Skip navigation

DSpace

機構典藏 DSpace 系統致力於保存各式數位資料(如:文字、圖片、PDF)並使其易於取用。

點此認識 DSpace
DSpace logo
English
中文
  • 瀏覽論文
    • 校院系所
    • 出版年
    • 作者
    • 標題
    • 關鍵字
    • 指導教授
  • 搜尋 TDR
  • 授權 Q&A
    • 我的頁面
    • 接受 E-mail 通知
    • 編輯個人資料
  1. NTU Theses and Dissertations Repository
  2. 醫學院
  3. 生物化學暨分子生物學科研究所
請用此 Handle URI 來引用此文件: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/40225
完整後設資料紀錄
DC 欄位值語言
dc.contributor.advisor張富雄(Fu-Hsiung Chang)
dc.contributor.authorHsin-Shan Tsaien
dc.contributor.author蔡幸珊zh_TW
dc.date.accessioned2021-06-14T16:42:56Z-
dc.date.available2008-09-11
dc.date.copyright2008-09-11
dc.date.issued2008
dc.date.submitted2008-07-31
dc.identifier.citation[1] O. Salata, Applications of nanoparticles in biology and medicine. J Nanobiotechnology. 2 (2004) 1-6.
[2] S. Nie, Y. Xing, G.J. Kim, J.W. Simons, Nanotechnology applications in cancer. Annu Rev Biomed Eng. 9 (2007) 257-288.
[3] M. Bruchez, Jr., M. Moronne, P. Gin, S. Weiss, A.P. Alivisatos, Semiconductor nanocrystals as fluorescent biological labels. Science. 281 (1998) 2013-2016.
[4] W.C. Chan, S. Nie, Quantum dot bioconjugates for ultrasensitive nonisotopic detection. Science. 281 (1998) 2016-2018.
[5] P.F. Michalet X, Bentolila LA, Tsay JM, Doose S, Li JJ, et al., Quantum dots for live cells, in vivo imaging, and diagnostics. Science. 307 (2005) 538-544.
[6] I.L. Medintz, H.T. Uyeda, E.R. Goldman, H. Mattoussi, Quantum dot bioconjugates for imaging, labelling and sensing. Nat Mater. 4 (2005) 435-446.
[7] R.-V.J. Dabbousi BO, Mikulec FV, Heine JR, Mattoussi H, Ober R, Jensen KF, Bawendi MG, (CdSe)ZnS Core-Shell Quantum Dots: Synthesis and Optical and Structural Characterization of a Size Series of Highly Luminescent Materials. Journal of Physical Chemistry B. 101 (1997) 9463-9475.
[8] A.P. Alivisatos, W. Gu, C. Larabell, Quantum dots as cellular probes. Annu Rev Biomed Eng. 7 (2005) 55-76.
[9] X. Gao, W.C. Chan, S. Nie, Quantum-dot nanocrystals for ultrasensitive biological labeling and multicolor optical encoding. J Biomed Opt. 7 (2002) 532-537.
[10] S.S. Jaiswal JK, Potentials and pitfalls of fluorescent quantum dots for biological imaging. Trends Cell Biol. 14 (2004) 497-504.
[11] a.O. E.-C. Kang, K. Kataoka, Y. Nagasaki, Preparation of water-soluble PEGylated semiconductor nanocrystals. Chem. Lett. 33 (2004) 840-841.
[12] I.L.M. H.T. Uyeda, J.K. Jaiswal, S.M. Simon, H. Mattoussi, Synthesis of compact multidentate ligands to prepare stable hydrophilic quantum dot fluorophores,. J. Am. Chem. Soc. 127 (2005) 3870-3878.
[13] H.M. J.K. Jaiswal, J.M. Mauro, S.M. Simon, Long-term multiple color imaging of live cells using quantum dot bioconjugates. Nat. Biotechnol. 21 (2003) 47-51.
[14] I.L.M. J.B. Delehanty, T. Pons, F.M. Brunel, P.E. Dawson, Self-assembled quantum dot-peptide bioconjugates for selective intracellular delivery. Bioconjug. Chem. 17 (2006) 920-927.
[15] D.A.T. B. Huang, Dendronisation of gold and CdSe/CdS (core-shell) quantum dots with tomalia type, thiol core, functionalized Poly(amidoamine) (PAMAM) dendrons. J. Luminesc. 111 (2005) 215-223.
[16] I.B. A.C. Wisher, V. Chechik, Thiolated PAMAM dendriner-coated CdSe/ZnS nanoparticles as protein transfection agents. Chem. Commun. (2006) 1637-1639.
[17] S.K. S.-W. Kim, J.B. Tracy, A. Jasanoff, M.G. Bawendi, Phosphine oxide polymer for water-soluble nanoparticles. J. Am.Chem. Soc. 127 (2005) 4556-4557.
[18] C.T. C. Luccardini, F. Vial, V. Marchi-Artzner, M. Dahan, Size, charge, and interactions with giant lipid vesicles of quantum dots coated with an amphiphilic macromolecule. Langmuir. 22 (2006) 2304-2310.
[19] P.S. B. Dubertret, D.J. Norris, V. Noireaux, A.H.Brivanlou, A. Libchaber, In vivo imaging of quantum dots encapsulated in phospholipid micelles. Science 298 (2002) 1759-1762.
[20] A. P., The use of nanocrystals in biological detection. Nat Biotechnol. 22 (2004) 47–52.
[21] M.M. Azzazy HM, Kazmierczak SC., From diagnostics to therapy: prospects of quantum dots. Clin Biochem. 40 (2007) 917-927.
[22] W.H. Wang HZ, Liang RQ, Ruan KC., Detection of tumor marker CA125 in ovarian carcinoma using quantum dots. Acta Biochim Biophys Sin (Shanghai). 36 (2004) 681-686.
[23] S.T. Härmä H, Lövgren T., Europium nanoparticles and timeresolved fluorescence for ultrasensitive detection of prostate-specific antigen. Clin Chem. 47 (2001) 561-568.
[24] Y.T. Chan P, Ruf F, Gonzalez-Maeso J, Sealfon SC., Method for multiplex cellular detection of mRNAs using quantum dot fluorescent in situ hybridization. Nucleic Acids Res. 33 (2005) 161.
[25] S.M. Xu H, Wong EY, Uphoff J, Xu Y, Treadway JA, et al., Multiplexed SNP genotyping using the Qbead system: a quantum dot-encoded microsphere-based assay. Nucleic Acids Res. 31 (2003) 43.
[26] C.Y. Gao X, Levenson RM, Chung LW, Nie S., In vivo cancer targeting and imaging with semiconductor quantum dots. Nat Biotechnol. 22 (2004) 969-976.
[27] D.A. Chen AA, Khetani SR, Bhatia SN., Quantum dots to monitor RNAi delivery and improve gene silencing. Nucleic Acids Res. 33 (2005) 190.
[28] O.H. Bakalova R, Zhelev Z, Ishikawa M, Baba Y., Quantum dots as photosensitizers? Nat Biotechnol. 22 (2004) 1360-1361.
[29] D.S. Samia AC, Burda C., Quantum dot-based energy transfer: perspectives and potential for applications in photodynamic therapy. Photochem Photobiol. 82 (2006) 617-625.
[30] H.L. X. Wu, J. Liu, K.N. Haley, J.A. Treadway, J.P. Larson, N.Ge, F. Peale, M.P. Bruchez,, Immunofluorescent labeling of cancer marker Her2 and other cellular targets with semiconductor quantum dots. Nat. Biotechnol. 21 (2002) 41-46.
[31] K.T. M. Howarth, Y. Hayashi, A.Y. Ting, Targeting quantum dots to surface proteins in living cells with biotin ligase. Proc. Natl.Acad. Sci. USA 102 (2005) 7583-7588.
[32] M.J. Humphries, Integrin structure. Biochem. Soc. Trans. 28 (2000) 311-340.
[33] T.Y.L. J.O. Winter, B.A. Korgel, C.E. Schmidt, Recognition molecule directed interfacing between semiconductor quantum dots and nerve cells. Adv. Mater. 13 (2001) 1673-1677.
[34] D.S. W. Cai, K. Chen, O. Gheysens, Q. Cao, S. Wang, X, S.S.Gambhir, X. Chen, Peptide-labeled near-infrared quantum dots for imaging tumor vasculature in living subjects. Nano Lett. 6 (2006) 669-676.
[35] C.B. N. Dias, Drugs targeting mitochondrial functions to control tumor cell growth. Biochem. Pharmacol. 70 (2005) 1-12.
[36] I.H. Kusumi A, Nakada C, Murase K, Fujiwara T., Single-molecule tracking of membrane molecules: plasma membrane compartmentalization and dynamic assembly of raft-philic signaling molecules. Semin Immunol. 17 (2005) 3-21.
[37] L.S. Dahan M, Luccardini C, Rostaing P,Riveau B, Triller A, Diffusion dynamics of glycine receptors revealed by single quantum dot tracking. Science. 302 (2003) 442-445.
[38] M.R. Vu TQ, Blute TA, Nehilla BJ, Nusblat L, Desai TA., Peptide-conjugated quantum dots activate neuronal receptors and initiate downstream signaling of neurite growth. Nano Lett. 5 (2005) 603-607.
[39] L.V. Linnala A, Virtanen I., Neuronal differentiation in SH-SY5Y human neuroblastoma cells induces synthesis and secretion of tenascin and upregulation of alpha(v) integrin receptors. J Neurosci Res. 1 (1997) 53-63.
[40] Z.L. Li BS, Gu J, Amin ND, Pant HC., Integrin alpha(1) beta(1)-mediated activation of cyclin-dependent kinase 5 activity is involved in neurite outgrowth and human neurofilament protein H Lys-Ser-Pro tail domain phosphorylation. J Neurosci. 20 (2000) 6055-6062.
dc.identifier.urihttp://tdr.lib.ntu.edu.tw/jspui/handle/123456789/40225-
dc.description.abstract近年來隨著奈米科技以及光電顯微影像技術的蓬勃發展,於是科學家們整合奈米技術與光學影像兩大研究領域,將奈米粒子與顯微影像系統結合應用於生物醫學影像研究中。常見之奈米粒子如量子點,因具有獨特光學特性故常被應用於生物影像學上,作為螢光探針。
由於量子點比起傳統之螢光染劑具有極高的光穩定性,不易因為光源長時間激發而有光褪色的現象產生。因此,將量子點與超靈敏性光學技術結合不僅可提供較佳之訊雜比外同時更允許長時間觀察。藉由兩者結合之優勢,我們可以利用光學之方式去探討研究活細胞上之單一分子的動態變化、追蹤單一分子之移動軌跡或是分子間之交互作用,確切了解特定單一分子於時間以及空間上之變化,更進一步去了解細胞分子層次的改變。
因此本研究即是透過凝集素:刀豆凝集素與小麥凝集素;以及抗細胞黏附因子抗體:anti-integrin αv與anti-integrin β1分別辨識老鼠神經纖維瘤細胞Neuro2A與人類神經纖維瘤細胞SH-SY5Y上之特定分子,進一步追蹤表面特定分子之動態變化。於實驗中,我們利用中性脂質( DPPC/Cholesterol/DSPE-PEG/DOPE-biotin )包覆量子點,不僅可以降低量子點本身對於細胞之毒性同時因為DSPE-PEG之存在可以減少量子點非專一性的黏附於細胞膜上。由於量子點本身具有螢光訊號,而經過脂質修飾後之量子點因為界面差異故於三倍頻顯微影像系統之下亦具有強烈訊號存在。因此,在本研究中,我們透過螢光顯微鏡以及三倍頻顯微影像系統可以觀察到活細胞上被標定之特定分子的動態變化以及移動軌跡。
未來,脂質包覆量子點結合光學影像系統於活細胞影像之應用,可深入探討單一受體與藥物間之反應或分子與分子間之交互作用,並紀錄其動態變化。
zh_TW
dc.description.abstractAccording to the progress in the nanotechnology and opto-electronics imaging, the scientists integrate nanoparticles with microscope imaging system and apply to molecular imaging in the biomedicine. Quantum dot is a familiar nanoparticle which has a lot of unique optical properties. Therefore, quantum dot has emerged as a new fluorescent probe for biomolecular imaging.
Quantum dot has better photostability and less photobleach in long term laser excitation than conventional dyes. Base on this, we can combine quantum dots with ultrasensitive optical technology to provide the high signal-to-noise ratio and allow for long term observation. In order to understand the dynamics of temporal and spatial at molecular scale, we can track the motions of the single molecule, record the trajectory, and even investigate the intermolecular interaction by optical technology.
In this research, we use lectins (ConA, WGA) and antibody (anti-integrin αv, β1) to recognize the surface makers on the mouse or human neuroblastoma cells (Neuro2A and SH-SY5Y) to track the dynamics of the specific molecule. In the experiments, we use natural lipids (DPPC/Cholesterol/DSPE-PEG/DOPE-biotin) coated quantum dots which is not only reduce the cytotoxity but also diminish the non-specific binding on the cell membrane. Due to quantum dot has fluorescence signal and lipid-coated quantum dots has third harmonic generation signal result from the difference of the interface. Therefore, we can observe the dynamic changes of the targeted molecule in live cells by fluorescent microscopy and third harmonic generation imaging system.
In the future, applications of lipid-coated quantum dots combine optical imaging system in live cell imaging can investigate the responses between single receptor and drugs or the intermolecular interactions, and record the dynamic changes at the same time.
en
dc.description.provenanceMade available in DSpace on 2021-06-14T16:42:56Z (GMT). No. of bitstreams: 1
ntu-97-R95442021-1.pdf: 1294430 bytes, checksum: e359ce4fe1b2197fe0e6f6ad1ccc7c1c (MD5)
Previous issue date: 2008
en
dc.description.tableofcontents口委審定書 I
圖表目錄 V
謝 誌 VI
中文摘要 VII
Abstract VIII
第一章 緒論 1
第一節 奈米粒子於醫學與生物學上之發展與應用 1
1.1 奈米粒子之種類與應用 1
1.2 量子點之起源發展與應用 2
1.2.1 量子點於生物影像分析上之緣起 2
1.2.2 量子點之物理與光學特性 3
1.2.3 量子點之功能性修飾 4
1.2.4 量子點於生物學與醫學領域之應用 6
1.3 奈米粒子標定活細胞追蹤特定分子之影像擷取 8
1.3.1 奈米粒子標定活細胞上特定分子與活細胞內胞器 8
1.3.2 奈米粒子標定活細胞上特定單一分子之追蹤 10
第二節 研究動機與目的 12
第二章 實驗材料與方法 13
第一節 實驗材料 13
1.1 細胞株 13
1.2 質體基因 13
1.3 奈米粒子 13
1.4 脂質 13
1.5 藥品與材料 14
1.6 實驗儀器 14
第二節 實驗方法 15
2.1 細胞培養材料製備 15
2.2 細胞培養 15
2.3 微脂體製備 16
2.4 脂質包覆量子點製備 17
2.5 蛋白質誘導表現與純化 18
2.6 細胞之奈米粒子標定 20
2.7 活細胞影像擷取 21
第三章 實驗結果 22
第一節 量子點與辨識分子間之作用模式 22
1.1 以凝集素作為辨識細胞之標定橋樑 22
1.2 以抗細胞黏附因子抗體作為辨識細胞之標定橋樑 22
第二節 量子點標定神經細胞表面分子之影像分析 23
2.1 利用凝集素標定老鼠神經纖維瘤細胞Neuro2A 23
2.1.1 利用小麥凝集素標定 23
2.1.2 利用刀豆凝集素標定 24
2.2 利用細胞黏附因子抗體標定人類神經纖維瘤細胞SH-SY5Y 24
2.2.1 利用細胞黏附因子αv抗體標定 25
2.2.2 利用細胞黏附因子β1抗體標定 25
第三節 活細胞影像之標定細胞表面分子動態變化 26
3.1 螢光顯微鏡觀察小麥凝集素標定細胞表面分子動態變化 26
3.2 三倍頻顯微影像系統觀察刀豆凝集素標定細胞表面分子動態變化 27
第四章 討論 28
第一節 量子點與辨識分子間之作用模式 28
第二節 量子點標定神經細胞表面分子之影像分析 29
第三節 活細胞影像之標定細胞表面分子動態變化 30
第四節 未來展望 31
第五章 參考文獻 33
第六章 圖表 37
圖表說明 41
dc.language.isozh-TW
dc.subject單一分子追蹤zh_TW
dc.subject抗細胞黏附因子抗體α1zh_TW
dc.subject量子點zh_TW
dc.subject刀豆凝集素zh_TW
dc.subject三倍頻顯微影像系統zh_TW
dc.subject小麥凝集素zh_TW
dc.subjectβ1zh_TW
dc.subjectSingle molecule trackingen
dc.subjectThird harmonic generation imaging systemen
dc.subject β1en
dc.subjectAnti-integrin αven
dc.subjectWGAen
dc.subjectQuantum dotsen
dc.subjectConAen
dc.title配體修飾之量子點應用於細胞表面分子動態變化之研究zh_TW
dc.titleStudy of Membrane Molecules Dynamics Using Ligand-Modified Quantum Dots in Optical Imagingen
dc.typeThesis
dc.date.schoolyear96-2
dc.description.degree碩士
dc.contributor.oralexamcommittee莊榮輝(Rong-Huay Juang),康照洲(Jaw-Jou Kang)
dc.subject.keyword量子點,單一分子追蹤,刀豆凝集素,小麥凝集素,抗細胞黏附因子抗體α1,β1,三倍頻顯微影像系統,zh_TW
dc.subject.keywordQuantum dots,Single molecule tracking,ConA,WGA,Anti-integrin αv, β1,Third harmonic generation imaging system,en
dc.relation.page42
dc.rights.note有償授權
dc.date.accepted2008-08-01
dc.contributor.author-college醫學院zh_TW
dc.contributor.author-dept生物化學暨分子生物學研究所zh_TW
顯示於系所單位:生物化學暨分子生物學科研究所

文件中的檔案:
檔案 大小格式 
ntu-97-1.pdf
  未授權公開取用
1.26 MBAdobe PDF
顯示文件簡單紀錄


系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved