Skip navigation

DSpace

機構典藏 DSpace 系統致力於保存各式數位資料(如:文字、圖片、PDF)並使其易於取用。

點此認識 DSpace
DSpace logo
English
中文
  • 瀏覽論文
    • 校院系所
    • 出版年
    • 作者
    • 標題
    • 關鍵字
    • 指導教授
  • 搜尋 TDR
  • 授權 Q&A
    • 我的頁面
    • 接受 E-mail 通知
    • 編輯個人資料
  1. NTU Theses and Dissertations Repository
  2. 醫學院
  3. 藥學專業學院
  4. 藥學系
請用此 Handle URI 來引用此文件: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/40219
完整後設資料紀錄
DC 欄位值語言
dc.contributor.advisor李水盛
dc.contributor.authorPo-Hung Hsiehen
dc.contributor.author謝伯鴻zh_TW
dc.date.accessioned2021-06-14T16:42:51Z-
dc.date.available2008-09-11
dc.date.copyright2008-09-11
dc.date.issued2008
dc.date.submitted2008-08-01
dc.identifier.citation1. Wild, S., Roglic, G., Green, A., Sicree, R. & King, H. Global prevalence of diabetes - Estimates for the year 2000 and projections for 2030. Diabetes Care 27, 1047-1053 (2004).
2. Chiang, C.W., Chiu, H.F., Chen, C.Y., Wu, H.L. & Yang, C.Y. Trends in the use of oral antidiabetic drugs by outpatients in Taiwan: 1997-2003. Journal of Clinical Pharmacy and Therapeutics 31, 73-82 (2006).
3. Furie, K. & Inzucchi, S.E. Diabetes mellitus, insulin resistance, hyperglycemia, and stroke. Current Neurology and Neuroscience Reports 8, 12-19 (2008).
4. Guilherme, A., Virbasius, J.V., Puri, V. & Czech, M.P. Adipocyte dysfunctions linking obesity to insulin resistance and type 2 diabetes. Nature Reviews Molecular Cell Biology 9, 367-377 (2008).
5. Mehanna, A.S. Insulin and oral antidiabetic agents. Am. J. Pharm. Educ. 69, 11 (2005).
6. Ashiya, M. & Smith, R.E.T. Non-insulin therapies for type 2 diabetes. Nature Reviews Drug Discovery 6, 777-778 (2007).
7. Kathleen, D. & John, B.B. Glucagon-Like Peptide 1–Based Therapies for Type 2 Diabetes: A Focus on Exenatide. Clinical Diabetes 23, 56-62 (2005).
8. Cheng, A.Y.Y. & Fantus, I.G. Oral antihyperglycemic therapy for type 2 diabetes mellitus. Canadian Medical Association Journal 172, 213-226 (2005).
9. Ranganath, L.R. Incretins: pathophysiological and therapeutic implications of glucose-dependent insulinotropic polypeptide and glucagon-like peptide-1. Journal of Clinical Pathology 61, 401-409 (2008).
10. Puls, W., Keup, U., Krause, H.P. & Thomas, G. Glucosidase inhibition - New approach to treatment of carbohydrate dependent metabolic disorders. Diabetologia 13, 426-426 (1977).
11. Satoh, N., Shimatsu, A., Yamada, K., Aizawa-Abe, M., Suganami, T., Kuzuya, H. & Ogawa, Y. An alpha-glucosidase inhibitor, voglibose, reduces oxidative stress markers and soluble intercellular adhesion molecule 1 in obese type 2 diabetic patients. Metabolism-Clinical and Experimental 55, 786-793 (2006).
12. Kameda, Y., Asano, N., Yamaguchi, T. & Matsui, K. Validoxylamines as Trehalase Inhibitors. Journal of Antibiotics 40, 563-565 (1987).
13. Legler, G., Finken, M.T. & Felsch, S. Synthesis, from nojirimycin, of N-1-alkyl-D-gluconamidines as potential glucosidase inhibitors. Carbohydrate Research 292, 91-101 (1996).
14. Kimura, T., Nakagawa, K., Kubota, H., Kojima, Y., Goto, Y., Yamagishi, K., Oita, S., Oikawa, S. & Miyazawa, T. Food-grade mulberry powder enriched with 1-deoxynojirimycin suppresses the elevation of postprandial blood glucose in humans. Journal of Agricultural and Food Chemistry 55, 5869-5874 (2007).
15. Kong, W.H., Oh, S.H., Ahn, Y.R., Kim, K.W., Kim, J.H. & Seo, S.W. Antiobesity effects and improvement of insulin sensitivity by 1-deoxynojirimycin in animal models. Journal of Agricultural and Food Chemistry 56, 2613-2619 (2008).
16. Scott, L.J. & Spencer, C.M. Miglitol - A review of its therapeutic potential in type 2 diabetes mellitus. Drugs 59, 521-549 (2000).
17. Aoki, K., Nakamura, A., Ito, S., Nezu, U., Iwasaki, T., Takahashi, M., Kimura, M. & Terauchi, Y. Administration of miglitol until 30 min after the start of a meal is effective in type 2 diabetic patients. Diabetes Research and Clinical Practice 78, 30-33 (2007).
18. Yokoyama, H., Kannno, S., Ishimura, I. & Node, K. Miglitol increases the adiponectin level and decreases urinary albumin excretion in patients with type 2 diabetes mellitus. Metabolism-Clinical and Experimental 56, 1458-1463 (2007).
19. Yoshikawa, M., Morikawa, T., Matsuda, H., Tanabe, G. & Muraoka, O. Absolute stereostructure of potent alpha-glucosidase inhibitor, salacinol, with unique thiosugar sulfonium sulfate inner salt structure from Salacia reticulata. Bioorganic & Medicinal Chemistry 10, 1547-1554 (2002).
20. Baek, J.S., Kim, H.Y., Abbott, T.P., Moon, T.W., Lee, S.B., Park, C.S. & Park, K.H. Acarviosine-simmondsin, a novel compound obtained from acarviosine-glucose and simmondsin by Thermus maltogenic amylase and its in vivo effect on food intake and hyperglycemia. Bioscience Biotechnology and Biochemistry 67, 532-539 (2003).
21. Seri, K., Sanai, K., Matsuo, N., Kawakubo, K., Xue, C.Y. & Inoue, S. L-arabinose selectively inhibits intestinal sucrase in an uncompetitive manner and suppresses glycemic response after sucrose ingestion in animals. Metabolism-Clinical and Experimental 45, 1368-1374 (1996).
22. Matsui, T., Ebuchi, S., Fukui, K., Matsugano, K., Terahara, N. & Matsumoto, K. Caffeoylsophorose, a new natural alpha-glucosidase inhibitor, from red vinegar by fermented purple-fleshed sweet potato. Bioscience Biotechnology and Biochemistry 68, 2239-2246 (2004).
23. Yoshikawa, M., Shimada, H., Nishida, N., Li, Y., Toguchida, I., Yamahara, J. & Matsuda, H. Antidiabetic principles of natural medicines. II. Aldose reductase and alpha-glucosidase inhibitors from Brazilian natural medicine, the leaves of Myrcia multiflora DC. (Myrtaceae): structures of myrciacitrins I and II and myrciaphenones A and B. Chem Pharm Bull (Tokyo) 46, 113-119 (1998).
24. Gao, H., Huang, Y.N., Gao, B. & Kawabata, J. Chebulagic acid is a potent alpha-glucosidase inhibitor. Bioscience Biotechnology and Biochemistry 72, 601-603 (2008).
25. Li, Y.H., Wen, S.P., Kota, B.P., Peng, G., Li, G.Q., Yamahara, J. & Roufogalis, B.D. Punica granatum flower extract, a potent alpha-glucosidase inhibitor, improves postprandial hyperglycemia in Zucker diabetic fatty rats. Journal of Ethnopharmacology 99, 239-244 (2005).
26. 林曉青, 國立台灣大學醫學院藥學研究所碩士論文:菲律賓楠抑制甲型葡萄糖水解酶之活性成分研究. 2006, July
27. Davis, A., Christiansen, M., Horowitz, J.F., Klein, S., Hellerstein, M.K. & Ostlund, R.E. Effect of pinitol treatment on insulin action in subjects with insulin resistance. Diabetes Care 23, 1000-1005 (2000).
28. Kim, M.J., Yoo, K.H., Kim, J.H., Seo, Y.T., Ha, B.W., Kho, J.H., Shin, Y.G. & Chung, C.H. Effect of pinitol on glucose metabolism and adipocytokines in uncontrolled type 2 diabetes. Diabetes Research and Clinical Practice 77, S247-S251 (2007).
29. Kelly, K.L., Mato, J.M., Merida, I. & Jarett, L. Glucose-transport and antilipolysis are differentially regulated by the polar head group of an insulin-sensitive glycophospholipid. Proceedings of the National Academy of Sciences of the United States of America 84, 6404-6407 (1987).
30. Larner, J., Allan, G., Kessler, C., Reamer, P., Gunn, R. & Huang, L.C. Phosphoinositol glycan derived mediators and insulin resistance. Prospects for diagnosis and therapy. Journal of Basic and Clinical Physiology and Pharmacology 9, 127-137 (1998).
31. Fonteles, M.C., Huang, L.C. & Larner, J. Infusion of pH 2.0 D-chiro-inositol glycan insulin putative mediator normalizes plasma glucose in streptozotocin diabetic rats at a dose equivalent to insulin without inducing hypoglycaemia. Diabetologia 39, 731-734 (1996).
32. Kim, J.I., Kim, J.C., Kang, M.J., Lee, M.S., Kim, J.J. & Cha, I.J. Effects of pinitol isolated from soybeans on glycaemic control and cardiovascular risk factors in Korean patients with type II diabetes mellitus: a randomized controlled study. European Journal of Clinical Nutrition 59, 456-458 (2005).
33. Larner, J. D-chiro-inositol—its functional role in insulin action and its deficit in insulin resistance. Int. J. Exp. Diabetes Res 3, 47–60 (2002).
34. Brautigan, D.L., Brown, M., Grindrod, S., Chinigo, G., Kruszewski, A., Lukasik, S.M., Bushweller, J.H., Horal, M., Keller, S., Tamura, S., Heimark, D.B., Price, J., Larner, A.N. & Larner, J. Allosteric activation of protein phosphatase 2C by D-chiro-inositol-galactosamine, a putative mediator mimetic of insulin action. Biochemistry 44, 11067-11073 (2005).
35. Adisakwattana, S., Sookkongwaree, K., Roengsumran, S., Petsom, A., Ngamrojnavanich, N., Chavasiri, W., Deesamer, S. & Yibchok-Anun, S. Structure-activity relationships of trans-cinnamic acid derivatives on alpha-glucosidase inhibition. Bioorganic & Medicinal Chemistry Letters 14, 2893-2896 (2004).
36. Adisakwattana, S., Roengsamran, S., Hsu, W.H. & Yibchok-Anun, S. Mechanisms of antihyperglycemic effect of p-methoxycinnamic acid in normal and streptozotocin-induced diabetic rats. Life Sciences 78, 406-412 (2005).
37. Jung, U.J., Lee, M.K., Jeong, K.S. & Choi, M.S. The Hypoglycemic effects of hesperidin and naringin are partly mediated by hepatic glucose-regulating enzymes in C57BL/KsJ-db/db mice. Journal of Nutrition 134, 2499-2503 (2004).
38. Jung, U.J., Lee, M.K., Park, Y.B., Kang, M.A. & Choi, M.S. Effect of citrus flavonoids on lipid metabolism and glucose-regulating enzyme mRNA levels in type-2 diabetic mice. International Journal of Biochemistry & Cell Biology 38, 1134-1145 (2006).
39. Kozikowski, A.P., Fauq, A.H., Wilcox, R.A. & Nahorski, S.R. Tools for cell signaling: synthesis of the 3-phosphatase-resistant 1,3,4,5-InsP4 mimic, 1D-myo-inositol 1,4,5-trisphosphate 3-phosphorothioate. Journal of Organic Chemistry 59, 2279-2281 (1994).
40. Kozikowski, A.P., Ognyanov, V.I., Fauq, A.H., Nahorski, S.R. & Wilcox, R.A. Synthesis of 1D-3-deoxy-, 1D-2,3-dideoxy-, and 1D-2,3,6-trideoxy-myo-inositol 1,4,5-trisphosphate from quebrachitol, their binding affinities, and calcium release activity. Journal of the American Chemical Society 115, 4429-4434 (1993).
41. de Oliveira, R.B., de Souza, J.D., Prado, M.A.F., Eberlin, M.N., Meurer, E.C., Santos, L.S. & Alves, R.J. Synthesis of unexpected six-membered imides by free-radical carbocyclisation on carbohydrate templates. Tetrahedron 60, 9901-9908 (2004).
42. Montalbetti, C. & Falque, V. Amide bond formation and peptide coupling. Tetrahedron 61, 10827-10852 (2005).
43. Reddy, T.J., Iwama, T., Halpern, H.J. & Rawal, V.H. General synthesis of persistent trityl radicals for EPR imaging of biological systems. Journal of Organic Chemistry 67, 4635-4639 (2002).
44. Kettler, K., Sakowski, J., Silber, K., Sattler, I., Klebe, G. & Schlitzer, M. Non-thiol farnesyltransferase inhibitors: N-(4-acylamino-3-benzoylphenyl)-3-[5-(4-nitrophenyl)-2-furyl]acrylic acid amides. Bioorganic & Medicinal Chemistry 11, 1521-1530 (2003).
45. Morley, R.M., Tse, H.W., Feng, B.H., Miller, J.C., Monaghan, D.T. & Jane, D.E. Synthesis and pharmacology of N-1-substituted piperazine-2,3-dicarboxylic acid derivatives acting as NMDA receptor antagonists. Journal of Medicinal Chemistry 48, 2627-2637 (2005).
46. Schmidt, B. & Nave, S. Synthesis of dihydrofurans and dihydropyrans with unsaturated side chains based on ring size-selective ring-closing metathesis. Advanced Synthesis & Catalysis 349, 215-230 (2007).
47. Anilkumar, G.N., Jia, Z.J., Kraehmer, R. & Fraser-Reid, B. Concerning the reactivities of the C-1, C-2 and C-6 hydroxy groups of myo-inositol. Journal of the Chemical Society-Perkin Transactions 1, 3591-3596 (1999).
48. Corey, E.J. & Venkates.A. Protection of hydroxyl groups as tert-butyldimethylsilyl derivatives. Journal of the American Chemical Society 94, 6190-& (1972).
49. Markham, K.R. & Ternai, B. 13C NMR of flavonoids-II. Flavonoids other then flavone and flavonol aglycones. Tetrahedron 32, 2607-2612 (1976).
50. Shen, C.C., Chang, Y.S. & Ho, L.K. Nuclear magnetic resonance studies of 5,7-dihydroxyflavonoids. Phytochemistry 34, 843-845 (1993).
51. Davies, J.S., Higginbotham, C.L., Tremeer, E.J., Brown, C. & Treadgold, R.C. Protection of hydroxy groups by silylation: use in peptide synthesis and as lipophilicity modifiers for peptides. Journal of the Chemical Society-Perkin Transactions 1, 3043-3048 (1992).
52. Lipshutz, B.H. & Keith, J. Selective deprotection of alkyl vs. aryl silyl ethers. Tetrahedron Letters 39, 2495-2498 (1998).
53. Noonan, D.M., Benelli, R. & Albini, A. Angiogenesis and cancer prevention: A vision. in Recent Results in Cancer Research 219-224 (2007).
54. Okunade, A.L., Elvin-Lewis, M.P.F. & Lewis, W.H. Natural antimycobacterial metabolites: current status. Phytochemistry 65, 1017-1032 (2004).
55. Won, S.J., Liu, C.T., Tsao, L.T., Weng, J.R., Ko, H.H., Wang, J.P. & Lin, C.N. Synthetic chalcones as potential anti-inflammatory and cancer chemopreventive agents. European Journal of Medicinal Chemistry 40, 103-112 (2005).
56. Pistia-Brueggeman, G. & Hollingsworth, R.I. A preparation and screening strategy for glycosidase inhibitors. Tetrahedron 57, 8773-8778 (2001).
dc.identifier.urihttp://tdr.lib.ntu.edu.tw/jspui/handle/123456789/40219-
dc.description.abstract甲型葡萄糖水解酶抑制劑是作用在腸道酵素的一種口服降血糖藥物,藉由干擾碳水化合物之代謝進而降低飯後血糖,達到治療糖尿病之功效。近日發現天然物苯丙醯黃酮鼠李糖苷類化合物對此酵素具良好抑制活性,故本研究對此類化合物進行結構活性關係之探討。選用松醇和橙皮苷作為起始物,以肉桂酸和肉桂基溴 (cinnamyl bromide) 進行酯化和醚化反應製備一系列類似物,再利用催化性氫化反應合成相對應之非共軛系統衍生物。
甲型葡萄糖水解酶試驗顯示松醇類衍生物不具此酵素抑制活性,但可增強胰島素促進葡萄糖吸收之活性,其中以 IIC-4 效果最好 (0.97 uM, S.I. = 13.64)。在鹼性條件下橙皮苷開環形成查爾酮 (chalcone) 類化合物 (IVA-2),此類化合物可些微抑制甲型葡萄糖水解酶,其中在橙皮苷之葡萄糖二號位置和肉桂基溴進行醚化反應可增強產物抑制活性 (IVA-4, IC50 = 136.8 uM)。以 IB-1 在正常老鼠進行葡萄糖耐受性試驗後,發現可顯著降低血糖值,再分別以松醇和肉桂酸給藥進行相同試驗,顯示此效果可能是其水解產物松醇和肉桂酸之功效。而橙皮苷和肉桂基溴之醚化產物其相關活性仍待進一步探討。
zh_TW
dc.description.abstractα-Glucosidase inhibitors (AGH) are one type of oral antihyperglycemic drugs targeting on the enzymes in the small intestine. They block the metabolism of the carbohydrates and lower postprandial glucose level to achieve therapeutic control of diabetes. According to the recent finding of natural flavonol O-acylated rhamnosides to be potent α-glucosidase inhibitors, the structure and activity relationship of such type compounds were explored in this study. Pinitol and hesperidin were chosen as starting materials. Esterification and etherification were undertaken to prepare a series of phenylpropenoyl- and O-phenylpropenyl- pinitols, and hesperidin derivatives. The corresponding non-conjugated derivatives of these compounds were also prepared via catalytical hydrogenation.
Bioassay against α-glucosidase showed that cinnamyl- and dihydrocinnamyl- pinitols have no inhibitory activity. However, they could enhance insulin to stimulate glucose uptake, especially compound IIC-4. Dihydro-1,2-seco-hesperidin (IVA-2) showed weak inhibition activity; nevertheless, etherification with cinnamyl bromide at 2-position of the glucosyl residue could increase activity (IVA-4, IC50 = 136.8 uM). Intravenous glucose tolerance test on normal rats indicated that compound IB-1
could reduce the blood glucose level significantly. This could be attributable to the function of pinitol and cinnamic acid, the hydrolytic products of IB-1. The bioactivity of O-cinnamyl- and O-dihydrocinnamyl- hesperidins remains to be disclosed.
en
dc.description.provenanceMade available in DSpace on 2021-06-14T16:42:51Z (GMT). No. of bitstreams: 1
ntu-97-R95423006-1.pdf: 4560827 bytes, checksum: 3af94df944c558a11ee465a5ab5b7ab6 (MD5)
Previous issue date: 2008
en
dc.description.tableofcontents誌謝...............................................................................................................................II
中文摘要........................................................................................................................1
英文摘要........................................................................................................................2
表目錄 (List of Tables)……………………………………………………………….9
流程圖目錄 (List of Schemes)…...…………………………………………………10
圖及附圖目錄 (List of Figures and Spectra Appendices)…………………………..11
詞彙 (Glossary)……………………………………………………………………...15
第一章 序論………………………………………………………………………..16
1.1 糖尿病簡介……………………………………………………………….16
1.1.1 糖尿病………………………………………………………………16
1.1.2 糖尿病的機制………………………………………………………16
1.2 糖尿病之治療藥物……………………………………………………….18
1.2.1 臨床上使用之甲型葡萄糖水解酶抑制劑及其發展………………21
1.2.2 近年來新發現之甲型葡萄糖水解酶抑制劑………………………23
1.3 研究目的………………………………………………………………….27
1.4 苯丙烯黃酮鼠李糖苷類化合物之活性研究…………………………….27
1.5 Pinitol之結構修飾研究…………………………………………………..29
1.6 Hesperidin之結構修飾研究……………………………………………...29
第二章 實驗結果與討論…………………………………………………………..31
2.1 Phenylpropenoylpinitols 與 phenylpropanoylpinitols 之製備………….31
2.1.1 Pinitol peracetonide (IA-1) 之製備………………………………..31
