Skip navigation

DSpace

機構典藏 DSpace 系統致力於保存各式數位資料(如:文字、圖片、PDF)並使其易於取用。

點此認識 DSpace
DSpace logo
English
中文
  • 瀏覽論文
    • 校院系所
    • 出版年
    • 作者
    • 標題
    • 關鍵字
  • 搜尋 TDR
  • 授權 Q&A
    • 我的頁面
    • 接受 E-mail 通知
    • 編輯個人資料
  1. NTU Theses and Dissertations Repository
  2. 工學院
  3. 應用力學研究所
請用此 Handle URI 來引用此文件: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/40241
完整後設資料紀錄
DC 欄位值語言
dc.contributor.advisor胡文聰
dc.contributor.authorHsin-Ping Liuen
dc.contributor.author劉新平zh_TW
dc.date.accessioned2021-06-14T16:43:12Z-
dc.date.available2008-08-04
dc.date.copyright2008-08-04
dc.date.issued2008
dc.date.submitted2008-07-31
dc.identifier.citation1. P. B. Howell, D. R. Mott, J. P. Golden and F. S. Ligler, Lab Chip, 2004, 4, 663-669.
2. F. Bottausci, C. Cardonne, C. Meinhart and I. Mezic, Lab Chip, 2007, 7, 396-398.
3. H. Chun, H. C. Kim and T. D. Chung, Lab Chip, 2008, 8, 764-771.
4. D. Bothe, C. Sternich and H. J. Warnecke, Chem Eng Sci, 2006, 61, 2950-2958.
5. A. D. Stroock, S. K. W. Dertinger, A. Ajdari, I. Mezic, H. A. Stone and G. M. Whitesides, Science, 2002, 295, 647-651.
6. C. H. Hsu and A. Folch, Appl Phys Lett, 2006, 89, -.
7. A. P. Sudarsan and V. M. Ugaz, P Natl Acad Sci USA, 2006, 103, 7228-7233.
8. L. H. Lu, K. S. Ryu and C. Liu, J Microelectromech S, 2002, 11, 462-469.
9. S. K. Hsiung, C. H. Lee, J. L. Lin and G. B. Lee, J Micromech Microeng, 2007, 17, 129-138.
10. J. A. Bowman and D. T. Schwartz, Int J Heat Mass Tran, 1998, 41, 1065-1074.
11. B. R. Lutz, J. Chen and D. T. Schwartz, Phys Fluids, 2005, 17.
12. J. Holtsmark, I. Johnsen, T. Sikkeland and S. Skavlem, J Acoust Soc Am, 1954, 26, 26-39.
13. W. P. Raney, J. C. Corelli and P. J. Westervelt, J Acoust Soc Am, 1954, 26, 1006-1014.
14. S. Skavlem and S. Tjotta, J Acoust Soc Am, 1955, 27, 26-33.
15. M. V. Dyke, An Album of Fluid Motion, The parabolic press, California, 1982.
16. R. A. Irizarry, D. Warren, F. Spencer, I. F. Kim, S. Biswal, B. C. Frank, E. Gabrielson, J. G. N. Garcia, J. Geoghegan, G. Germino, C. Griffin, S. C. Hilmer, E. Hoffman, A. E. Jedlicka, E. Kawasaki, F. Martinez-Murillo, L. Morsberger, H. Lee, D. Petersen, J. Quackenbush, A. Scott, M. Wilson, Y. Q. Yang, S. Q. Ye and W. Yu, Nat Methods, 2005, 2, 477-477.
17. L. M. Steinmetz and R. W. Davis, Nat Rev Genet, 2004, 5, 190-201.
18. T. Bammler, R. P. Beyer, S. Bhattacharya, G. A. Boorman, A. Boyles, B. U. Bradford, R. E. Bumgarner, P. R. Bushel, K. Chaturvedi, D. Choi, M. L. Cunningham, S. Dengs, H. K. Dressman, R. D. Fannin, F. M. Farun, J. H. Freedman, R. C. Fry, A. Harper, M. C. Humble, P. Hurban, T. J. Kavanagh, W. K. Kaufmann, K. F. Kerr, L. Jing, J. A. Lapidus, M. R. Lasarev, J. Li, Y. J. Li, E. K. Lobenhofer, X. Lu, R. L. Malek, S. Milton, S. R. Nagalla, J. P. O'Malley, V. S. Palmer, P. Pattee, R. S. Paules, C. M. Perou, K. Phillips, L. X. Qin, Y. Qiu, S. D. Quigley, M. Rodland, I. Rusyn, L. D. Samson, D. A. Schwartz, Y. Shi, J. L. Shin, S. O. Sieber, S. Slifer, M. C. Speer, P. S. Spencer, D. I. Sproles, J. A. Swenberg, W. A. Suk, R. C. Sullivan, R. Tian, R. W. Tennant, S. A. Todd, C. J. Tucker, B. Van Houten, B. K. Weis, S. Xuan, H. Zarbl and T. R. Consortium, Nat Methods, 2005, 2, 351-356.
19. D. T. Fearon and L. A. Collins, J Immunol, 1983, 130, 370-375.
20. L. Glasser and R. L. Fiederlein, Am J Clin Pathol, 1990, 93, 662-669.
21. J. Lundahl, G. Hallden, M. Hallgren, C. M. Skold and J. Hed, J Immunol Methods, 1995, 180, 93-100.
22. M. G. Macey, D. A. Mccarthy, S. Vordermeier, A. C. Newland and K. A. Brown, J Immunol Methods, 1995, 181, 211-219.
23. P. Sethu, L. L. Moldawer, M. N. Mindrinos, P. O. Scumpia, C. L. Tannahill, J. Wilhelmy, P. A. Efron, B. H. Brownstein, R. G. Tompkins and M. Toner, Anal Chem, 2006, 78, 5453-5461.
24. E. M. L. Lev Davidovich Landau, Fluid mechanics Pergamon Press, 1959.
25. K. G. Hermann Schlichting, Boundary-layer theory McGraw Hill, 1979.
26. M. Gonzalez and E. R. Hodgson, Fusion Eng Des, 2007, 82, 1277-1281.
27. Y. N. Xia and G. M. Whitesides, Annu Rev Mater Sci, 1998, 28, 153-184.
28. P. Sethu, M. Anahtar, L. L. Moldawer, R. G. Tompkins and M. Toner, Anal Chem, 2004, 76, 6247-6253.
29. T. K. N. Sasaki, H.-B. Kim, μTAS, 2005.
30. M. Bengtsson and T. Laurell, Anal Bioanal Chem, 2004, 378, 1716-1721.
31. R. H. Liu, M. A. Stremler, K. V. Sharp, M. G. Olsen, J. G. Santiago, R. J. Adrian, H. Aref and D. J. Beebe, J Microelectromech S, 2000, 9, 190-197.
32. D. A.McCarthy, ed. M. G. Macey, Humana Press, Totowa,NJ, 2007, pp. 31-34.
33. M. C. Potter and D. C. Wiggert, Mechanics of fluids, Prentice Hall, Englewood Cliffs, N.J., 1991.
34. E. Buckingham, Phys Rev, 1914, 4, 345-376.
35. Y.-S. Lai, in Institute of Applied Mechanics, National Taiwan University, Taipei, Taiwan, 2007.
36. D. Ross, M. Gaitan and L. E. Locascio, Anal Chem, 2001, 73, 4117-4123.
dc.identifier.urihttp://tdr.lib.ntu.edu.tw/jspui/handle/123456789/40241-
dc.description.abstract這項混和器的研究利用到一個由三維對轉旋轉流場作為高速混和的混和機制。其特色在於表面鍍金膜的懸浮震盪結構所造成的穩態流場。此震盪結構中央為一200μm × 100μm的微平板,兩端以500μm長的懸樑支撐之。為結構通以交流電壓,微結構下方的外加磁場可使其在平面上因著勞倫茲力的作用下震盪。兩相異流體,以背景流速36.4mm/s(Pe= 6.61×104, Re= 1.72)流經震盪微元件,在三維旋轉流場的作用下可以在900μm的長度內增加72%的混和效率。而相同的長度900μm之下,背景流速10mm/s,5mm/s則分別可以提昇71%以及56%的混和效率。此三流速之下的混和效提昇率顯示雷諾數與混和效率的不相關,在高雷諾數(Re≧1)下仍能有70%的混和效率提升。此實驗的應用則為分別通入紅血球以及紅血球裂解液至微元件中,紅血球裂解率的提昇則作為此元件混和效率的參酌。結果顯示在一公分的距離內,元件可提供68%的裂解率;而在長直流到內,紅血球及其裂解液藉由擴散只能達到1.7%的裂解率。結果亦顯示了藉由控制共震平板導通電壓可提供不同的裂解率。此特性可利用於血球的純化,提供目標血球免於受到因人為的操作產生變異或過量壓迫的裂解環境。zh_TW
dc.description.abstractThis work presents an ultra-fast micromixer via a pair of 3D, counter-rotating, circulatory flow structure. This feature is secondary steady streaming induced by a resonating gold-coated suspended structure, consisting of two long beams (400um length) supporting a microplate (100um × 200um) at the center. As AC current passes through this structure, an external magnet placed underneath forcing the microplate to in-plane resonance as result of Lorentz law. Two heterogeneous streams passes the 3D circulatory flow results in a mixing efficiency increase of 72% within 900μm mixing length, under background flow speed of 36.4mm/s, Pèclet number of 6.61×104, Reynold’s number of 1.72. For background flow speed of 10mm/s and 5mm/s, 71% and 56% of increase mixing efficiency under same mixing length of 900μm, implies a mixing efficiency independent of Reynold’s number. Application of the device to enhance lysis of erythrocytes is made by in-flowing of the cells in one stream and lysis solution in another. Results showed a 68% lysis rate could be obtained within 1cm mixing length, where as only 0.7% for a straight channel. Furthermore, lysis rate could be controlled by excited AC voltage on the oscillating plate according to results obtained, which could provide an environment for erythrocyte lysis and prevent stress target cells for extended period in macroscale isolation, which could avoid differentiations caused by manual manipulation.en
dc.description.provenanceMade available in DSpace on 2021-06-14T16:43:12Z (GMT). No. of bitstreams: 1
ntu-97-R94543072-1.pdf: 4313309 bytes, checksum: 81197ee79b1eb14da16c30033358af74 (MD5)
Previous issue date: 2008
en
dc.description.tableofcontents致謝 1
中文摘要 2
Abstract 3
Contents 4
Contents for Graphics/Tables 5
Chapter 1 Introduction 7
Chapter 2 Working Principle 10
2-1 Generation of Circulatory Flow 10
2-2 Mixing Index and Pèclet Number 13
Chapter 3 Materials and Methods 15
3-1 Fabrication of micro-mixer 15
3-2 PDMS channel: softlithography 19
3-3 Erythrocyte Lysis Experiment 21
Chapter 4 Results and Discussion 23
4-1 Mixing index of micromixer 23
4-2 Cell Lysis 29
Chapter 5 Conclusions 31
References 33
Appendix 36
Buckingham π Theorem 36
Figures in Introduction 39
Figures in Working Principle 48
Temperature Evaluation of Micromixer 49
Rhodamine B for Measuring Temperature inside Microchannel 50
Temperature Measurement of micromixer 54
Figures of Micromixer Fabrication 57
Figures of Soft Lithography (PDMS Channel) 58
Bonding: Plasma Processing and Tubing 60
Pumping: syringe pump 63
Signal Input: Function Generator 64
Observation: inverting microscope and fluorescent dye 65
Software: image analysis system (Image-J) 66
Figures of Micromixer Mixing Efficiency Results 69
Figures of Erythrocytes Lysis Results 73
dc.language.isoen
dc.title微渦漩混和器之研究zh_TW
dc.titleA Rapid Micromixer via 3D Counter-Rotating Circulatory Flowen
dc.typeThesis
dc.date.schoolyear96-2
dc.description.degree碩士
dc.contributor.oralexamcommittee李雨,鐘孟軒
dc.subject.keyword羅倫茲力,微渦漩,P&#232,clet number,血球裂解,zh_TW
dc.subject.keywordLorentz force,counter-rotating micro-vortices,P&#232,clet number,erythrocyte lysis,en
dc.relation.page75
dc.rights.note有償授權
dc.date.accepted2008-08-01
dc.contributor.author-college工學院zh_TW
dc.contributor.author-dept應用力學研究所zh_TW
顯示於系所單位:應用力學研究所

文件中的檔案:
檔案 大小格式 
ntu-97-1.pdf
  目前未授權公開取用
4.21 MBAdobe PDF
顯示文件簡單紀錄


系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved