請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/40214完整後設資料紀錄
| DC 欄位 | 值 | 語言 |
|---|---|---|
| dc.contributor.advisor | 林泰元(Thai-Yen Ling) | |
| dc.contributor.author | Yu-Ming Lin | en |
| dc.contributor.author | 林佑名 | zh_TW |
| dc.date.accessioned | 2021-06-14T16:42:46Z | - |
| dc.date.available | 2013-09-11 | |
| dc.date.copyright | 2008-09-11 | |
| dc.date.issued | 2008 | |
| dc.date.submitted | 2008-07-31 | |
| dc.identifier.citation | Bardiya, N., and Bae, J.H. (2005). Influenza vaccines: recent advances in production technologies. Appl Microbiol Biotechnol 67, 299-305.
Beigel, J., and Bray, M. (2008). Current and future antiviral therapy of severe seasonal and avian influenza. Antiviral Res 78, 91-102. Bermejo, J.F., and Munoz-Fernandez, M.A. (2004). Severe acute respiratory syndrome, a pathological immune response to the new coronavirus--implications for understanding of pathogenesis, therapy, design of vaccines, and epidemiology. Viral Immunol 17, 535-544. Bernard, G.R. (2005). Acute respiratory distress syndrome: a historical perspective. Am J Respir Crit Care Med 172, 798-806. Bielefeldt-Ohmann, H., 1995. Role of cytokines in the pathogenesis and treatment of repiratory disease. In: Myers, M.J., Murtaugh, M.P. (Eds.), Cytokines in Animal Health and Disease. Marcel Dekker, New York, pp. 291-332. Bryan, T.M., and Reddel, R.R. (1994). SV40-induced immortalization of human cells. Crit Rev Oncog 5, 331-357. Brydon, E.W., Morris, S.J., and Sweet, C. (2005). Role of apoptosis and cytokines in influenza virus morbidity. FEMS Microbiol Rev 29, 837-850. Canon, S., Herranz, C., and Manzanares, M. (2006). Germ cell restricted expression of chick Nanog. Dev Dyn 235, 2889-2894. Carrat, F., and Flahault, A. (2007). Influenza vaccine: the challenge of antigenic drift. Vaccine 25, 6852-6862. Chen, G., Chen, D.Z., Li, J., Czura, C.J., Tracey, K.J., Sama, A.E., and Wang, H. (2004a). Pathogenic role of HMGB1 in SARS? Med Hypotheses 63, 691-695. Chen, G., Li, J., Ochani, M., Rendon-Mitchell, B., Qiang, X., Susarla, S., Ulloa, L., Yang, H., Fan, S., Goyert, S.M., et al. (2004b). Bacterial endotoxin stimulates macrophages to release HMGB1 partly through CD14- and TNF-dependent mechanisms. J Leukoc Biol 76, 994-1001. Chen, G., Li, J., Qiang, X., Czura, C.J., Ochani, M., Ochani, K., Ulloa, L., Yang, H., Tracey, K.J., Wang, P., et al. (2005). Suppression of HMGB1 release by stearoyl lysophosphatidylcholine:an additional mechanism for its therapeutic effects in experimental sepsis. J Lipid Res 46, 623-627. Chu, J.J., and Ng, M.L. (2003). The mechanism of cell death during West Nile virus infection is dependent on initial infectious dose. J Gen Virol 84, 3305-3314. Conn, C.A., McClellan, J.L., Maassab, H.F., Smitka, C.W., Majde, J.A., and Kluger, M.J. (1995). Cytokines and the acute phase response to influenza virus in mice. Am J Physiol 268, R78-84. Connor, R.J., Kawaoka, Y., Webster, R.G., and Paulson, J.C. (1994). Receptor specificity in human, avian, and equine H2 and H3 influenza virus isolates. Virology 205, 17-23. Cox, N.J., and Subbarao, K. (2000). Global epidemiology of influenza: past and present. Annu Rev Med 51, 407-421. Crawford, P.C., Dubovi, E.J., Castleman, W.L., Stephenson, I., Gibbs, E.P., Chen, L., Smith, C., Hill, R.C., Ferro, P., Pompey, J., et al. (2005). Transmission of equine influenza virus to dogs. Science 310, 482-485. de Jong, M.D., and Hien, T.T. (2006). Avian influenza A (H5N1). J Clin Virol 35, 2-13. de Jong, M.D., Tran, T.T., Truong, H.K., Vo, M.H., Smith, G.J., Nguyen, V.C., Bach, V.C., Phan, T.Q., Do, Q.H., Guan, Y., et al. (2005). Oseltamivir resistance during treatment of influenza A (H5N1) infection. N Engl J Med 353, 2667-2672. Degryse, B., Bonaldi, T., Scaffidi, P., Muller, S., Resnati, M., Sanvito, F., Arrigoni, G., and Bianchi, M.E. (2001). The high mobility group (HMG) boxes of the nuclear protein HMG1 induce chemotaxis and cytoskeleton reorganization in rat smooth muscle cells. J Cell Biol 152, 1197-1206. Dhaene, K., Verhulst, A., and Van Marck, E. (1999). SV40 large T-antigen and human pleural mesothelioma. Screening by polymerase chain reaction and tyramine-amplified immunohistochemistry. Virchows Arch 435, 1-7. Fedson, D.S., Wajda, A., Nicol, J.P., Hammond, G.W., Kaiser, D.L., and Roos, L.L. (1993). Clinical effectiveness of influenza vaccination in Manitoba. JAMA 270, 1956-1961. Fouchier, R.A., Munster, V., Wallensten, A., Bestebroer, T.M., Herfst, S., Smith, D., Rimmelzwaan, G.F., Olsen, B., and Osterhaus, A.D. (2005). Characterization of a novel influenza A virus hemagglutinin subtype (H16) obtained from black-headed gulls. J Virol 79, 2814-2822. Fritz, R.S., Hayden, F.G., Calfee, D.P., Cass, L.M., Peng, A.W., Alvord, W.G., Strober, W., and Straus, S.E. (1999). Nasal cytokine and chemokine responses in experimental influenza A virus infection: results of a placebo-controlled trial of intravenous zanamivir treatment. J Infect Dis 180, 586-593. Gagneux, P., Cheriyan, M., Hurtado-Ziola, N., van der Linden, E.C., Anderson, D., McClure, H., Varki, A., and Varki, N.M. (2003). Human-specific regulation of alpha 2-6-linked sialic acids. J Biol Chem 278, 48245-48250. Gambaryan, A.S., Boravleva, E.Y., Matrosovich, T.Y., Matrosovich, M.N., Klenk, H.D., Moiseeva, E.V., Tuzikov, A.B., Chinarev, A.A., Pazynina, G.V., and Bovin, N.V. (2005). Polymer-bound 6' sialyl-N-acetyllactosamine protects mice infected by influenza virus. Antiviral Res 68, 116-123. Gentile, D., Doyle, W., Whiteside, T., Fireman, P., Hayden, F.G., and Skoner, D. (1998). Increased interleukin-6 levels in nasal lavage samples following experimental influenza A virus infection. Clin Diagn Lab Immunol 5, 604-608. Girardi, A.J., Jensen, F.C., and Koprowski, H. (1965). Sv40-Induced Tranformation of Human Diploid Cells: Crisis and Recovery. J Cell Physiol 65, 69-83. Hashiba, T., Suzuki, M., Nagashima, Y., Suzuki, S., Inoue, S., Tsuburai, T., Matsuse, T., and Ishigatubo, Y. (2001). Adenovirus-mediated transfer of heme oxygenase-1 cDNA attenuates severe lung injury induced by the influenza virus in mice. Gene Ther 8, 1499-1507. Hayden, F.G., Fritz, R., Lobo, M.C., Alvord, W., Strober, W., and Straus, S.E. (1998). Local and systemic cytokine responses during experimental human influenza A virus infection. Relation to symptom formation and host defense. J Clin Invest 101, 643-649. Hennet, T., Ziltener, H.J., Frei, K., and Peterhans, E. (1992). A kinetic study of immune mediators in the lungs of mice infected with influenza A virus. J Immunol 149, 932-939. Herr, W., and Cleary, M.A. (1995). The POU domain: versatility in transcriptional regulation by a flexible two-in-one DNA-binding domain. Genes Dev 9, 1679-1693. Hong, Y., Winkler, C., and Schartl, M. (1998). Production of medakafish chimeras from a stable embryonic stem cell line. Proc Natl Acad Sci U S A 95, 3679-3684. Ibricevic, A., Pekosz, A., Walter, M.J., Newby, C., Battaile, J.T., Brown, E.G., Holtzman, M.J., and Brody, S.L. (2006). Influenza virus receptor specificity and cell tropism in mouse and human airway epithelial cells. J Virol 80, 7469-7480. Joseph, T., Cepica, A., Brown, L., Ikede, B.O., and Kibenge, F.S. (2004). Mechanism of cell death during infectious salmon anemia virus infection is cell type-specific. J Gen Virol 85, 3027-3036. Julkunen, I., Sareneva, T., Pirhonen, J., Ronni, T., Melen, K., and Matikainen, S. (2001). Molecular pathogenesis of influenza A virus infection and virus-induced regulation of cytokine gene expression. Cytokine Growth Factor Rev 12, 171-180. Jung, J.G., Lee, Y.M., Park, T.S., Park, S.H., Lim, J.M., and Han, J.Y. (2007). Identification, culture, and characterization of germline stem cell-like cells in chicken testes. Biol Reprod 76, 173-182. Kaiser, L., Fritz, R.S., Straus, S.E., Gubareva, L., and Hayden, F.G. (2001). Symptom pathogenesis during acute influenza: interleukin-6 and other cytokine responses. J Med Virol 64, 262-268. Katsuoka, F., Kawakami, Y., Arai, T., Imuta, H., Fujiwara, M., Kanma, H., and Yamashita, K. (1997). Type II alveolar epithelial cells in lung express receptor for advanced glycation end products (RAGE) gene. Biochem Biophys Res Commun 238, 512-516. Katz, J.M., and Webster, R.G. (1989). Efficacy of inactivated influenza A virus (H3N2) vaccines grown in mammalian cells or embryonated eggs. J Infect Dis 160, 191-198. Kistner, O., Barrett, P.N., Mundt, W., Reiter, M., Schober-Bendixen, S., and Dorner, F. (1998). Development of a mammalian cell (Vero) derived candidate influenza virus vaccine. Vaccine 16, 960-968. Kurokawa, M., Imakita, M., Kumeda, C.A., and Shiraki, K. (1996). Cascade of fever production in mice infected with influenza virus. J Med Virol 50, 152-158. Lavial, F., Acloque, H., Bertocchini, F., Macleod, D.J., Boast, S., Bachelard, E., Montillet, G., Thenot, S., Sang, H.M., Stern, C.D., et al. (2007). The Oct4 homologue PouV and Nanog regulate pluripotency in chicken embryonic stem cells. Development 134, 3549-3563. Ling, T.Y., Kuo, M.D., Li, C.L., Yu, A.L., Huang, Y.H., Wu, T.J., Lin, Y.C., Chen, S.H., and Yu, J. (2006). Identification of pulmonary Oct-4+ stem/progenitor cells and demonstration of their susceptibility to SARS coronavirus (SARS-CoV) infection in vitro. Proc Natl Acad Sci U S A 103, 9530-9535. Lotze, M.T., and Tracey, K.J. (2005). High-mobility group box 1 protein (HMGB1): nuclear weapon in the immune arsenal. Nat Rev Immunol 5, 331-342. Maher, J.A., and DeStefano, J. (2004). The ferret: an animal model to study influenza virus. Lab Anim (NY) 33, 50-53. Mandavilli, A. (2004). Immune response to SARS sets up puzzling paradox. Nat Med 10, 1268. Matrosovich, M.N., Matrosovich, T.Y., Gray, T., Roberts, N.A., and Klenk, H.D. (2004). Human and avian influenza viruses target different cell types in cultures of human airway epithelium. Proc Natl Acad Sci U S A 101, 4620-4624. Morrison, G.M., and Brickman, J.M. (2006). Conserved roles for Oct4 homologues in maintaining multipotency during early vertebrate development. Development 133, 2011-2022. Nicholls, J.M., Chan, M.C., Chan, W.Y., Wong, H.K., Cheung, C.Y., Kwong, D.L., Wong, M.P., Chui, W.H., Poon, L.L., Tsao, S.W., et al. (2007). Tropism of avian influenza A (H5N1) in the upper and lower respiratory tract. Nat Med 13, 147-149. Okamoto, K., Okazawa, H., Okuda, A., Sakai, M., Muramatsu, M., and Hamada, H. (1990). A novel octamer binding transcription factor is differentially expressed in mouse embryonic cells. Cell 60, 461-472. Osterhaus, A.D., Rimmelzwaan, G.F., Martina, B.E., Bestebroer, T.M., and Fouchier, R.A. (2000). Influenza B virus in seals. Science 288, 1051-1053. Pan, G.J., Chang, Z.Y., Scholer, H.R., and Pei, D. (2002). Stem cell pluripotency and transcription factor Oct4. Cell Res 12, 321-329. Park, J.S., Arcaroli, J., Yum, H.K., Yang, H., Wang, H., Yang, K.Y., Choe, K.H., Strassheim, D., Pitts, T.M., Tracey, K.J., et al. (2003). Activation of gene expression in human neutrophils by high mobility group box 1 protein. Am J Physiol Cell Physiol 284, C870-879. Park, J.S., Svetkauskaite, D., He, Q., Kim, J.Y., Strassheim, D., Ishizaka, A., and Abraham, E. (2004). Involvement of toll-like receptors 2 and 4 in cellular activation by high mobility group box 1 protein. J Biol Chem 279, 7370-7377. Pau, M.G., Ophorst, C., Koldijk, M.H., Schouten, G., Mehtali, M., and Uytdehaag, F. (2001). The human cell line PER.C6 provides a new manufacturing system for the production of influenza vaccines. Vaccine 19, 2716-2721. Peper, R.L., and Van Campen, H. (1995). Tumor necrosis factor as a mediator of inflammation in influenza A viral pneumonia. Microb Pathog 19, 175-183. Petricciani, J.C. (1991). Regulatory philosophy and acceptability of cells for the production of biologicals. Dev Biol Stand 75, 9-15. Potter, C.W. (2001). A history of influenza. J Appl Microbiol 91, 572-579. Rendon-Mitchell, B., Ochani, M., Li, J., Han, J., Wang, H., Yang, H., Susarla, S., Czura, C., Mitchell, R.A., Chen, G., et al. (2003). IFN-gamma induces high mobility group box 1 protein release partly through a TNF-dependent mechanism. J Immunol 170, 3890-3897. Rodda, D.J., Chew, J.L., Lim, L.H., Loh, Y.H., Wang, B., Ng, H.H., and Robson, P. (2005). Transcriptional regulation of nanog by OCT4 and SOX2. J Biol Chem 280, 24731-24737. Rosner, M.H., Vigano, M.A., Ozato, K., Timmons, P.M., Poirier, F., Rigby, P.W., and Staudt, L.M. (1990). A POU-domain transcription factor in early stem cells and germ cells of the mammalian embryo. Nature 345, 686-692. Scaffidi, P., Misteli, T., and Bianchi, M.E. (2002). Release of chromatin protein HMGB1 by necrotic cells triggers inflammation. Nature 418, 191-195. Schaumburg, C., O'Hara, B.A., Lane, T., and Atwood, W.J. (2008). Human embryonic stem cell-derived oligodendrocyte progenitor cells express the serotonin receptor and are susceptible to JC Virus infection. J Virol. Seo, S.H., Goloubeva, O., Webby, R., and Webster, R.G. (2001). Characterization of a porcine lung epithelial cell line suitable for influenza virus studies. J Virol 75, 9517-9525. Shay, J.W., and Wright, W.E. (1989). Quantitation of the frequency of immortalization of normal human diploid fibroblasts by SV40 large T-antigen. Exp Cell Res 184, 109-118. Shirasawa, M., Fujiwara, N., Hirabayashi, S., Ohno, H., Iida, J., Makita, K., and Hata, Y. (2004). Receptor for advanced glycation end-products is a marker of type I lung alveolar cells. Genes Cells 9, 165-174. Skoner, D.P., Gentile, D.A., Patel, A., and Doyle, W.J. (1999). Evidence for cytokine mediation of disease expression in adults experimentally infected with influenza A virus. J Infect Dis 180, 10-14. Stros, M., Ozaki, T., Bacikova, A., Kageyama, H., and Nakagawara, A. (2002). HMGB1 and HMGB2 cell-specifically down-regulate the p53- and p73-dependent sequence-specific transactivation from the human Bax gene promoter. J Biol Chem 277, 7157-7164. Thomas, J.O. (2001). HMG1 and 2: architectural DNA-binding proteins. Biochem Soc Trans 29, 395-401. Ueno, H., Matsuda, T., Hashimoto, S., Amaya, F., Kitamura, Y., Tanaka, M., Kobayashi, A., Maruyama, I., Yamada, S., Hasegawa, N., et al. (2004). Contributions of high mobility group box protein in experimental and clinical acute lung injury. Am J Respir Crit Care Med 170, 1310-1316. Vacheron, F., Rudent, A., Perin, S., Labarre, C., Quero, A.M., and Guenounou, M. (1990). Production of interleukin 1 and tumour necrosis factor activities in bronchoalveolar washings following infection of mice by influenza virus. J Gen Virol 71 ( Pt 2), 477-479. Van Reeth, K., Nauwynck, H., and Pensaert, M. (1998). Bronchoalveolar interferon-alpha, tumor necrosis factor-alpha, interleukin-1, and inflammation during acute influenza in pigs: a possible model for humans? J Infect Dis 177, 1076-1079. van Riel, D., Munster, V.J., de Wit, E., Rimmelzwaan, G.F., Fouchier, R.A., Osterhaus, A.D., and Kuiken, T. (2006). H5N1 Virus Attachment to Lower Respiratory Tract. Science 312, 399. Wang, H., Bloom, O., Zhang, M., Vishnubhakat, J.M., Ombrellino, M., Che, J., Frazier, A., Yang, H., Ivanova, S., Borovikova, L., et al. (1999a). HMG-1 as a late mediator of endotoxin lethality in mice. Science 285, 248-251. Wang, H., Vishnubhakat, J.M., Bloom, O., Zhang, M., Ombrellino, M., Sama, A., and Tracey, K.J. (1999b). Proinflammatory cytokines (tumor necrosis factor and interleukin 1) stimulate release of high mobility group protein-1 by pituicytes. Surgery 126, 389-392. Wang, S.Z., and Forsyth, K.D. (2000). The interaction of neutrophils with respiratory epithelial cells in viral infection. Respirology 5, 1-10. Ward, S.E., Loutfy, M.R., Blatt, L.M., Siminovitch, K.A., Chen, J., Hinek, A., Wolff, B., Pham, D.H., Deif, H., LaMere, E.A., et al. (2005). Dynamic changes in clinical features and cytokine/chemokine responses in SARS patients treated with interferon alfacon-1 plus corticosteroids. Antivir Ther 10, 263-275. Ware, L.B., and Matthay, M.A. (2000). The acute respiratory distress syndrome. N Engl J Med 342, 1334-1349. Wright, P.F., Webster, R.G. (2001). Orthomyxoviruses. In: Knipe, D.M., Howley, P.M.(Eds.), Fields Virology, fourth ed. Lippincott Williams & Wilkins, Philadelphia, pp. 1533-1579. World Health Organization, 2008. Yang, H., Wang, H., Czura, C.J., and Tracey, K.J. (2005). The cytokine activity of HMGB1. J Leukoc Biol 78, 1-8. Youil, R., Su, Q., Toner, T.J., Szymkowiak, C., Kwan, W.S., Rubin, B., Petrukhin, L., Kiseleva, I., Shaw, A.R., and DiStefano, D. (2004). Comparative study of influenza virus replication in Vero and MDCK cell lines. J Virol Methods 120, 23-31. Zaffuto, K.M., Estevez, C.N., and Afonso, C.L. (2008). Primary chicken tracheal cell culture system for the study of infection with avian respiratory viruses. Avian Pathol 37, 25-31. Zambon, M. (2007). Lessons from the 1918 influenza. Nat Biotechnol 25, 433-434. | |
| dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/40214 | - |
| dc.description.abstract | 在先前的經驗中,我們成功的在無血清(serum-free)的環境下培養出小鼠肺部上皮細胞。其中有一群細胞對SARS冠狀病毒有高度敏感性,且同時表現Oct-4、 SSEA-1、Sca-1及CCSP等幹細胞/肺部前驅細胞標記。這些細胞是否會被其他呼吸道病毒所感染目前還不清楚。在本研究中,我們發現這些細胞同樣能夠被H3N2、 H5N1等流感病毒感染。在細胞被H3N2病毒感染後,在肺部前驅細胞中的HMGB1蛋白會從細胞核移動到細胞質,並釋放出來,同時也偵測到發炎前驅細胞激素(pro-inflammatory cytokines)IL-1β, IL-6及TNF-α的表現增加。然而,我們也發現小鼠肺部上皮細胞並不會被 H5N2所感染。因此,我們嘗試去尋找更適合的細胞來做病毒研究。到目前為止,狗的腎細胞(MDCK)是最常使用的細胞,但為了能夠研究病毒感染時,宿主最真實的反應,我們利用同樣方法培養出雞的肺部上皮細胞。這些細胞能夠被H5N1、H5N2、H6N1和H7N7等病毒感染,且在培養過程中,觀察到有細胞群落(colony)的形成。進一步用PCR及Q-PCR來鑑定這些細胞的特性,我們發現這些細胞表現了鹼性磷酸酶(alkaline phosphatase)、PouV(chicken Oct-4 homologue)、SOX2等幹細胞的標記。同時細胞也表現E-cadherin、pulmonary surfactant protein等肺部上皮細胞的標記。因此,我們認為雞的肺部上皮細胞可以作為很好的病毒研究平台。另一方面,我們利用pRSV-TEX質體(含有SV40 T抗原)轉染入細胞,建立雞的肺部上皮細胞株。在繼代培養6代後,發現細胞與初代培養的細胞表現同樣的特性,且帶有SV40 T抗原。若持續維持及繼代有機會成為雞的肺部上皮細胞株。 | zh_TW |
| dc.description.abstract | We have reported a serum-free primary culture system to generate pulmonary epithelium stem/progenitor cells (Oct-4+/SSEA-1+/Sca-1+ and CCSP+) with surrounding stroma cells in mouse. These stem/progenitor cells were the target cells for SARS-CoV infection in primary cultures. However, the targeting potential of these cells for other lung infection-associated viruses remains unclear. We demonstrated the susceptible ability of these colony cells for influenza virus infection, such as H3N2 and H5N1.After H3N2 infection, HMGB1(High mobility group box 1 ) predominantly translocated to the cytoplasm in colony cells, and the pro-inflammatory cytokines like IL-1β, IL-6 TNF-α were up-regulated. However, H5N2 virus could not infect the cells at all. So far, the available cell line to study influenza virus infection was MDCK, which derived from kidney cells of dog. To examine that the pulmonary epithelium stem/progenitor cells were the first target for virus infection, and study the cross-species infection of influenza virus, we established both chicken and mouse pulmonary stem/progenitor cells and to compare their susceptibility of virus infection. The chicken lung epithelial cells were susceptible for H5N1, H5N2, H6N1 and H7N7 virus. Further experiments by RT-PCR and Q-PCR showed the expression of stem cell markers in the chicken lung cells, including alkaline phosphatase (cAP), cPouV, cSOX2, but not cNanog. The E-cadherin, pulmonary surfactant protein, and telomerase were also demonstrated to be expressed in cells. These observation suggested that the chicken pulmonary stem/progenitor cells are able to serve as a good cell model to study the influenza virus infection. Furthermore, we transfected the chicken pulmonary epithelial cells with plasmid pRSV-TEX to establish a cell line suitable for cell-based vaccine production. These cells were subcultured to passage 6, and expressed the same marker as primary cells. SV40 large T antigen also can be detected in passage 6 cells. | en |
| dc.description.provenance | Made available in DSpace on 2021-06-14T16:42:46Z (GMT). No. of bitstreams: 1 ntu-97-R95443017-1.pdf: 2867877 bytes, checksum: be3ea3aaa238055adf0937226b88610e (MD5) Previous issue date: 2008 | en |
| dc.description.tableofcontents | 縮寫表...................................................i
中文摘要................................................ii ABSTRACT...............................................iii 第一章 緒論..............................................1 1.1 A型流行性感冒病毒...................................2 1.1.1 A型流行性感冒之背景及流行現況.....................2 1.1.2 A型流行性感冒病毒之結構及基因體...................2 1.1.3 A型流行性感冒病毒之感染途徑及機制.................3 1.1.4 A型流行性感冒病毒感染所造成之宿主反應.............4 1.1.5 A型流行性感冒的治療與預防.........................5 1.1.6 流感疫苗的發展....................................6 1.2 研究動機............................................7 第二章 材料與實驗方法....................................8 2.1 實驗材料與藥品.......................................9 2.2 細胞株培養..........................................11 2.3 肺部上皮細胞的初級培養(primary culture)...........11 2.4 病毒培養、力價測定及感染............................13 2.5 鹼性磷酸酶(alkaline phosphatase)活性測定..........14 2.6 細胞免疫染色(Immunocytochemistry).................14 2.7 細胞上sialic acid-α2,3-galactose及sialic acid-α2,6-galactose的偵測.........................................15 2.8 反轉錄聚合酶連鎖反應................................15 2.9 同步定量聚合酶連鎖反應(Real-time PCR).............18 2.10 雞肺部上皮細胞株建立...............................20 第三章 實驗結果.........................................22 3.1 H3N2病毒感染小鼠肺部上皮細胞的情形..................24 3.2小鼠肺部上皮細胞sialic acid-α2,3-galactose及sialic acid-α2,6-galactose的分佈情形...............................24 3.3小鼠肺部上皮細胞受到H3N2病毒感染後發炎前驅細胞激素(proinflammatory cytokine)的表現......................24 3.4小鼠肺部上皮細胞受到H3N2病毒感染後HMGB1的表現........25 3.5 H5N1及H5N2病毒感染小鼠肺部上皮細胞的情形............25 3.6 雞肺部上皮細胞群落(colony)型態與形成..............26 3.7 H5N1及H5N2病毒感染雞肺部上皮細胞的情形..............26 3.8 H6N1及H7N7病毒感染雞肺部上皮細胞的情形..............26 3.9雞肺部上皮細胞sialic acid-α2,3-galactose及sialic acid-α2,6-galactose的分佈情形...............................27 3.10雞肺部上皮細胞特性之鑑定............................27 3.11雞肺部上皮細胞在不同培養天數下與幹細胞有關之mRNA表現......................................................27 3.12雞肺部上皮細胞株的建立..............................28 3.13 pRSV-TEX轉染並繼代培養之雞肺部上皮細胞之鑑定.......28 第四章 討論.............................................29 第五章 結論與未來展望...................................36 參考文獻................................................65 | |
| dc.language.iso | zh-TW | |
| dc.subject | 流感病毒 | zh_TW |
| dc.subject | 肺臟 | zh_TW |
| dc.subject | 幹細胞 | zh_TW |
| dc.subject | 細胞激素 | zh_TW |
| dc.subject | stem cell | en |
| dc.subject | cytokine | en |
| dc.subject | lung | en |
| dc.subject | influenza virus | en |
| dc.title | 流感病毒感染不同物種肺部幹細胞之機制及其鑑定 | zh_TW |
| dc.title | Identification of the Pulmonary Stem/Progenitor Cells From Different Species as the Target Cells for Influenza Virus Infection | en |
| dc.type | Thesis | |
| dc.date.schoolyear | 96-2 | |
| dc.description.degree | 碩士 | |
| dc.contributor.oralexamcommittee | 郭明德(Ming-Der Kuo),鄭明珠(Ming-Chu Cheng),黃彥華(Yen-Hua Huang) | |
| dc.subject.keyword | 流感病毒,肺臟,幹細胞,細胞激素, | zh_TW |
| dc.subject.keyword | influenza virus,lung,stem cell,cytokine, | en |
| dc.relation.page | 74 | |
| dc.rights.note | 有償授權 | |
| dc.date.accepted | 2008-08-01 | |
| dc.contributor.author-college | 醫學院 | zh_TW |
| dc.contributor.author-dept | 藥理學研究所 | zh_TW |
| 顯示於系所單位: | 藥理學科所 | |
文件中的檔案:
| 檔案 | 大小 | 格式 | |
|---|---|---|---|
| ntu-97-1.pdf 未授權公開取用 | 2.8 MB | Adobe PDF |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。
