Skip navigation

DSpace

機構典藏 DSpace 系統致力於保存各式數位資料(如:文字、圖片、PDF)並使其易於取用。

點此認識 DSpace
DSpace logo
English
中文
  • 瀏覽論文
    • 校院系所
    • 出版年
    • 作者
    • 標題
    • 關鍵字
    • 指導教授
  • 搜尋 TDR
  • 授權 Q&A
    • 我的頁面
    • 接受 E-mail 通知
    • 編輯個人資料
  1. NTU Theses and Dissertations Repository
  2. 醫學院
  3. 藥學專業學院
  4. 藥學系
請用此 Handle URI 來引用此文件: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/40204
完整後設資料紀錄
DC 欄位值語言
dc.contributor.advisor陳燕惠(Yen-Hui Chen 陳燕惠)
dc.contributor.authorYu-En Tienen
dc.contributor.author田宥恩zh_TW
dc.date.accessioned2021-06-14T16:42:36Z-
dc.date.available2013-09-11
dc.date.copyright2008-09-11
dc.date.issued2008
dc.date.submitted2008-07-31
dc.identifier.citation1. Scan Scandinavian Simvastatin Survival Study Group. Randomised trial of cholesterol lowering in 4444 patients with coronary heart disease:the Scandinavian Simvastatin Survival Study (4S). Lancet, 1994; 344:1383-1389.
2. The Long-Term Intervention with Pravastatin in Ischaemic Disease (LIPID) Study Group. Prevention of cardiovascular events and death with pravastatin in patients with coronary heart disease and a broad range of initial cholesterol levels. N Engl J Med, 1998; 339:1349-1357.
3. Shitara Y and Sugiyama Y. Pharmacokinetic and pharmacodynamic alterations of 3-hydroxy-3-methylglutaryl coenzyme A (HMG-CoA) reductase inhibitors: drug-drug interactions and interindividual differences in transporter and metabolic enzyme functions. Pharmacol Ther, 2006; 112(1):71-105.
4. Vermes A and Vermes I. Genetic Polymorphisms in Cytochrome P450 Enzymes. Am J Cardiovasc Drugs, 2004; 4(4):247-255.
5. Harper CR and Jacobson TA. The broad spectrum of statin myopathy: from myalgia to rhabdomyolysis. Curr Opin Lipidol, 2007; 18(4):401-408.
6. Goldstein JL and Brown MS. Regulation of the mevalonate pathway. Nature, 1990; 343(6257):425-430.
7. Armitage J. The safety of statins in clinical practice. Lancet, 2007; 370(9601):1781-90.
8. Endo A. The discovery and development of HMG-CoA reductase inhibitors. J Lipid Res, 1992; 33(11):1569-82.
9. Lennernäs H and Fager G. Pharmacodynamics and pharmacokinetics of the HMG-CoA reductase inhibitors. Similarities and differences. Clin Pharmacokinet, 1997; 32(5):403-25.
10. Mangravite LM, Thorn CF and Krauss RM. Clinical implications of pharmacogenomics of statin treatment. Pharmacogenomics J, 2006; 6(6):360-74.
11. Computerized clinical information from MICROMEDEX® healthcare series.(2008).
12. Cannon CP. Combination therapy in the management of mixed dyslipidaemia. J Intern Med, 2008; 263(4):353-65.
13. Hodel C. Myopathy and rhabdomyolysis with lipid-lowering drugs. Toxicol Lett, 2002; 128(1-3):159-68.
14. Pasternak RC et al. ACC/AHA/NHLBI Clinical Advisory on the Use and Safety of Statins. Stroke, 2002; 33(9):2337-41.
15. Thompson PD, Clarkson P and Karas RH. Statin-Associated Myopathy. JAMA, 2003; 289(13):1681-90.
16. Antons KA, Williams CD, Baker SK and Phillips PS. Clinical perspectives of statin-induced rhabdomyolysis. Am J Med, 2006; 119(5): 400-9.
17. Miller ML, Rosenson RS and Rind DM. Muscle injury associated with lipid lowering drugs. Official reprint from UpToDate®www.uptodate.com http://www.utdol.com/online/content/topic.do?topicKey=pri_card/2898&view.
18. Staffa JA, Chang J and Green L. Cerivastatin and reports of fatal rhabdomyolysis. N Engl J Med, 2002; 346(7):539-40.
19. Omar MA and Wilson JP. FDA adverse event reports on statin-associated rhabdomyolysis. Ann Pharmacother, 2002; 36:288-295.
20. Owczarek J et al. Lipid lowering drug-associated myopathy. Pharmacological Reports, 2005; 57:23-34.
21. Omar MA, Wilson JP and Cox TS. Rhabdomyolysis and HMG-CoA reductase inhibitors. Ann Pharmacother, 2001; 35:1096-1107.
22. Bramow S, Ott P, Thomsen NF, Bangert K, Tygstrup N and Dalhoff K. Cholestasis and regulation of genes related to drug metabolism and biliary transport in rat liver following treatment with cyclosporine A and sirolimus (rapamycin). Pharmacol Toxicol, 2001;89:133-139.
23. Olbricht C et al. Accumulation of lovastatin, but not pravastatin, in the blood of cyclosporine-treated kidney graft patients after multiple doses. Clin Pharmacol Ther, 1997; 62:311-321.
24. Shek A and Ferrill MJ. Statin-fibrate combination therapy. Ann Pharmacother, 2001;35:908-917.
25. Pierce LR, Wysowski DK and Gross TP. Myopathy and rhabdomyolysis associated with lovastatin-gemfibrozil combination therapy. JAMA, 1990; 264:71-75.
26. Prueksaritanont T et al. Glucuronidation of statins in animals and humans:a novel mechanism of statin lactonization. Drug Metab Dispos, 2002; 30:505-512.
27. Prueksaritanont T et al. Mechanistic studies on metabolic interactions between gemfibrozil and statins. J Pharmacol Exp Ther, 2002; 301(3):1042-51.
28. Goosen TC et al. Atorvastatin glucuronidation is minimally and nonselectively inhibited by the fibrates gemfibrozil, fenofibrate, and fenofibric acid. Drug Metab Dispos, 2007; 35(8):1315-24.
29. Prueksaritanont T et al. Effects of fibrates on metabolism of statins in human hepatocytes. Drug Metab Dispos, 2002; 30(11):1280-7.
30. Murdock DK et al. Long-term safety and efficacy of combination gemfibrozil and HMG-CoA reductase inhibitors for the treatment of mixed lipid disorders. Am Heart J, 1999; 138(1 pt 1):151-5.
31. Wen X et al. Gemfibrozil is a potent inhibitor of human cytochrome P450 2C9. Drug Metab Dispos, 2001; 29(11):1359-61.
32. Remick J et al. Fibrate therapy: an update. Cardiol Rev, 2008; 16(3):129-41.
33. Barter PJ and Rye KA. Is there a role for fibrates in the management of dyslipidemia in the metabolic syndrome? Arterioscler Thromb Vasc Biol, 2008; 28(1):39-46.
34. Mano Y, Usui T and Kamimura H. The UDP-glucuronosyltransferase 2B7 isozyme is responsible for gemfibrozil glucuronidation in the human liver. Drug Metab Dispos, 2007; 35(11):2040-4.
35. Graham DJ et al. Incidence of hospitalized rhabdomyolysis in patients treated with lipid-lowering drugs. JAMA, 2004; 292(21):2585-90.
36. Barker BJ, Goodenough RR and Falko JM. Fenofibrate monotherapy induced rhabdomyolysis. Diabetes Care, 2003; 26(8):2482-2483.
37. Layne RD, Sehbai AS and Stark LJ. Rhabdomyolysis and renal failure associated with gemfibrozil monotherapy. Ann Pharmacother, 2004;38(2):232-234.
38. Bagley WH, Yang H and Shah KH. Rhabdomyolysis. Intern Emerg Med, 2007; 2(3):210-8.
39. Warren JD, Blumbergs PC and Thompson PD. Rhabdomyolysis: a review. Muscle Nerve, 2002;25(3):332-347.
40. Liao JK. Safety and efficacy of statins in Asians. Am J Cardiol, 2007; 99(3):410-4.
41. Lee E et al. Rosuvastatin pharmacokinetics and pharmacogenetics in white and Asian subjects residing in the same environment. Clin Pharmacol Ther, 2005; 78(4):330-41.
42. Herman RJ. Drug interactions and the statins. CMAJ, 1999; 161:1281-1286.
43. Smals AG and Beex LV. Clofibrate-induced muscle damage with myoglobinuria and cardiomyopathy. N Engl J Med, 1977; 296(16):942.
44. Gharavi AG et al. Niacin-induced myopathy. Am J Cardiol, 1994; 74:841-842.
45. Olson MF, Ashworth A and Hall A. An essential role for Rho, Rac and Cdc42 GTPases in cell cycle progression through G1. Science, 1995; 269:1270-1272.
46. Owczarek J, Jasińska M and Orszulak-Michalak D. Drug-induced myopathies. An overview of the possible mechanisms. Pharmacol Rep, 2005; 57(1):23-34.
47. Neuvonen PJ, Niemi M and Backman JT. Drug interactions with lipid-lowering drugs: mechanisms and clinical relevance. Clin Pharmacol Ther, 2006; 80(6):565-81.
48. De Pinieux G et al. Lipid-lowering drugs and mitochondrial function: effects of HMG-CoA reductase inhibitors on serum ubiquinone and blood lactate/pyruvate ratio. Br J Clin Pharmacol, 1996; 42:333-337.
49. Mancinelli L, Cronin M and Sadée W. Pharmacogenomics: the promise of personalized medicine. AAPS PharmSci, 2000;2(1):E4.
50. Fox AL. The Relationship between Chemical Constitution and Taste. Proc Natl Acad Sci U S A, 1932;18(1):115-120.
51. Meyer UA. Pharmacogenetics - five decades of therapeutic lessons from genetic diversity. Nat Rev Genet, 2004;5(9):669-676.
52. Quinzii C, Naini A, Salviati L, Trevisson E, Navas P, Dimauro S and Hirano M. A mutation in para-hydroxybenzoate-polyprenyl transferase (COQ2) causes primary coenzyme Q10 deficiency. Am J Hum Genet, 2006; 78(2):345-9.
53. http://www.ncbi.nlm.nih.gov/SNP/.
54. Oh J, Ban MR, Miskie BA, Pollex RL and Hegele RA. Genetic determinants of statin intolerance. Lipids Health Dis, 2007;21(6):7.
55. Wang A et al. Ile118Val genetic polymorphism of CYP3A4 and its effects on lipid-lowering efficacy of simvastatin in Chinese hyperlipidemic patients. Eur J Pharmacol, 2005; 60:843-848.
56. Piergiorgio Z, Giuliana M, Laura C, Damiano B, Ilaria P and Cesare RS. Tolerability of statins is not linked to CYP450 polymorphisms, but reduced CYP2D6 metabolism improves cholesteraemic response to simvastatin and fluvastatin. Pharmacological Research, 2007; 55:310-317.
57. Mulder AB, van Lijf HJ, Bon MA, van den Bergh FA, Touw DJ, Neef C and Vermes I. Association of polymorphism in the cytochrome CYP2D6 and the efficacy and tolerability of simvastatin. Clin Pharmacol Ther, 2001; 70(6):546-551.
58. Frudakis TN, Thomas MJ, Ginjupalli SN, Handelin B, Gabriel R and Gomez HJ. CYP2D6*4 polymorphism is associated with statin-induced muscle effects. Pharmacogenet Genomics, 2007; 17(9):695-707.
59. Ishikawa C et al. A frameshift variant of CYP2C8 was identified in a patient who suffered from rhabdomyolysis after administration of cerivastatin. J Hum Genet, 2004;49(10):582-5.
60. Wilke RA, Moore JH and Burmester JK. Relative impact of CYP3A genotype and concomitant medication on the severity of atorvastatin-induced muscle damage. Pharmacogenet Genomics, 2005; 15(6):415-21.
61. Nishizato Y et al. Polymorphisms of OATP-C (SLC21A6) and OAT3 (SLC22A8) genes: consequences for pravastatin pharmacokinetics. Clin Pharmacol Ther, 2003; 73(6):554-65.
62. Niemi M et al. High plasma pravastatin concentrations are associated with single nucleotide polymorphisms and haplotypes of organic anion transporting polypeptide-C (OATP-C, SLCO1B1). Pharmacogenetics, 2004; 14(7):429-440.
63. Mwinyi J, Johne A, Bauer S, Roots I and Gerloff T. Evidence for inverse effects of OATP-C (SLC21A6) *5 and *1b haplotypes on pravastatin kinetics. Clin Pharmacol Ther, 2004; 75(5):415-21.
64. Morimoto K et al. OATP-C (OATP1B1)*15 IS ASSOCIATED WITH STATIN-INDUCED MYOPATHY IN HYPERCHOLESTEROLEMIC PATIENTS. CLINICAL PHARMACOLOGY&THERAPEUTICS, 2005; 77(2).
65. Morimoto K, Oishi T, Ueda S, Ueda M, Hosokawa M and Chiba K. A novel variant allele of OATP-C (SLCO1B1) found in a Japanese patient with pravastatin-induced myopathy. Drug Metab Pharmacokinet, 2004; 19(6):453-5.
66. Kivistö KT and Niemi M. Influence of drug transporter polymorphisms on pravastatin pharmacokinetics in humans. Pharm Res, 2007; 24(2):239-247.
67. Niemi M et al. Association of genetic polymorphism in ABCC2 with hepatic multidrug resistance-associated protein 2 expression and pravastatin pharmacokinetics. Pharmacogenet Genomics, 2006; 16(11):801-8.
68. Zhang W et al. Role of BCRP 421C>A polymorphism on rosuvastatin pharmacokinetics in healthy Chinese males. Clin Chim Acta, 2006; 373(1-2):99-103.
69. Fieqenbaum M et al. The role of common variants of ABCB1, CYP3A4, and CYP3A5 genes in lipid-lowering efficacy and safety of simvastatin treatment. Clin Pharmacol Ther, 2005;78(5):551-558.
70. Kirchheiner J, Kudlicz D, Meisel C, Bauer S, Meineke I, Roots I and Brockmöller J. Influence of CYP2C9 polymorphisms on the pharmacokinetics and cholesterol-lowering activity of (-)-3S,5R-fluvastatin and (+)-3R,5S-fluvastatin in healthy volunteers. Clin Pharmacol Ther, 2003; 74(2):186-94.
71. Yea SS, Lee SS, Kim WY, Liu KH, Kim H, Shon JH, Cha IJ and Shin JG. Genetic variations and haplotypes of UDP-glucuronosyltransferase 1A locus in a Korean population. Ther Drug Monit, 2008; 30(1):23-34.
72. Zhang A, Xing Q, Qin S, Du J, Wang L, Yu L, Li X, Xu L, Xu M, Feng G and He L. Intra-ethnic differences in genetic variants of the UGT-glucuronosyltransferase 1A1 gene in Chinese populations. Pharmacogenomics J, 2007; 7(5):333-8.
73. Saito K et al. Haplotype analysis of UDP-glucuronocyltransferase 2B7 gene (UGT2B7) polymorphisms in healthy Japanese subjects. Clin Biochem, 2006; 39(3):303-8.
74. Chasman DI, Posada D, Subrahmanyan L, Cook NR, Stanton VP Jr and Ridker PM. Pharmacogenetic study of statin therapy and cholesterol reduction. JAMA, 2004; 291(23):2821-7.
75. Wilke RA et al. Identifying genetic risk factors for serious adverse drug reactions: current progress and challenges. Nat Rev Drug Discov, 2007;6(11):904-16.
76. Schmitz G and Langmann T. Pharmacogenomics of cholesterol-lowering therapy. Vascul Pharmacol, 2006; 44(2):75-89.
77. Mangravite LM and Krauss RM. Pharmacogenomics of statin response. Curr Opin Lipidol, 2007; 18(4):409-14.
78. Schmitz G, Schmitz-Madry A and Ugocsai P. Pharmacogenetics and pharmacogenomics of cholesterol-lowering therapy. Curr Opin Lipidol, 2007; 18(2):164-73.
79. Thompson JF et al. An association study of 43 SNPs in 16 candidate genes with atorvastatin response. Pharmacogenomics J, 2005; 5(6):352-8.
80. Kajinami K, Masuya H, Hoshiba Y, Takeda K, Sato R, Okabayashi M and Schaefer EJ. Statin response and pharmacokinetics variants. Expert Opin Pharmacother, 2005; 6(8):1291-7.
81. http://www.sequenom.com/Genetic-Analysis/Applications/iPLEX-Genotyping/iPLEX-Overview.aspx.
82. Kajinami K et al. CYP3A4 genotypes and plasma lipoprotein levels before and after treatment with atorvastatin in primary hypercholesterolemia. Am J Cardiol, 2004; 93(1):104-7.
83. The SEARCH Collaborative Group. SLCO1B1 Variants and Statin-Induced Myopathy — A Genomewide Study. N Engl J Med, 2008; 359. Published at www.nejm.org July 23, 2008 (10.1056/NEJMoa0801936).
dc.identifier.urihttp://tdr.lib.ntu.edu.tw/jspui/handle/123456789/40204-
dc.description.abstract研究背景
史達汀 (statins),全名為3-hydroxy-3-methylglutaryl CoA (HMG CoA) reductase inhibitors,是近年來被認為有效治療心血管疾病的降血脂藥物之一類。目前上市的六種史達汀降血脂效果明顯,適用病人範圍也很廣。纖維酸衍生物(fibrates)是降血脂的第二線用藥,主要治療伴隨有代謝性症候群或第二型糖尿病的心血管疾病患者。纖維酸衍生物治療效果顯著,病人也有很好的耐受性。雖然史達汀與纖維酸衍生物都是降脂效果明顯,安全性很高的藥物,但發生機率小危險性卻極高的肌肉性不良反應,如:橫紋肌溶解等嚴重副作用,兩種藥物都有持續的案例發生。因為個體間的發病比率有很大的差異性,隨著基因體醫學及實驗技術的發展,陸續有文獻探討與脂質合成、藥物代謝相關的基因,其變異性與降血脂藥所引發嚴重副作用之間的關聯性。然而這些研究多著重於高加索人種,對於亞洲人種的相關資料仍不足。綜合以上所述,本研究將探討個體間嚴重藥物副作用的發生率與那些基因的多型性有關?這些基因型的變異與其他人種是否有不同?人種間臨床表現的差異是否能以這些基因型變異來解釋?
研究方法
本研究利用回溯性方法收集民國86年8月至民國96年8月期間,在台大醫院曾被診斷因服用單一史達汀或單一纖維酸衍生物或合併此兩種藥物而引發橫紋肌溶解等藥物不良反應之紀錄者,符合此納入條件的有34個案例,為發病組;另外收集在台大醫院曾經服用過史達汀但沒有肌肉性藥物不良反應的病患作為控制組。收集受試者之性別、年齡、用藥資料、檢驗生化值,並採集受試者靜脈血以進行特定SNP的基因型鑑定。本實驗所研究的基因包括COQ1、COQ2、COQ3、cytochrome P450 system (CYP)︰CYP3A、CYP2D6、CYP2C9、organic anion transporting polypeptide、bile acid transporter、multidrug resistance transporter、multidrug resistance-associated protein 2 (MRP2)、UDP-glucuronosyltransferase 1A、UGT2B7等21個基因,共有46個SNP,並進一步研究受試者因服用降血脂藥物而引發橫紋肌溶解之發生率與藥物基因體學之相關性。
研究結果
在符合發病組納入條件的34個案例中,有17位受試者同意參與本試驗;另外收集75位為控制組,共有92位受試者參與本試驗。全部受試者皆被成功檢測出特定SNP的基因型型別。受試者發病時的CK與AST、CKMB與AST、CKMB與ALT具有顯著的相關性,推測肝細胞損壞應是發生橫紋肌溶解而連帶引起的病理現象。本實驗發現3個SNP (rs6925344、rs10829053、rs4149080)與橫紋肌溶解發生有相關性, 各別在特定的遺傳模式下,其勝數比分別為3.56、4.73、3.05。實驗中也發現一組單套型與八個危險組合與橫紋肌溶解發生率具有顯著的相關性並可進ㄧ步求出羅吉斯機率函數。利用羅吉斯迴歸分析納入以上九個危險因子所得到的預測機率函數,其整體正確預測分類百分比為89.1%。
結論
本實驗提出ㄧ些臨床上可能有意義的基因多型性、不同SNP組成的單套型或組合,提供臨床醫師作為決定史達汀用藥種類與劑量上的依據。並藉由機率函數的建立,計算病人發生肌肉性藥物不良反應的機率,增加史達汀的用藥安全性。
zh_TW
dc.description.abstractBackground
3-hydroxy 3-methylglutaryl CoA (HMG CoA) reductase inhibitors﹐known as statins﹐are considered to be one of the most effective drug groups in reduction of cardiovascular risks in recent years. Six marketed statins﹐compared with other antihyperlipidemic drugs﹐are relatively effective in reduction of low-density lipoprotein. Statins are now recommended for a wide range of people at cardiovascular risk﹐including those with average and below-average lipid levels. Fibrates are the second-line medication for reduction in cardiovascular events in patients with metabolic syndrome or type 2 diabetes. The efficacy of fibrates is good and patients are generally well tolerated. Unfortunately﹐rare but severe muscle toxicity by usage of statins or fibrates﹐for example rhabdomyolysis, is occasionally reported. Risks caused by statins or fibrates vary depending on the individuals. As pharmacogenomics and experimental techniques develop﹐there are more and more studies concerning about the association between incidence of lipid-lowering agents-induced adverse reactions and genetic polymorphisms in enzymes related with cholesterol synthesis and drug metabolism. However﹐ most studies are focused on Caucasians﹐ data from Asian populations are insufficient. This study is aimed to search for genes possibly involved in severe adverse drug reactions and their genotype-phenotype relations.
Methods
The subjects with records of rhabdomyolysis upon statins or fibrates monotherapy or combined therapy were retrospectively collected in National Taiwan University Hospital from August 1997 to August 2007. Patients receiving statins without diagnosis of rhabdomyolysis were as controls. Data were collected, including sex, age, records of drug use and serological testing values. 10-ml EDTA-containing blood samples were drawn and DNAs were extracted for genotyping of SNPs. Genes studied in this study included COQ1, COQ2, COQ3﹐ cytochrome P450 system (CYP)︰CYP3A﹐ CYP2D6﹐ CYP2C9﹐ organic anion transporting polypeptide﹐ bile acid transporter﹐ multidrug resistance transporter﹐multidrug resistance-associated protein 2 (MRP2)﹐ UDP – glucuronosyltransferase (UGT) 1A and UGT2B7. There are 46 SNPs in 21 genes in total in this study. Analysis was focused on the association between incidence of rhabdomyolysis and genetic variations in patients receiving statins or fibrates.
Results
Thirty-four cases were collected with diagnosis of rhabdomyolysis from the database. Among them, 17 patients were enrolled as the disease group in this study. Seventy-five patients without diagnosis of rhabdomyolysis were as the control group. There were 92 patients in total enrolled in this study. All of them have been genotyped successfully. Levels of CK-AST, CKMB-AST and CKMB-ALT are highly associated with patients suffering from rhabdomyolysis, indicating hepatocyte damage coexists with rhabdomyolysis. Three SNPs (rs6925344, rs10829053, rs4149080) are correlated with the incidence of rhabdomyolysis. The odds ratios are 3.56, 4.73 and 3.05, respectively, in specific genetic models. One haplotype and eight risk combinations have association with incidence of rhabdomyolysis in logistic regression models. Nine risk predictors are subjected to logistic regression analysis to receive an accuracy rate of 89.1%.
Conclusions
Results could provide some genetic markers in use of statins or fibrates to prevent from rhabdomyolysis. By constructing a regression model, we can predict the incidence of statin- or fibrate-induced myopathy and thereby choose a right lipid-lowering agent to the right patient to improve drug safety.
en
dc.description.provenanceMade available in DSpace on 2021-06-14T16:42:36Z (GMT). No. of bitstreams: 1
ntu-97-R95423012-1.pdf: 1852729 bytes, checksum: 3ff96f38ad02c6781a344dff2b01255b (MD5)
Previous issue date: 2008
en
dc.description.tableofcontents中文摘要…………………………………………………………………………… i
英文摘要…………………………………………………………………………… iii
目錄 …………………………………………………………………………… v
圖目錄 …………………………………………………………………………… vi
表目錄 ………………………………………………………………………… vii
第一章 文獻探討…………………………………………………………………1
第一節 史達汀…………………………………………………………………1
第二節 纖維酸衍生物…………………………………………………………3
第三節 橫紋肌溶解……………………………………………………………4
第四節 基因多型性……………………………………………………………5
第五節 研究動機………………………………………………………………8
第二章 研究方法…………………………………………………………………20
第一節 實驗設計與流程……………………………………………………20
第二節 血液檢體處理………………………………………………………21
第三節 基因型鑑定…………………………………………………………22
第四節 統計分析方法………………………………………………………23
第三章 結果 ……………………………………………………………………25
第一節 受試者的基本資料…………………………………………………25
第二節 受試者生化值分析…………………………………………………25
第三節 受試者基因型分析…………………………………………………26
第四節 病例對照相關研究…………………………………………………26
第四章 討論………………………………………………………………………50
第五章 參考文獻…………………………………………………………………57
附錄一 受試者同意書……………………………………………………………65

圖目錄
圖1-1 膽固醇的生合成途徑………………………………………………………9
圖1-2 HMG-CoA與各類史達汀的化學結構式………………………………10
圖1-3 負責代謝與清除史達汀的酵素……….…………………………………11
圖1-4 史達汀代謝途徑中的glucuronidation pathway…………………………12
圖1-5 降血脂藥引發橫紋肌溶解的可能致病機轉…….………………………13
圖2-1 iPLEX™基因型鑑定分析之步驟圖解…………………………………24
圖3-1 發病組年齡分佈圖………………………………………………………30
圖3-2 控制組年齡分佈圖………………………………………………………30
圖3-3 發病組受試者肌酸激酶箱型分布圖……………………………………31
圖3-4 發病組受試者的肌肉酵素與肝功能指數的迴歸分析…………………32

表目錄
表1-1 各種史達汀的藥物動力學特性…………………………………………14
表1-2可與史達汀交互作用的藥物………………………………………………15
表1-3目前已被報告與史達汀引發肌肉性病變有關的基因…………………16
表1-4本實驗所選定的單核苷酸基因多型性……………………………………17
表3-1納入分析受試者之基本資料………………………………………………33
表3-2發病組受試者之發病症狀與病史…………………………………………34
表3-3發病組受試者之生化值資料………………………………………………35
表3-4發病組受試者肌肉酵素與肝功能指數的相關性分析結果………………35
表3-5本研究中各SNP的對偶基因與基因型分布頻率…………………………36
表3-6單一SNP與疾病發生的相關程度…………………………………………43
表3-7利用卡方檢定分析不同單套型與疾病之相關性…………………………43
表3-8不同基因中兩個SNP組成的組合與疾病之相關性………………………44
表3-9九組組合的羅吉斯迴歸分析摘要表以及機率函數………………………45
表3-10結合九組危險組合的羅吉斯迴歸分析摘要表以及機率函數…………48
表3-11結合九組危險組合所得機率函數之預測值……………………………49
dc.language.isozh-TW
dc.subject史達汀zh_TW
dc.subject單一核&#33527zh_TW
dc.subject纖維酸衍生物zh_TW
dc.subject酸變異zh_TW
dc.subject橫紋肌溶解zh_TW
dc.subjectstatinsen
dc.subjectsingle nucleotide polymorphismen
dc.subjectfibratesen
dc.subjectrhabdomyolysisen
dc.title降血脂藥引發橫紋肌溶解與基因多型性之研究zh_TW
dc.titleThe Association of Genetic Polymorphisms with Lipid Lowering Agents-induced Rhabdomyolysisen
dc.typeThesis
dc.date.schoolyear96-2
dc.description.degree碩士
dc.contributor.oralexamcommittee李文宗(Wen-Tzung Li 李文宗),王宗道(Tzung-Dau Wang 王宗道)
dc.subject.keyword橫紋肌溶解,史達汀,纖維酸衍生物,單一核&#33527,酸變異,zh_TW
dc.subject.keywordrhabdomyolysis,statins,fibrates,single nucleotide polymorphism,en
dc.relation.page69
dc.rights.note有償授權
dc.date.accepted2008-08-01
dc.contributor.author-college醫學院zh_TW
dc.contributor.author-dept藥學研究所zh_TW
顯示於系所單位:藥學系

文件中的檔案:
檔案 大小格式 
ntu-97-1.pdf
  未授權公開取用
1.81 MBAdobe PDF
顯示文件簡單紀錄


系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved