請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/40239完整後設資料紀錄
| DC 欄位 | 值 | 語言 |
|---|---|---|
| dc.contributor.advisor | 李世光 | |
| dc.contributor.author | Chi-Kuon Wang | en |
| dc.contributor.author | 王繼孔 | zh_TW |
| dc.date.accessioned | 2021-06-14T16:43:10Z | - |
| dc.date.available | 2011-08-04 | |
| dc.date.copyright | 2008-08-04 | |
| dc.date.issued | 2007 | |
| dc.date.submitted | 2008-08-01 | |
| dc.identifier.citation | [1] E. H. Synge, 'A suggested method for extending microscopic resolution into the ultra-microscopic region,' Philosophical Magazine, vol. 6, pp. 356-362, Aug 1928.
[2] C. J. Boukamp, Phillips Res. Rep., 1950. [3] E. Betzig, J. K. Trautman, T. D. Harris, J. S. Weiner, and R. L. Kostelak, 'BREAKING THE DIFFRACTION BARRIER - OPTICAL MICROSCOPY ON A NANOMETRIC SCALE,' Science, vol. 251, pp. 1468-1470, Mar 1991. [4] E. A. Ash and G. Nicholls, 'SUPER-RESOLUTION APERTURE SCANNING MICROSCOPE,' Nature, vol. 237, pp. 510-&, 1972. [5] D. W. Pohl, U. C. Fischer, and U. T. Durig, 'SCANNING NEAR-FIELD OPTICAL MICROSCOPY (SNOM),' Journal of Microscopy-Oxford, vol. 152, pp. 853-861, 1988. [6] G. Binnig and H. Rohrer, 'SCANNING TUNNELING MICROSCOPY,' Helvetica Physica Acta, vol. 55, pp. 726-735, 1982. [7] G. Binnig, C. Gerber, E. Stoll, T. R. Albrecht, and C. F. Quate, 'ATOMIC RESOLUTION WITH ATOMIC FORCE MICROSCOPE,' Surface Science, vol. 189, pp. 1-6, Oct 1987. [8] A. Nesci, 'Measuring amplitude and phase in optical fields with sub-wavelength features,' in Institut de Microtechnique: Neuchatel, 2001. [9] F. d. Fornel, Les ondes evanescentes en optique et en optoelectronique. Paris France, 1998. [10] M. Ohtsu, 'Near-field nano/atom optics and technology,' 1998. [11] A. G. T. Ruiter, K. O. van der Werf, J. A. Veerman, M. F. Garcia-Parajo, W. H. J. Rensen, and N. F. van Hulst, 'Tuning fork shear-force feedback,' Ultramicroscopy, vol. 71, pp. 149-157, Mar 1998. [12] J. M. Friedt and E. Carry, 'Introduction to the quartz tuning fork,' American Journal of Physics, vol. 75, pp. 415-422, May 2007. [13] K. Karrai and R. D. Grober, 'PIEZOELECTRIC TIP-SAMPLE DISTANCE CONTROL FOR NEAR-FIELD OPTICAL MICROSCOPES,' Applied Physics Letters, vol. 66, pp. 1842-1844, Apr 1995. [14] PerkinElmer, 'MP 900 Photoncounting Module Manual.' [15] A. W. Snyder and J. D. Love, Optical Waveguide Theory. London: Chapman and Hall, 1983. [16] http://www.thorlabs.com/thorProduct.cfm?partNumber=FPC030. [17] http://www.newport.com/Polarization-Controllers/139698/1033/catalog.aspx. [18] http://www.thorlabs.com/thorProduct.cfm?partNumber=FC632-50B. [19] http://www.thorlabs.com/NewGroupPage9.cfm?ObjectGroup_ID=354. [20] http://www.newport.com/Fiber-Optic-Splice/139705/1033/catalog.aspx. [21] W. L. Barnes, A. Dereux, and T. W. Ebbesen, 'Surface plasmon subwavelength optics,' Nature, vol. 424, pp. 824-830, Aug 2003. [22] W. L. Barnes, 'Surface plasmon-polariton length scales: a route to sub-wavelength optics,' Journal of Optics a-Pure and Applied Optics, vol. 8, pp. S87-S93, Apr 2006. [23] A. J. Babadjanyan, N. L. Margaryan, and K. V. Nerkararyan, 'Superfocusing of surface polaritons in the conical structure,' Journal of Applied Physics, vol. 87, pp. 3785-3788, Apr 2000. [24] N. A. Janunts, K. S. Baghdasaryan, K. V. Nerkararyan, and B. Hecht, 'Excitation and superfocusing of surface plasmon polaritons on a silver-coated optical fiber tip,' Optics Communications, vol. 253, pp. 118-124, Sep 2005. [25] L. Novotny, D. W. Pohl, and P. Regli, 'LIGHT-PROPAGATION THROUGH NANOMETER-SIZED STRUCTURES - THE 2-DIMENSIONAL-APERTURE SCANNING NEAR-FIELD OPTICAL MICROSCOPE,' Journal of the Optical Society of America a-Optics Image Science and Vision, vol. 11, pp. 1768-1779, Jun 1994. [26] A. E. Babayan and K. V. Nerkararyan, 'The strong localization of surface plasmon polariton on a metal-coated tip of optical fiber,' Ultramicroscopy, vol. 107, pp. 1136-1140, Nov 2007. [27] W. Ding, S. R. Andrews, and S. A. Maier, 'Internal excitation and superfocusing of surface plasmon polaritons on a silver-coated optical fiber tip,' Physical Review A, vol. 75, Jun 2007. [28] S. Quabis, R. Dorn, M. Eberler, O. Glockl, and G. Leuchs, 'The focus of light - theoretical calculation and experimental tomographic reconstruction,' Applied Physics B-Lasers and Optics, vol. 72, pp. 109-113, Jan 2001. [29] Q. W. Zhan and J. R. Leger, 'Focus shaping using cylindrical vector beams,' Optics Express, vol. 10, pp. 324-331, Apr 2002. [30] 'MODEL SR830 DSP Lock-In Amplifier Product Manuals,' Standford Research System. [31] C. H. Chen, 'Design and Construction of Scanning Near-Field Optical Heterodyne Interferometer,' Taipei: National Taiwan University, 2007. [32] S. Q. Sun, K. S. L. Chong, and G. J. Leggett, 'Nanoscale molecular patterns fabricated by using scanning near-field optical lithography,' Journal of the American Chemical Society, vol. 124, pp. 2414-2415, Mar 2002. | |
| dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/40239 | - |
| dc.description.abstract | 在遠場光學的範圍中,光的波動特性會造成無可避免的干涉與繞射效應,使得傳統光學顯微鏡的空間解析度被限制在大約二分之一個入射光波長,此限制亦被稱為所謂光學的繞射極限。然而近一個世紀以來蓬勃發展的近場光學理論與實驗證實,當光在近場光學的範圍中,也就是遠小於一個光波長的距離(約數奈米)以內,完全不受限於光的繞射極限限制而可以得到極高的空間解析度,因此近場光學開拓了一個不同於以往傳統光學的新研究領域,諸如光學漸逝波、表面電漿子、奈米光子學等等研究接著紛紛被提出。其中近場光學顯微鏡(SNOM)的開發更是近場光學領域中相當關鍵的研究,同時近場光學顯微鏡亦是最重要的近場光學量測工具之一。
英國科學家辛格(E.H.Synge)於西元1928年提出了近場光學的概念,西元1972年亞許(E.A.Ash)與尼可斯(G. Nicholls)利用三公分波長的微波證實了近場光學的概念。不過受限於當時的科學技藝尚無法研製出良好的近場光學探針以及精準的探針高度控制系統,使得可見光波段的近場量測始終無法順利進行。直至西元1982年掃描式電子穿隧顯微鏡技術(STM)問世以後,瑞士IBM研究中心的普爾(D.W.Pohl)等人遂利用STM的探針控制技術以及毛細玻璃管製成的探針成功完成了可見光波段的近場量測,同時架構起最初的近場光學顯微鏡。 近年來近場光學顯微鏡各系統的發展已漸趨成熟,唯獨各種形式的近場光學顯微鏡探針之研究持續的被討論著,可見這方面仍存在著相當的發展空間。於是本論文從光纖式近場光學顯微鏡探針系統的實際研究與製作出發,進一步探討不同的光束偏極態在光纖式近場光學顯微鏡探針中所產生的表面電漿現象,以及因此造成的不同聚焦特性,以至於此聚焦特性對近場光學顯微鏡解析度所產生的影響。在本論文的最後,嘗試將自行製造的光纖式近場光學顯微鏡探針與光纖偏極態控制等技巧結合,實際架構在外差式近場干涉儀系統之上,最終成功的得到了近場的光學與相位資訊,並且在與先前的觀測結果相較之下,證實有效的降低了近場光學訊號中的雜訊且獲得了更清晰的近場干涉影像。 | zh_TW |
| dc.description.abstract | In conventional far-field optics, the resolution of optical microscope system is constrained by the diffraction limit. However, the research in the 20th century verified that optical limit can be overcome in near-fields. Furthermore, near-field optics has advanced to a new research region as many new topics have developed over the years. These new fields include evanescent optics, surface-plasmon resonance and nano-photonics, etc. Scanning near-field optical microscopy (SNOM) is another important research in near-filed optics, and it is also a crucial tool to get near-field optical information.
Recently, the development of scanning near-field optical microscope system is almost complete. However, the researches and discussions of SNOM probe types and its effects are still relatively less explored. For this reason, I investigated the aperture-SNOM probes and fabricated it to complete my thesis. Moreover, I tried to explore further to see if the Surface-Plasmon Polaritons (SPPs) effects exit at the surface of silver-coated tips with a hope to enhance the resolution of SNOM. I thus simulated it by using FDTD simulation software and discussed the influence of different polarization states in SNOM. At last, in order to ensure the ability of the probes that I fabricated, I utilized the probes in the near-field optical heterodyne interferometer and obtained the near-field optical and phase images which obtained better results than previous works. | en |
| dc.description.provenance | Made available in DSpace on 2021-06-14T16:43:10Z (GMT). No. of bitstreams: 1 ntu-96-R95525017-1.pdf: 4104741 bytes, checksum: 15550225cbbe54739c49e491f639f1db (MD5) Previous issue date: 2007 | en |
| dc.description.tableofcontents | Acknowledgments I
Abstract (Chinese) III Abstract (English) V Table of Contents VII List of Figures IX List of Tables XII Chapter 1. Introduction 1 1.1 Classical Diffraction Limit 1 1.2 Near-Field Optics 2 1.3 Motivation and Thesis Outline 3 Chapter 2. Scanning Near-Field Optical Microscope (SNOM) 6 2.1 Theory of Scanning Near-Field Optical Microscopy 6 2.2 Main SNOM Configuration 8 2.2.1 Aperture SNOM 8 2.2.2 Apertureless SNOM 10 2.3 Basic structure of SNOM 11 2.3.1 Mechanical Components 12 2.3.2 Optical Components 16 2.3.3 Electronic Components 21 Chapter 3. Nano-Collectors and Nano-Emitters 25 3.1 Optical Fiber 25 3.1.1 Basic Theory of Optical Fiber 25 3.1.2 Optical Fiber Modes 28 3.1.3 Optical Fiber Device 32 3.2 Fabrication of SNOM Probe 37 3.2.1 Optical Fiber Tip 39 3.2.2 Nobel-Metal Coating 41 3.2.3 Holding of the Nano-Collectors/Emitters and Tuning Fork 42 3.3 Surface-Plasmon Enhanced Scanning Near-field Optical Microscope 43 3.3.1 Introduction of Surface Plasmon 43 3.3.2 Superfocusing Effect in Silver-Coated Optical Fiber Tips 46 3.3.3 Radial Polarized Beam in Optical Fiber Tips 48 Chapter 4. Near-Field Optical Heterodyne Interferometer 50 4.1 Theory of Optical Heterodyne Interferometer 50 4.2 Experiment Setup 51 4.3 Instrumentation 52 4.3.1 Lock-In Amplifier 52 4.3.2 Signal Modulate 56 4.3.3 Environment Control 58 Chapter 5. Results 60 5.1 Aperture SNOM Probe 60 5.1.1 Optical Fiber Tips 60 5.1.2 Q factor of SNOM Probe 63 5.1.3 Scanning Test 64 5.2 Light Beam Polarization State in SNOM 67 5.2.1 Radial Polarized in Optical Fiber 67 5.2.2 Simulation and Analysis 68 5.3 Near-Field Optical Phase Signal 76 Chapter 6. Conclusions and Future Work 80 6.1 Conclusions 80 6.2 Future Work 80 Reference 82 | |
| dc.language.iso | en | |
| dc.subject | 近場外差式光學干涉儀 | zh_TW |
| dc.subject | 近場光學顯微鏡 | zh_TW |
| dc.subject | 近場光學顯微鏡探針 | zh_TW |
| dc.subject | 光纖模態 | zh_TW |
| dc.subject | 輻射狀偏極態 | zh_TW |
| dc.subject | 表面電漿共振 | zh_TW |
| dc.subject | Radial Polarization | en |
| dc.subject | Near-Field Optical Heterodyne Interferometer | en |
| dc.subject | Surface-Plasmon Polaritons (SPPs) | en |
| dc.subject | Scanning Near-Field Optical Microscope (SNOM) | en |
| dc.subject | SNOM Probe | en |
| dc.subject | Optical Fiber Mode | en |
| dc.title | 光束偏極態對光纖式近場光學顯微鏡之影響研究 | zh_TW |
| dc.title | Influence of Light Beam Polarization State in Aperture Scanning Near-Field Optical Microscope | en |
| dc.type | Thesis | |
| dc.date.schoolyear | 96-2 | |
| dc.description.degree | 碩士 | |
| dc.contributor.oralexamcommittee | 吳文中,黃君偉,葉吉田,林致廷 | |
| dc.subject.keyword | 近場光學顯微鏡,近場光學顯微鏡探針,光纖模態,輻射狀偏極態,表面電漿共振,近場外差式光學干涉儀, | zh_TW |
| dc.subject.keyword | Scanning Near-Field Optical Microscope (SNOM),SNOM Probe,Optical Fiber Mode,Radial Polarization,Surface-Plasmon Polaritons (SPPs),Near-Field Optical Heterodyne Interferometer, | en |
| dc.relation.page | 98 | |
| dc.rights.note | 有償授權 | |
| dc.date.accepted | 2008-08-01 | |
| dc.contributor.author-college | 工學院 | zh_TW |
| dc.contributor.author-dept | 工程科學及海洋工程學研究所 | zh_TW |
| 顯示於系所單位: | 工程科學及海洋工程學系 | |
文件中的檔案:
| 檔案 | 大小 | 格式 | |
|---|---|---|---|
| ntu-96-1.pdf 未授權公開取用 | 4.01 MB | Adobe PDF |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。
