞中會使小泡移動速度變快至~0.8 μm/s。Calmodulin與其突變蛋白會影響小泡運動和神經傳導,但是無顯著性差異。給予DHA則會使得目標細胞的鈣離子上升量增加。我們研究結果建議:減慢小泡運動會調控突觸傳導和突觸塑型。zh_TW
dc.description.abstractSynaptic vesicles (SVs) store neurotransmitters and are transported to axon terminals for synaptic transmission. We are interested in how the vesicle movement and synaptic transmission are modulated by the cytoskeleton. To monitor the movement of SVs, synaptophysin was fused with photoactivatable green fluorescent protein (PA-GFP) and expressed in cultured cortical neurons. Synaptophysin-PA-GFP was located at some spots and moved slowly in neuritis captured by CCD camera. To monitor the synaptic transmission, UV flash was applied at designated regions repetitively to photolyze MNI-caged-glutamate to stimulate the target cell and the elevations in cytosolic Ca2+ concentration were visualized by fluo-2 MA. The vesicle movement was slowed down from ~0.7 μm/s in control group to ~0.5 μm/s in neurons treated with cytoskeleton antagonists; the Ca2+ responses in both target and connected neighbor cells were reduced as well. When KIF17, a kinesin for SV transportation, was expressed in neurons, the vesicle movement was significantly increased to ~0.8 μm/s. Calmodulin and its mutants interfered vesicle movement and neurotransmission but without significance. After being treated with DHA, the Ca2+ elevations in target cells were enhanced. These data suggest that slowing down SV movement may result in modulate the synaptic transmission and synaptic plasticity.en
dc.description.provenanceMade available in DSpace on 2021-06-14T16:43:52Z (GMT). No. of bitstreams: 1
ntu-100-R98b41031-1.pdf: 3143002 bytes, checksum: 0ad39f2a94acdd5e8d7995bc86171478 (MD5)
Previous issue date: 2011
en
dc.description.tableofcontents中文摘要 ii
英文摘要 iii
致謝 iv
一、前言 1
二、文獻回顧 2
2.1神經細胞與其型態 2
2.1.1突觸 2
2.1.2突觸小泡 3
2.1.3 Synaptophysin 3
2.2突觸小泡的運動 5
2.2.1細胞骨架 5
2.2.2分子驅動蛋白 6
2.2.3 KIF17 7
2.3突觸傳導 8
2.4突觸塑形 8
2.4.1Calmodulin 9
2.4.2脂肪酸 10
三、研究目標 12
四、材料與方法 13
4.1溶液 13
4.2化學藥品工作濃度 13
4.3初代培養大鼠胚胎14.5天大腦皮質神經細胞 14
4.4分子生物技術 14
4.5鈣磷酸鹽轉染法 15
4.6突觸小泡運動影像 15
4.7神經細胞內鈣離子影像 15
4.8脂肪酸添加 16
4.9數據分析 17
五、結果 18
5.1 Synaptophysin -PA-GFP 的亮點沿神經突移動 18
5.2細胞骨架擾亂劑減慢突觸小泡的移動速度 18
5.3神經細胞的鈣離子反應和突觸傳導 19
5.3.1單一神經細胞的鈣離子反應 19
5.3.2神經細胞的突觸傳導 20
5.3.3神經細胞的加成作用 21
5.3.4神經細胞表現突觸塑形 22
5.4 Tetrodotoxin抑制神經細胞鈣離子反應 23
5.5破壞細胞骨架使神經細胞鈣離子反應下降 23
5.6 KIF17增強突觸小泡移動速度和神經細胞的鈣離子反應 24
5.7 CaM對於突觸小泡移動和突觸傳導無顯著性影響 25
5.8 DHA促進神經細胞發育AA抑制突觸生長 25
5.9高頻電刺激促進目標細胞鈣離子反應 26
六、討論 27
6.1觀察突觸小泡移動的實驗系統 27
6.2擾亂細胞骨架減慢突觸小泡移動速度 27
6.3分子驅動蛋白KIF17增加突觸小泡的移動速度 28
6.4神經細胞的鈣離子反應和突觸傳導實驗系統 29
6.5破壞細胞骨架使神經細胞鈣離子反應下降 30
6.6微絲動態調控突觸傳導 31
6.7 KIF17增強神經細胞的鈣離子反應 32
6.8 CaM對於突觸小泡移動和突觸傳導無顯著性影響 33
6.9 DHA促進神經細胞發育AA抑制突觸生長 33
6.10高頻電刺激促進目標細胞鈣離子反應 34
6.11總結 34
七、參考文獻 36
八、表 40
九、圖 45
dc.language.isozh-TW
dc.subject神經傳導zh_TW
dc.subject細胞骨架zh_TW
dc.subject突觸小泡zh_TW
dc.subject突觸傳導zh_TW
dc.subjectsynaptic transmissionen
dc.subjectsynaptic vesicleen
dc.subjectcytoskeletonen
dc.title細胞骨架在突觸小泡運輸及突觸傳導所扮演的角色zh_TW
dc.titleRoles of Cytoskeleton in Synaptic Vesicle Trafficking and Synaptic Transmissionen
dc.typeThesis
dc.date.schoolyear99-2
dc.description.degree碩士
dc.contributor.oralexamcommittee王致恬,林崇智,朱柏如
dc.subject.keyword細胞骨架,突觸小泡,突觸傳導,神經傳導,zh_TW
dc.subject.keywordcytoskeleton,synaptic vesicle,synaptic transmission,en
dc.relation.page65
dc.rights.note有償授權
dc.date.accepted2011-08-14
dc.contributor.author-college生命科學院zh_TW
dc.contributor.author-dept動物學研究所zh_TW
顯示於系所單位:動物學研究所

文件中的檔案:
檔案 大小格式 
ntu-100-1.pdf
  未授權公開取用
3.07 MBAdobe PDF
顯示文件簡單紀錄


系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved