請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/40241
完整後設資料紀錄
DC 欄位 | 值 | 語言 |
---|---|---|
dc.contributor.advisor | 胡文聰 | |
dc.contributor.author | Hsin-Ping Liu | en |
dc.contributor.author | 劉新平 | zh_TW |
dc.date.accessioned | 2021-06-14T16:43:12Z | - |
dc.date.available | 2008-08-04 | |
dc.date.copyright | 2008-08-04 | |
dc.date.issued | 2008 | |
dc.date.submitted | 2008-07-31 | |
dc.identifier.citation | 1. P. B. Howell, D. R. Mott, J. P. Golden and F. S. Ligler, Lab Chip, 2004, 4, 663-669.
2. F. Bottausci, C. Cardonne, C. Meinhart and I. Mezic, Lab Chip, 2007, 7, 396-398. 3. H. Chun, H. C. Kim and T. D. Chung, Lab Chip, 2008, 8, 764-771. 4. D. Bothe, C. Sternich and H. J. Warnecke, Chem Eng Sci, 2006, 61, 2950-2958. 5. A. D. Stroock, S. K. W. Dertinger, A. Ajdari, I. Mezic, H. A. Stone and G. M. Whitesides, Science, 2002, 295, 647-651. 6. C. H. Hsu and A. Folch, Appl Phys Lett, 2006, 89, -. 7. A. P. Sudarsan and V. M. Ugaz, P Natl Acad Sci USA, 2006, 103, 7228-7233. 8. L. H. Lu, K. S. Ryu and C. Liu, J Microelectromech S, 2002, 11, 462-469. 9. S. K. Hsiung, C. H. Lee, J. L. Lin and G. B. Lee, J Micromech Microeng, 2007, 17, 129-138. 10. J. A. Bowman and D. T. Schwartz, Int J Heat Mass Tran, 1998, 41, 1065-1074. 11. B. R. Lutz, J. Chen and D. T. Schwartz, Phys Fluids, 2005, 17. 12. J. Holtsmark, I. Johnsen, T. Sikkeland and S. Skavlem, J Acoust Soc Am, 1954, 26, 26-39. 13. W. P. Raney, J. C. Corelli and P. J. Westervelt, J Acoust Soc Am, 1954, 26, 1006-1014. 14. S. Skavlem and S. Tjotta, J Acoust Soc Am, 1955, 27, 26-33. 15. M. V. Dyke, An Album of Fluid Motion, The parabolic press, California, 1982. 16. R. A. Irizarry, D. Warren, F. Spencer, I. F. Kim, S. Biswal, B. C. Frank, E. Gabrielson, J. G. N. Garcia, J. Geoghegan, G. Germino, C. Griffin, S. C. Hilmer, E. Hoffman, A. E. Jedlicka, E. Kawasaki, F. Martinez-Murillo, L. Morsberger, H. Lee, D. Petersen, J. Quackenbush, A. Scott, M. Wilson, Y. Q. Yang, S. Q. Ye and W. Yu, Nat Methods, 2005, 2, 477-477. 17. L. M. Steinmetz and R. W. Davis, Nat Rev Genet, 2004, 5, 190-201. 18. T. Bammler, R. P. Beyer, S. Bhattacharya, G. A. Boorman, A. Boyles, B. U. Bradford, R. E. Bumgarner, P. R. Bushel, K. Chaturvedi, D. Choi, M. L. Cunningham, S. Dengs, H. K. Dressman, R. D. Fannin, F. M. Farun, J. H. Freedman, R. C. Fry, A. Harper, M. C. Humble, P. Hurban, T. J. Kavanagh, W. K. Kaufmann, K. F. Kerr, L. Jing, J. A. Lapidus, M. R. Lasarev, J. Li, Y. J. Li, E. K. Lobenhofer, X. Lu, R. L. Malek, S. Milton, S. R. Nagalla, J. P. O'Malley, V. S. Palmer, P. Pattee, R. S. Paules, C. M. Perou, K. Phillips, L. X. Qin, Y. Qiu, S. D. Quigley, M. Rodland, I. Rusyn, L. D. Samson, D. A. Schwartz, Y. Shi, J. L. Shin, S. O. Sieber, S. Slifer, M. C. Speer, P. S. Spencer, D. I. Sproles, J. A. Swenberg, W. A. Suk, R. C. Sullivan, R. Tian, R. W. Tennant, S. A. Todd, C. J. Tucker, B. Van Houten, B. K. Weis, S. Xuan, H. Zarbl and T. R. Consortium, Nat Methods, 2005, 2, 351-356. 19. D. T. Fearon and L. A. Collins, J Immunol, 1983, 130, 370-375. 20. L. Glasser and R. L. Fiederlein, Am J Clin Pathol, 1990, 93, 662-669. 21. J. Lundahl, G. Hallden, M. Hallgren, C. M. Skold and J. Hed, J Immunol Methods, 1995, 180, 93-100. 22. M. G. Macey, D. A. Mccarthy, S. Vordermeier, A. C. Newland and K. A. Brown, J Immunol Methods, 1995, 181, 211-219. 23. P. Sethu, L. L. Moldawer, M. N. Mindrinos, P. O. Scumpia, C. L. Tannahill, J. Wilhelmy, P. A. Efron, B. H. Brownstein, R. G. Tompkins and M. Toner, Anal Chem, 2006, 78, 5453-5461. 24. E. M. L. Lev Davidovich Landau, Fluid mechanics Pergamon Press, 1959. 25. K. G. Hermann Schlichting, Boundary-layer theory McGraw Hill, 1979. 26. M. Gonzalez and E. R. Hodgson, Fusion Eng Des, 2007, 82, 1277-1281. 27. Y. N. Xia and G. M. Whitesides, Annu Rev Mater Sci, 1998, 28, 153-184. 28. P. Sethu, M. Anahtar, L. L. Moldawer, R. G. Tompkins and M. Toner, Anal Chem, 2004, 76, 6247-6253. 29. T. K. N. Sasaki, H.-B. Kim, μTAS, 2005. 30. M. Bengtsson and T. Laurell, Anal Bioanal Chem, 2004, 378, 1716-1721. 31. R. H. Liu, M. A. Stremler, K. V. Sharp, M. G. Olsen, J. G. Santiago, R. J. Adrian, H. Aref and D. J. Beebe, J Microelectromech S, 2000, 9, 190-197. 32. D. A.McCarthy, ed. M. G. Macey, Humana Press, Totowa,NJ, 2007, pp. 31-34. 33. M. C. Potter and D. C. Wiggert, Mechanics of fluids, Prentice Hall, Englewood Cliffs, N.J., 1991. 34. E. Buckingham, Phys Rev, 1914, 4, 345-376. 35. Y.-S. Lai, in Institute of Applied Mechanics, National Taiwan University, Taipei, Taiwan, 2007. 36. D. Ross, M. Gaitan and L. E. Locascio, Anal Chem, 2001, 73, 4117-4123. | |
dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/40241 | - |
dc.description.abstract | 這項混和器的研究利用到一個由三維對轉旋轉流場作為高速混和的混和機制。其特色在於表面鍍金膜的懸浮震盪結構所造成的穩態流場。此震盪結構中央為一200μm × 100μm的微平板,兩端以500μm長的懸樑支撐之。為結構通以交流電壓,微結構下方的外加磁場可使其在平面上因著勞倫茲力的作用下震盪。兩相異流體,以背景流速36.4mm/s(Pe= 6.61×104, Re= 1.72)流經震盪微元件,在三維旋轉流場的作用下可以在900μm的長度內增加72%的混和效率。而相同的長度900μm之下,背景流速10mm/s,5mm/s則分別可以提昇71%以及56%的混和效率。此三流速之下的混和效提昇率顯示雷諾數與混和效率的不相關,在高雷諾數(Re≧1)下仍能有70%的混和效率提升。此實驗的應用則為分別通入紅血球以及紅血球裂解液至微元件中,紅血球裂解率的提昇則作為此元件混和效率的參酌。結果顯示在一公分的距離內,元件可提供68%的裂解率;而在長直流到內,紅血球及其裂解液藉由擴散只能達到1.7%的裂解率。結果亦顯示了藉由控制共震平板導通電壓可提供不同的裂解率。此特性可利用於血球的純化,提供目標血球免於受到因人為的操作產生變異或過量壓迫的裂解環境。 | zh_TW |
dc.description.abstract | This work presents an ultra-fast micromixer via a pair of 3D, counter-rotating, circulatory flow structure. This feature is secondary steady streaming induced by a resonating gold-coated suspended structure, consisting of two long beams (400um length) supporting a microplate (100um × 200um) at the center. As AC current passes through this structure, an external magnet placed underneath forcing the microplate to in-plane resonance as result of Lorentz law. Two heterogeneous streams passes the 3D circulatory flow results in a mixing efficiency increase of 72% within 900μm mixing length, under background flow speed of 36.4mm/s, Pèclet number of 6.61×104, Reynold’s number of 1.72. For background flow speed of 10mm/s and 5mm/s, 71% and 56% of increase mixing efficiency under same mixing length of 900μm, implies a mixing efficiency independent of Reynold’s number. Application of the device to enhance lysis of erythrocytes is made by in-flowing of the cells in one stream and lysis solution in another. Results showed a 68% lysis rate could be obtained within 1cm mixing length, where as only 0.7% for a straight channel. Furthermore, lysis rate could be controlled by excited AC voltage on the oscillating plate according to results obtained, which could provide an environment for erythrocyte lysis and prevent stress target cells for extended period in macroscale isolation, which could avoid differentiations caused by manual manipulation. | en |
dc.description.provenance | Made available in DSpace on 2021-06-14T16:43:12Z (GMT). No. of bitstreams: 1 ntu-97-R94543072-1.pdf: 4313309 bytes, checksum: 81197ee79b1eb14da16c30033358af74 (MD5) Previous issue date: 2008 | en |
dc.description.tableofcontents | 致謝 1
中文摘要 2 Abstract 3 Contents 4 Contents for Graphics/Tables 5 Chapter 1 Introduction 7 Chapter 2 Working Principle 10 2-1 Generation of Circulatory Flow 10 2-2 Mixing Index and Pèclet Number 13 Chapter 3 Materials and Methods 15 3-1 Fabrication of micro-mixer 15 3-2 PDMS channel: softlithography 19 3-3 Erythrocyte Lysis Experiment 21 Chapter 4 Results and Discussion 23 4-1 Mixing index of micromixer 23 4-2 Cell Lysis 29 Chapter 5 Conclusions 31 References 33 Appendix 36 Buckingham π Theorem 36 Figures in Introduction 39 Figures in Working Principle 48 Temperature Evaluation of Micromixer 49 Rhodamine B for Measuring Temperature inside Microchannel 50 Temperature Measurement of micromixer 54 Figures of Micromixer Fabrication 57 Figures of Soft Lithography (PDMS Channel) 58 Bonding: Plasma Processing and Tubing 60 Pumping: syringe pump 63 Signal Input: Function Generator 64 Observation: inverting microscope and fluorescent dye 65 Software: image analysis system (Image-J) 66 Figures of Micromixer Mixing Efficiency Results 69 Figures of Erythrocytes Lysis Results 73 | |
dc.language.iso | en | |
dc.title | 微渦漩混和器之研究 | zh_TW |
dc.title | A Rapid Micromixer via 3D Counter-Rotating Circulatory Flow | en |
dc.type | Thesis | |
dc.date.schoolyear | 96-2 | |
dc.description.degree | 碩士 | |
dc.contributor.oralexamcommittee | 李雨,鐘孟軒 | |
dc.subject.keyword | 羅倫茲力,微渦漩,Pè,clet number,血球裂解, | zh_TW |
dc.subject.keyword | Lorentz force,counter-rotating micro-vortices,Pè,clet number,erythrocyte lysis, | en |
dc.relation.page | 75 | |
dc.rights.note | 有償授權 | |
dc.date.accepted | 2008-08-01 | |
dc.contributor.author-college | 工學院 | zh_TW |
dc.contributor.author-dept | 應用力學研究所 | zh_TW |
顯示於系所單位: | 應用力學研究所 |
文件中的檔案:
檔案 | 大小 | 格式 | |
---|---|---|---|
ntu-97-1.pdf 目前未授權公開取用 | 4.21 MB | Adobe PDF |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。