2.1.2 4-O-Cinnamoyl-pinitol (IIA-3) 與 4-O-dihydrocinnamoyl-pinitol (IIA-4) 之製備……………………………………………………..32
2.1.3 4-O-(2-Hydroxycinnamoyl)-pinitol (IIC-4) 之製備……………….35
2.1.4 4-O-(3-Hydroxycinnamoyl)-pinitol (IID-5) 與 4-O-(3-hydroxydihydrocinnamoyl)- pinitol (IID-6) 之製備………36
2.1.5 4-O-Caffeoyl-pinitol (IIE-4) 之製備………………………………37
2.1.6 Peracylated pinitol (IB-1) 之製備…………………………………38
2.1.7 4-O-Cinnamyl-, 4-O-dihydrocinnamyl-pinitol (IIIA-3, IIIA-5) 之製備…………………………………………………………………..39
2.1.8 2,4,5-Tri-O-cinnamyl-, 2,4,5-tri-O-dihydrocinnamyl-pinitol (IIIB-1, IIIB-2) 之製備……………………………………………………..41
2.1.9 Pinitol 保護基之合成研究………………………………………...42
2.2 Hesperidin analogues 之製備……………………………………………44
2.2.1 3’,5,9-Tribenzyl-1,2-seco-hesperidin (IVA-1) 之製備…………….45
2.2.2 Dihydro-1,2-seco-hesperidin (IVA-2) 之製備……………………..48
2.2.3 3’,5,9-Tri-benzyl-2-O-cinnamyl-1,2-seco-hesperidins (IVA-3a, 3b)
之製備……………………………………………………………..49
2.2.4 2-O-Dihydrocinnamyl-dihydro-1,2-seco-hesperidin(IVA-4)之製備.53
2.2.5 3’,5,9-Tri-benzyl-1,2-seco-hesperidin-2’’’,3’’’-acetonode (IVC-1) 之製備………………………………………………………………..55
2.2.6 Hepta-O-cinnamylhesperidin (IVD-1) 與
per-O-cinnamylhesperidin (IVE-1) 之製備………………………58
2.2.7 Silylated hesperidins (IVF-1) 之製備……………………………..59
2.3 藥物活性測試…………………………………………………………….60
2.3.1 甲型葡萄糖水解酶之活性試驗結果………………………………60
2.3.2 六碳糖輸送之活性試驗結果………………………………………62
2.3.3 動物體內活性試驗結果……………………………………………63
第三章 實驗方法…………………………………………………………………..65
3.1 儀器與材料……………………………………………………………….65
3.1.1 理化性質測定儀器…………………………………………………65
3.1.2 反應器………………………………………………………………65
3.1.3 成份分離之儀器及材料……………………………………………65
3.1.4 試劑、材料及溶劑…………………………………………………..66
3.2 Phenylpropenoylpinitols 與 phenylpropanoylpinitols 之製備…………67
3.2.1 Pinitol peracetonide (IA-1) 之製備………………………………..68
3.2.2 4-O-Cinnamoyl-pinitol (IIA-3) 與 4-O-dihydrocinnamoyl-pinitol (IIA-4) 之製備……………………………………………………..68
3.2.2.1 4-O-Cinnamoyl-pinitol peracetonide (IIA-2) 之製備………...68
3.2.2.2 4-O-Cinnamoyl-pinitol (IIA-3) 之製備……………………….69
3.2.2.3 4-O-Dihydrocinnamoyl-pinitol (IIA-4) 之製備………………70
3.2.2.4 Dihydrocinnamic acid (IIB-1) 之製備………………………...71
3.2.2.5 4-O-Dihydrocinnamoyl-pinitol peracetonide (IIB-2) 之製備...72
3.2.3 4-O-(2-Hydroxycinnamoyl)-pinitol (IIC-4) 之製備……………….72
3.2.3.1 2-Acetyloxycinnamic acid (IIC-2) 之製備……………………72
3.2.3.2 4-O-(2-Acetyloxycinnamoyl)-pinitol peracetonide (IIC-3) 之製備………………………………………………………………..73
3.2.3.3 4-O-(2-Hydroxycinnamoyl)-pinitol (IIC-4) 之製備…………..74
3.2.4 4-O-(3-Hydroxycinnamoyl)-pinitol (IID-5) 之製備……………….75
3.2.4.1 3-Acetyloxycinnamic acid (IID-2) 之製備……………………75
3.2.4.2 4-O-(3-Acetyloxycinnamoyl)-pinitol peracetonide (IID-3) 之製備………………………………………………………………..75
3.2.4.3 4-O-(3-Hydroxycinnamoyl)-pinitol peracetonide (IID-4) 之製備………………………………………………………………..76
3.2.4.4 4-O-(3-Hydroxycinnamoyl)-pinitol (IID-5) 之製備…………..77
3.2.4.5 4-O-(3-Hydroxydihydrocinnamoyl)-pinitol (IID-6) 之製備….78
3.2.5 4-O-Caffeoyl-pinitol (IIE-4) 之製備………………………………79
3.2.5.1 Diacetylcaffeic acid (IIE-2) 之製備…………………………..79
3.2.5.2 4-O-(Diacetylcaffeoyl)-pinitol peracetonide (IIE-3) 之製備…79
3.2.5.3 4-O-Caffeoyl-pinitol (IIE-4) 之製備………………………….80
3.2.5.4 Caffeic acid acetonide (IIE-1a) 之製備……………………....81
3.2.6 Acetylation of other cinnamic acid analogues……………………...82
3.2.7 Peracylated pinitol (IB-1) 之製備………………………………….83
3.3 4-O-Cinnamyl-, 4-O-dihydrocinnamyl- 與 2,4,5-tri-O-cinnamyl- ,
2,4,5-tri-O-dihydrocinnamyl pinitol 之製備……………………………...83
3.3.1 4-O-Cinnamyl-pinitol peracetonide (IIIA-2) 之製備.......................83
3.3.2 4-O-Cinnamyl-pinitol (IIIA-3) 之製備……………………………84
3.3.3 4-O-Dihydrocinnamyl-pinitol peracetonide (IIIA-4) 之製備……..85
3.3.4 4-O-Dihydrocinnamyl-pinitol (IIIA-5) 之製備……………………86
3.3.5 2,4,5-Tri-O-cinnamyl-pinitol (IIIB-1) 之製備…………………….87
3.3.6 2,4,5-Tri-O-dihydrocinnamyl-pinitol (IIIB-2) 之製備…………….88
3.4 Pinitol 保護基之合成研究………………………………………………88
3.4.1 Tetra-tBDMS-pinitols (ID-1) 之製備………………………………88
3.4.2 2,5-Di-tBDMS-pinitol (IC-1) 之製備……………………………...89
3.4.3 2,5-Di-tBDMS-1,4,6-triacetyl pinitol (IC-2) 之製備………………90
3.5 Hesperidin analogues 之製備……………………………………………91
3.5.1 3’,5,9-Tribenzyl-1,2-seco-hesperidin (IVA-1) 之製備…………….91
3.5.1.1 Dihydro-1,2-seco-hesperidin (IVA-2) 之製備………………...92
3.5.1.2 3’,5,9-Tri-benzyl-2-O-cinnamyl-1,2-seco-hesperidins (IVA-3a,
3b) 之製備……………………………………………………93
3.5.1.3 2-O-Dihydrocinnamyl-dihydro-1,2-seco-hesperidin (IVA-4) 之
製備……………………………………………………………..94
3.5.2 Dibenzyl-1,2-seco-hesperidin (IVB-1) 之製備……………………94
3.5.3 3’,5,9-Tri-benzyl-1,2-seco-hesperidin-2’’’,3’’’-acetonode (IVC-1) 之
製備…………………………………………………………………95
3.5.4 Hepta-O-cinnamylhesperidin (IVD-1) 之製備…………………….96
3.5.5 Per-O-cinnamylhesperidin (IVE-1) 之製備……………………….96
3.5.6 Silylated hesperidins (IVF-1) 之製備……………………………...97
3.6 甲型葡萄糖水解酶之活性試驗 (α-Glucosidase assay)............................97
3.6.1 原理…………………………………………………………………97
3.6.2 試劑配製……………………………………………………………98
3.6.3 實驗步驟……………………………………………………………98
3.6.4 IC50 之計算.......................................................................................99
3.7 動物體內活性試驗 ……………………………………………………...99
3.7.1 口服劑型之配製……………………………………………………99
3.7.2 實驗方法 (intravenous glucose tolerance test, IVGTT)…………...100
3.8 六碳糖輸送之活性試驗 (hexose transport assay)……………………..100
3.8.1 目的………………………………………………………………..100
3.8.2 細胞培養與脂肪細胞之分化……………………………………..101
3.8.3 六碳糖輸送………………………………………………………..101
參考文獻……………………………………………………………………………103
附圖 (Spectra Appendices)…………………………………………………………110

表目錄 (List of Tables)
Table 1. 胰島素製劑………………………………………………………………...18
Table 2. 口服抗高血糖藥物………………………………………………………...19
Table 3. 各種治療第二型糖尿病藥物對於病理生理之影響……………………...20
Table 4. 臨床使用之甲型葡萄糖水解酶抑制劑…………………………………...21
Table 5. 具甲型葡萄糖水解酶抑制活性之成分…………………………………...23
Table 6. 1H and 13C NMR data, COSY and HMBC correlations of hesperidin and
IVA-1 (Pyridine-d5, Bruker AV-400)……………………………………….45
Table 7. 1H and 13C NMR data of compound IVA-2 (Bruker AV400)……………….48
Table 8. 1H and 13C NMR data of compound IVA-1, IVA-3a (Pyridine-d5, Bruker
AV-400)…………………………………………………………………….50
Table 9. 1H and 13C NMR data of compound IVA-3a, IVA-3b (Bruker AV-400)…..52
Table 10. 1H data of compound IVA-2, IVA-3a, IVA-4 (Pyridine-d5, Bruker AV-400).........................................................................................................54
Table 11. 1H and 13C NMR data of compound IVA-1, IVC-1 (Pyridine-d5, Bruker
AV-400)…………………………………………………………………….56

流程圖目錄 (List of Schemes)
Scheme 1. Preparation of IA-1……………………………………………………….31
Scheme 2. Preparation of IIA-2~4. ………………………………………………….32
Scheme 3. Preparation of IIB-1 and IIB-2…………………………………………..34
Scheme 4. Preparation of IIC-2~4. ………………………………………………….35
Scheme 5. Preparation of IID-2~6…………………………………………………...36
Scheme 6. Preparation of IIE-1a and IIE-2~4............................................................37
Scheme 7. Preparation of IB-1……………………………………………………….39
Scheme 8. Preparation of IIIA-2~5…………………………………………………..40
Scheme 9. Preparation of IIIB-1 and IIIB-2………………………………………...42
Scheme 10. Preparation of ID-1, IC-1 and IC-2.........................................................43
Scheme 11. Preparation of IVA-1……………………………………………………45
Scheme 12. Preparation of IVA-2……………………………………………………48
Scheme 13. Preparation of IVA-3a and IVA-3b……………………………………..50
Scheme 14. Preparation of IVA-4……………………………………………………54
Scheme 15. Preparation of IVC-1……………………………………………………56
Scheme 16. Preparation of IVD-1 and IVE-1………………………………………..58
Scheme 17. Preparation of IVF-1……………………………………………………59

圖及附圖目錄 (List of Figures and Spectra Appendices)
Figure 1. 脂肪組織內的慢性發炎會誘導骨骼肌的胰島素耐受性發生………….17
Figure 2. 臨床上使用之甲型葡萄糖水解酶抑制劑和其衍生物之結構………….22
Figure 3. 具甲型葡萄糖水解酶抑制活性成分之結構…………………………….25
Figure 4. 樟科楨楠屬所分離之苯丙醯黃酮鼠李糖苷類化合物結構…………….27
Figure 5. 松醇 (D-pinitol)、肉桂酸 (cinnamic acid) 和橙皮苷 (hesperidin) …….28
Figure 6. Structure of pinitol…………………………………………………………31
Figure 7. Catalytic function of 1-hydroxybenzotriazole (HOBt) in esterification…...33
Figure 8. Structure of hesperidin……………………………………………………..44
Figure 9. Hesperidin 開環之可能機制……………………………………………...47
Figure 10. Structure of IVA-2 and IVA-4……………………………………………60
Figure 11. α-Glucosidase assay of IVA-2 and IVA-4………………………………...61
Figure 12. Structure of IIA-3, IIC-4, IIE-4………………………………………….62
Figure 13. Hexose transport assay of IIA-3, IIC-4, IIE-4…………………………..62
Figure 14. In vivo assay of IB-1……………………………………………………...63
Figure 15. In vivo assay of cinnamic acid……………………………………………64
Figure 16. 96 孔微量測試盤樣品配置……………………………………………..99
Figure 17. 1H-NMR spectrum of I-1 (D2O, 400 MHz)……………………………..110
Figure 18. 13C-NMR spectrum of I-1 (D2O, 100 MHz)…………………………….111
Figure 19. 1H-NMR spectrum of IA-1 (CDCl3, 200 MHz)…………………………112
Figure 20. 13C-NMR spectrum of IA-1 (CDCl3, 50 MHz)………………………...113
Figure 21. 1H-NMR spectrum of IIA-2 (CDCl3, 200 MHz)………………………..114
Figure 22. 13C-NMR spectrum of IIA-2 (CDCl3, 50 MHz)……………………….115
Figure 23. 1H-NMR spectrum of IIA-3 (CD3OD, 200 MHz)………………………116
Figure 24. 13C-NMR spectrum of IIA-3 (CD3OD, 50 MHz)……………………….117
Figure 25. 1H-NMR spectrum of IIA-4 (CD3OD, 400 MHz)………………………118
Figure 26. 13C-NMR spectrum of IIA-4 (CD3OD, 100 MHz)……………………...119
Figure 27. 1H-NMR spectrum of IIB-1 (CDCl3, 200 MHz)………………………..120
Figure 28. 1H-NMR spectrum of IIB-1 (CDCl3, 200 MHz)………………………..121
Figure 29. 13C-NMR spectrum of IIB-1 (CDCl3, 50 MHz)………………………...122
Figure 30. 1H-NMR spectrum of IIC-2 (CDCl3, 200 MHz)……………………..…123
Figure 31. 1H-NMR spectrum of IIC-3 (CDCl3, 400 MHz)………………………..124
Figure 32. 13C-NMR spectrum of IIC-3 (CDCl3, 100 MHz)……………………….125
Figure 33. 1H-NMR spectrum of IIC-4 (CD3OD, 400 MHz)………………………126
Figure 34. 13C-NMR spectrum of IIC-4 (CD3OD, 100 MHz)……………………...127
Figure 35. 1H-NMR spectrum of IID-2 (CDCl3, 200 MHz)………………………..128
Figure 36. 1H-NMR spectrum of IID-3 (CDCl3, 400 MHz)………………………..129
Figure 37. 13C-NMR spectrum of IID-3 (CDCl3, 100 MHz)……………………….130
Figure 38. 1H-NMR spectrum of IID-4 (CD3OD, 400 MHz)………………………131
Figure 39. 1H-NMR spectrum of IID-5 (CD3OD, 200 MHz)………………………132
Figure 40. 13C-NMR spectrum of IID-5 (CD3OD, 50 MHz)……………………….133
Figure 41. 1H-NMR spectrum of IID-6 (CD3OD, 200 MHz)………………………134
Figure 42. 13C-NMR spectrum of IID-6 (CD3OD, 50 MHz)……………………….135
Figure 43. 1H-NMR spectrum of IIE-2 (CDCl3, 200 MHz)………………………..136
Figure 44. 1H-NMR spectrum of IIE-3 (CDCl3, 400 MHz)………………………..137
Figure 45. 13C-NMR spectrum of IIE-3 (CDCl3, 100 MHz)……………………….138
Figure 46. 1H-NMR spectrum of IIE-4 (CD3OD, 200 MHz)………………………139
Figure 47. 13C-NMR spectrum of IIE-4 (CD3OD, 50 MHz)……………………….140
Figure 48. 1H-NMR spectrum of IIE-1a (CDCl3, 200 MHz)………………………141
Figure 49. 13C-NMR spectrum of IIE-1a (CDCl3, 50 MHz)……………………….142
Figure 50. 1H-NMR spectrum of IIF-2 (CDCl3, 200 MHz)………………………..143
Figure 51. 1H-NMR spectrum of IIG-2 (CDCl3, 200 MHz)………………………..144
Figure 52. 1H-NMR spectrum of IB-1 (CDCl3, 400 MHz)…………………………145
Figure 53. 13C-NMR spectrum of IB-1 (CDCl3, 100 MHz)………………………...146
Figure 54. 1H-NMR spectrum of IIIA-2 (CDCl3, 200 MHz)………………………147
Figure 55. 13C-NMR spectrum of IIIA-2 (CDCl3, 50 MHz)……………………….148
Figure 56. 1H-NMR spectrum of IIIA-3 (CD3OD, 400 MHz)……………………..149
Figure 57. 13C-NMR spectrum of IIIA-3 (CD3OD, 100 MHz)…………………….150
Figure 58. 1H-NMR spectrum of IIIA-4 (CDCl3, 200 MHz)………………………151
Figure 59. 13C-NMR spectrum of IIIA-4 (CDCl3, 50 MHz)……………………….152
Figure 60. 1H-NMR spectrum of IIIA-5 (CD3OD, 400 MHz)……………………..153
Figure 61. 13C-NMR spectrum of IIIA-5 (CD3OD, 100 MHz)…………………….154
Figure 62. 1H-NMR spectrum of IIIB-1 (CDCl3, 200 MHz)………………………155
Figure 63. 13C-NMR spectrum of IIIB-1 (CDCl3, 50 MHz)……………………….156
Figure 64. 1H-NMR spectrum of IIIB-2 (CDCl3, 200 MHz)……………………….157
Figure 65. 13C-NMR spectrum of IIIB-2 (CDCl3, 50 MHz)……………………….158
Figure 66. 1H-NMR spectrum of ID-1 (CDCl3, 200 MHz) ………………………..159
Figure 67. 13C-NMR spectrum of ID-1 (CDCl3, 50 MHz) ………………………...160
Figure 68. 1H-NMR spectrum of IC-1 (CDCl3, 200 MHz) ………………………..161
Figure 69. 13C-NMR spectrum of IC-1 (CDCl3, 50 MHz) ………………………...162
Figure 70. 1H-NMR spectrum of IC-2 (CDCl3, 200 MHz) ………………………..163
Figure 71. 13C-NMR spectrum of IC-2 (CDCl3, 50 MHz) ………………………...164
Figure 72. 1H-NMR spectrum of IV-1 (Pyridine-d5, 400 MHz) …………………...165
Figure 73. 13C-NMR spectrum of IV-1 (Pyridine-d5, 100 MHz) …………………..166
Figure 74. 1H-NMR spectrum of IVA-1 (Pyridine-d5, 400 MHz) ………………….167
Figure 75. 13C-NMR spectrum of IVA-1 (Pyridine-d5, 100 MHz) ………………...168
Figure 76. COSY (1) spectrum of IVA-1 (Pyridine-d5, 400 MHz) ………………...169
Figure 77. COSY (2) spectrum of IVA-1 (Pyridine-d5, 400 MHz) ………………...170
Figure 78. COSY (3) spectrum of IVA-1 (Pyridine-d5, 400 MHz) ………………...171
Figure 79. HMQC (1) spectrum of IVA-1 (Pyridine-d5, 400 MHz) ………………..172
Figure 80. HMQC (2) spectrum of IVA-1 (Pyridine-d5, 400 MHz) ………………..173
Figure 81. HMQC (3) spectrum of IVA-1 (Pyridine-d5, 400 MHz) ………………..174
Figure 82. HMBC (1) spectrum of IVA-1 (Pyridine-d5, 400 MHz) ………………..175
Figure 83. HMBC (2) spectrum of IVA-1 (Pyridine-d5, 400 MHz) ………………..176
Figure 84. HMBC (3) spectrum of IVA-1 (Pyridine-d5, 400 MHz) ………………..177
Figure 85. HMBC (4) spectrum of IVA-1 (Pyridine-d5, 400 MHz) ………………..178
Figure 86. HMBC (5) spectrum of IVA-1 (Pyridine-d5, 400 MHz) ………………..179
Figure 87. 1H-NMR spectrum of IVA-2 (Pyridine-d5, 400 MHz) ………………….180
Figure 88. 13C-NMR spectrum of IVA-2 (Pyridine-d5, 100 MHz) ………………...181
Figure 89. 1H-NMR spectrum of IVA-3a (Pyridine-d5, 400 MHz) ………………...182
Figure 90. 13C-NMR spectrum of IVA-3a (Pyridine-d5, 100 MHz) ……………….183
Figure 91. 1H-NMR spectrum of IVA-3b (Pyridine-d5, 400 MHz) ………………..184
Figure 92. 1H-NMR spectrum of IVA-4 (Pyridine-d5, 400 MHz) ………………….185
Figure 93. 1H-NMR spectrum of IVC-1 (Pyridine-d5, 400 MHz) …………………186
Figure 94. 13C-NMR spectrum of IVC-1 (Pyridine-d5, 100 MHz) ………………...187
dc.language.isozh-TW
dc.subject抑制物zh_TW
dc.subject甲型葡萄糖水解&#37238zh_TW
dc.subject松醇zh_TW
dc.subject肉桂酸zh_TW
dc.subject肉桂基溴zh_TW
dc.subject苯丙醯黃酮鼠李糖&#33527zh_TW
dc.subject查爾酮zh_TW
dc.subject橙皮&#33527zh_TW
dc.subject類化合物zh_TW
dc.subjectpinitolen
dc.subjectcinnamic aciden
dc.subjectcinnamyl bromideen
dc.subjectseco-hesperidinen
dc.subjectnatural flavonol O-acylated rhamnosidesen
dc.subjecthesperidinen
dc.subjectα-glucosidase inhibitoren
dc.title苯丙醯黃酮鼠李糖苷類化合物之製備作抑制甲型葡萄糖水解酶之研究zh_TW
dc.titlePreparation of acylated rhamnosyl flavonoid analogs as α-glucosidase inhibitorsen
dc.typeThesis
dc.date.schoolyear96-2
dc.description.degree碩士
dc.contributor.oralexamcommittee陳春雄,李安榮,林雲蓮
dc.subject.keyword甲型葡萄糖水解&#37238,抑制物,苯丙醯黃酮鼠李糖&#33527,類化合物,松醇,橙皮&#33527,肉桂酸,肉桂基溴,查爾酮,zh_TW
dc.subject.keywordα-glucosidase inhibitor,natural flavonol O-acylated rhamnosides,pinitol,hesperidin,seco-hesperidin,cinnamyl bromide,cinnamic acid,en
dc.relation.page187
dc.rights.note有償授權
dc.date.accepted2008-08-01
dc.contributor.author-college醫學院zh_TW
dc.contributor.author-dept藥學研究所zh_TW
顯示於系所單位:藥學系

文件中的檔案:
檔案 大小格式 
ntu-97-1.pdf
  未授權公開取用
4.45 MBAdobe PDF
顯示文件簡單紀錄


系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved