請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/40201完整後設資料紀錄
| DC 欄位 | 值 | 語言 |
|---|---|---|
| dc.contributor.advisor | 范正成(Jen-Chen Fan) | |
| dc.contributor.author | Kuo-Lang Sze | en |
| dc.contributor.author | 施國琅 | zh_TW |
| dc.date.accessioned | 2021-06-14T16:42:33Z | - |
| dc.date.available | 2008-08-08 | |
| dc.date.copyright | 2008-08-08 | |
| dc.date.issued | 2008 | |
| dc.date.submitted | 2008-07-31 | |
| dc.identifier.citation | 1. 毛子文 (2004),現場低壓灌漿試驗與灌漿土壤動靜態工程特性之初步研究,碩士論文,雲林科技大學營建工程研究所。
2. 米倉亮三、廖洪鈞、林英堂 (2002),“恆久性灌漿材料與其灌漿砂土之動態行為“地工技術,第93期5-12頁。 3. 地基處理手冊編寫委員會(1988),地基礎理手冊,中國建築工業出版社。 4. 林任峰 (2005),“超細水泥漿液滲透灌漿模式之研究”,碩士論文,台北科技大學土木與防災研究所。 5. 徐名顯 (2007),”爐石添加量對超微粒水泥漿體基礎物理性質影響之研究”,碩士論文,國立臺灣大學生物環境系統工程研究所。 6. 倪至寬、林任峰 (2006),“超細水泥漿液滲透灌漿之研究”, 臺北科技大學學報, 95年09號。 7. 陳信州 (1994),”水泥混凝土添加爐石提高早期強度策略之研究”,碩士論文,國立中央大學土木工程研究所。 8. 陳弘益 (2001),”灌漿工法改良液化地盤之研究”,碩士論文,國立臺北科技大學土木與防災研究所。 9. 陳嘉裕 (1999),”細粒料含量對砂土液化潛能之影響研究”,碩士論文,國立成功大學土木工程研究所。 10. 島田俊介(1972~1974),現場技術者ソギバソ藥液注入工法,ヵЛЗ卜よヱЁ-ъЛ,Vol.10,No.1~Vol.12,No.10。 11. 袛園清定(1979),基礎土壤穩祇定施工法,推進工程有限公司。 12. 黃亦敏、李維峰、林平全、張東源 (2002),“高細度地質改良材料研發與案例應用分析“地工技術 ,第93期13-22頁。 13. 黃兆龍 (2003),高性能混凝土理論與實務,台北:詹氏書局。 14. 黃建霖、范正成、楊文仁 (2007),”超微細水泥灌漿材料於砂性粉土層之應用“地工技術 ,第111期71-82頁。 15. 游起亨、廖瑞堂 (1980),”最小及最大乾土單位重之試驗規範研究比較”,碩士論文,國立成功大學土木工程研究所。 16. 傅國柱 (2002),“還原碴取代部份水泥之研究 ”,碩士論文,中央大學土木工程研究所。 17. 張亨萃(2005),砂土地盤皂土液灌漿的室內模型試驗,碩士論文,國立臺北科技大學土木與防災研究所。 18. 簡璿宸 (2002),低壓灌漿工法之研究,碩士論文,國立臺北科技大學土木與防災研究所。 19. Akbulut, S., and A. Saglamer. (2002), “Estimating the groutability of granular soil: a new approach”, Tunnelling and Underground Space Technology ,v 17,n 4, pp. 371-380. 20. ASTM D2166-66 (1998). “Standard Test Method for Permeability of Unconfined Compressive Strength of cohesive Soil,” Annual Book of ASTM Specification, Philadelphia, PA. 21. ASTM D4253-83 (1993). “Standard Test Methods for Maximum Index Density and Unit Weight of Soils Using a Vibratory Table,” Annual Book of ASTM Specification, Philadelphia, PA.iladelphia, PA. 22. ASTM D4254-91 (1991). “Minimum Index Density and Unit Weight of Soils and Calculation of Relative Density,” Annual Book of ASTM Specification, Philadelphia, PA. 23. ASTM D854-58. “Determination of Specific Gravity of Soils,” Annual Book of ASTM Specification, Philadelphia, PA. 24. Breitsprecher, G., and P. S. Toth. (2003) “Underpinning of a pier by microfine cement grouting and compensation grouting”Geotechnical Special Publication, n 120 I, 2003, pp. 740-751 25. Coduto, D. P. (1998), “Engineering-Principle and Practices,” Prentice Hall Inc., New Jersey. 26. Chengzhi, Z., W. Aiqin, and T. Mingshu. (1996), “The Filling Role of PozzolanicMaterial”, Cement and Concrete Research, Vol. 26, No. 6, pp.943-947. 27. Engineer Manual (1995). “Engineering and Design-CHEMICAL GROUTING,” Washington, DC: U.S. Army Corps of Engineers. 28. Helal, M., and R. J. Krizek. (1992),“Preferred orientation of pore structure in cement-grouted sand ” Grouting, Soil Improvement and Geosynthetics ASCE, Geotechnical Special Publication No. 30,pp. 526-540. 29. Henn, R. W. (1996). ” Practical guide to grouting of underground structures,” New York: ASCE Press, pp. 6-49. 30. Hu, S., X. Guan, and Q. Ding. (2002),“Research on optimizing components of microfine high-performance composite cementitious materals” Cement and concrete Research,Vol 32, pp. 1871-1875 31. Ilker, B. T., and B. E. Veysel. (2003),“lnfuence of concrete properties on bleeding and evaporation” Cement and Concrete Research, v 34 , n 2, pp.275-281. 32. Khayat, K. H., and M. Gaudreault. (1997), “High-performance cement grout for underwater crack injection”, Can. J. Civ. Eng. Vol. 24:405-418. 33. Krizek, R. J., H. J. Liao, and R. H. Borden. (1992),“Mechanical Properties of Microfine Cement/Sodium Silicate Grouted sand ” Grouting, Soil Improvement and Geosynthetics ASCE, Geotechnical Special Publication No. 30, pp. 688-699. 34. Liao, H. J., R. H. Borden, and R. J. Krizek. (1992),“Microfine Cement/Sodium Silicate Grout” Grouting, Soil Improvement and Geosynthetics ASCE, Geotechnical Special Publication No. 30, pp. 676-687. 35. Lois, G. S., and R. J. Krizek. (2006),“ Hydrocarbon Residuals and Containment in Microfine Cement Grouted Sand” Journal of Materials in Civil Engineering, Vol18, No2, ASCE/MARCH/APRIL 2006.pp. 214-228 36. Lois, G. S., and R. J. Krizek. (1992),“Effects of mixing on rheological properties of microfine cement grout” Grouting, Soil Improvement and Geosynthetics ASCE, Geotechnical Special Publication No. 30, pp. 512-525. 37. Maag, E. (1938). Ueber die Verfestigung und Dictung des Bangrundes (injektionen). Course on soil mech., Zurich Tech. School. 38. Markou, I. N., and D. K. Atmatzidis. (2003), “Mechanical Behavior of a Pulverized Fly Ash Grouted Sand”, Geotechnical Testing Journal, Vol.26, No.4, pp.1-11. 39. Markou, I. N., and D. K. Atmatzidis. (2002), “Properties and Performance of a Pulverized Fly Ash Grout”, Journal of Geotechnical And Geoenvironmental Engineering,Vol.128, No.8, pp.682-691. 40. Melander, L. (1993),“Design and Constrution Problem”, Geotechinal Special Publication, No.30, Vol.2. 41. Mori A., M. Tamura, H. Shibata, and H. Hayashi. (1992). “Some factors related to injected shape in grouting,” ASCE Proc. Conf. Grouting, Soil Improvement and Geosynthetic, Geotechnical Special Publication No. 30, New Orleans, pp. 313-324. 42. Ozgurel, H. G., and C. Vipulanandan. (2005), “Effect of Grain Size and Distribution on Permeability and Mechanical Behavior of Acrylamide Grouted Sand”, Journal of Geotechnical And Geoenvironmental Engineering ASCE, Vol.131, No.12, pp.1457-1465. 43. Paoli, D., B. Bosco, R. Granata, and D. A. Bruce. (1992),“Fundamental Observations on Cement Based Grouts (2) : Microfine Cements and The Cemill Process” Grouting, Soil Improvement and Geosynthetics ASCE, Geotechnical Special Publication No. 30,pp. 486-499. 44. Perret, S., D. Palardy, and G. Ballivy. (2000),“Rheological Behavior and Setting Time of Microfine Cement-Based Grouts”ACI MATERIALS JOURNAL/ July-August 2000, pp. 472-477 45. Perret, S., K.H. Khayat, E. Gagnon, and J. Rhazi. (2002),“ Repair of 130-Year Old Masonry Bridge using High-Performance Cement Grout” JOURNAL OF BRIDGE ENGINEERING, Vol7 No.1, JANUARY 1, 2002. ASCE, ISSN, pp 31-38 46. Roy, H. B., D. H. Robert, and J. Ilan. (1992), “Grouting soil improvement and geosynthetics ”, Geotechinal Special Publication, No.30, Vol.1. 47. Schwarz, L. G. and M. Chirumalla. (2007), “Effect of injection pressure on permeability and strength of microfine cement grouted sand” , Grouting for Ground Improvement: GSP 168 Geo- Denver 2007: New Peaks in Geotechniques. 48. Seed, H., and W. H. Peacock. (1970), “Earthquake Engineering Research Center”. 49. Schwarz, L. G., and R. J. Krizek. (2000) “Evolving morphology of early age microfine cement grout”Geotechnical Special Publication, n 104, 2000, pp. 181-199 50. Terzaghi, K., and R. B. Peck. (1948), “Soil Mechanics in Engineering Practice”, 1st edition, John Wiley & Sons, Inc,m N.Y. 51. Thiessen Team (2000)“ The Development of Colloidal Mixer Based CRF Systems ” Reschke ,A.E. The Development of Colloidal Mixer Based CRF Systems (present at MINEFILL`98, Brisbane,Australia,1988)Rev. Aug. 2000. 52. Topcu, I. B., and V. B. Elgun. (2004), “Influence of concrete properties on bleeding and evaporation” , Cement and Concrete Research 34:275-281. 53. Zebovitz, S., R. J. Krizek, and D. K. Atmatzidis. (1989), “Injection of Fine Sands with Very Fine Cement Grout” , Jounal Geotechnical Engineering, n12, pp.1717-1733. | |
| dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/40201 | - |
| dc.description.abstract | 本研究藉由自行設計的高速渦流攪拌機及氣壓式灌漿設備,以低壓滲透灌漿的方式,將超微粒水泥漿體灌注於兩種不同級配分佈之中、細砂的圓形砂柱試體(即渥太華砂編號250與403),探討不同水灰比情況下之超微粒水泥漿體,達到預定改良砂柱高度所需之灌注量與其流動的情形。由試驗結果發現,不同水灰比的漿體到達預定改良砂柱高度時,所需的灌注量介於1.16倍至1.63倍的孔隙體積,且水灰比越低,所需的灌注量越少,流動越慢。除此之外,亦發現這兩種不同級配分佈之砂柱試體,灌注任一水灰比的超微粒水泥漿體,皆有相近倍數孔隙體積的灌注量;且因中砂級配分佈之圓形砂柱試體孔隙較大,其流動性較好。
為評估灌漿試體的改良成效,本研究於圓形砂柱試體灌注養護齡期7天與28天後,進行不同灌注距離試體之孔隙率試驗與抗壓強度試驗。由試驗結果顯示,灌漿改良後之試體,水灰比越低,孔隙率越小,單壓強度越高。此外,亦發現這兩種不同級配分佈之砂柱試體,灌注任一水灰比的超微粒水泥漿體時,中砂級配分佈之圓形砂柱試體的單壓強度均相對較低;原因可能是其試體有較大的顆粒與孔隙粒徑,導致其單位體積內顆粒與漿體間之膠結表面積較少和其級配比較不良。再者,以高水灰比漿體改良之試體,此現象更為明顯,原因可能是漿體水灰比越高,析離越多,穩定性越差,膠結後與中砂級配分佈之圓形砂柱試體所遺留下的孔隙較大,使單壓強度相對更低。除此之外,灌注過程中,因低水灰比漿體之壓濾失水(filtration)現象較顯著,所以距灌注點越近的第一節試體,養護齡期7天時,其單壓強度較高;然而,於養護齡期28天時,因卜作嵐效應及水化反應,導致第二節試體有較高單壓強度。而孔隙率則距灌注點越近其孔隙率越小。 本研究亦針對水灰比2情況下,探討不同爐石添加百分比(即50%與70%)對灌漿過程的影響,其試驗結果顯示,同一灌漿條件之砂柱試體,達到預定改良量高度時其所需之灌注量相近,但爐石添加百分比越高,流動性越好,灌注時間越短。 | zh_TW |
| dc.description.abstract | In this study, microfine cement grout with different water-to-cement (w/c) ratios was injected using a low-pressure permeation grouting technique into sand columns composed of sands having two different grain-size distributions (namely, a medium grain-size sand and a fine sand, or more specifically, Ottawa sands Nos.250 and 403) to determine grout injection amounts needed to reach a predetermined height of the sand columns and study the fluidity of grout in the columns. The grout was prepared and injected with a high speed vortex colloidal mixer and pneumatic grouting equipment designed and fabricated for the study. The experiment results show that the necessary injection amounts of grout having different w/c ratios for reaching the predetermined height were 1.16 to 1.63 times the volume of pores in the sand columns, wherein the necessary injection amounts became smaller and grout fluidity became lower as the w/c ratio decreased. It is also found that, whatever the w/c ratio, the injection amounts for the sand columns having the two grain-size distributions were similar times the volume of pores. Moreover, since the sand columns of the medium grain-size sand had larger pores, grout fluidity was higher in such columns.
In order to evaluate the improvement of grouted samples, porosity and compressive strength were tested at different grouting distances within the samples on the seventh and 28th day after grouting. It is found that samples having a lower porosity and injected with a grout having a lower w/c ratio had higher compressive strength. Furthermore, regardless of the w/c ratio of the microfine cement grout, the sand columns composed of the medium grain-size sand showed relatively low compressive strength. This is probably because the particle and pore sizes in such columns were larger and therefore resulted in a relatively smaller cementing area between the particles and grout in a unit volume, and relatively poor grain-size distributions. This phenomenon became more apparent in sand columns injected with a high w/c ratio grout, probably because, as the w/c ratio of the grout rose, segregation increased and stability deteriorated, so that larger pores were left in the sand columns composed of the medium grain-size sand after cementing, which lowered the compressive strength still further. In addition, grout having a lower w/c ratio showed more significant filtration during grouting. As a result, the first sections of the samples which were closer to the injection point had higher uniaxial compressive strength on the seventh day. However, due to the pozzolanic reaction and hydration, the second sections of the samples exhibited higher uniaxial compressive strength on the 28th day. Besides, porosity lowered as the distance to the injection point decreased. This study also examined the effects of different slag contents (i.e., 50% and 70%) on grouting when the w/c ratio was 2. The experiment results show that, while the necessary injection amounts for reaching the predetermined height were similar for sand columns having the same grouting condition, grout fluidity was improved and the injection time shortened as the slag content increased. | en |
| dc.description.provenance | Made available in DSpace on 2021-06-14T16:42:33Z (GMT). No. of bitstreams: 1 ntu-97-R95622030-1.pdf: 5778731 bytes, checksum: ea115e9bd9a215a67d71d869cf4b56ef (MD5) Previous issue date: 2008 | en |
| dc.description.tableofcontents | 目錄
摘要 i Abstract ii 目錄 iv 圖目錄 vii 表目錄 xiii 第一章 研究動機與目的 1 1.1 研究動機 1 1.2 研究目的 3 第二章 文獻回顧 4 2.1 超微粒水泥之發展 4 2.2 相關材料基本性質及應用 4 2.3 研磨攪拌技術方面 8 2.4 配比成分影響 10 2.5 卜作嵐效應方面 11 2.6 灌漿工程 14 2.6.1 灌漿工法說明 14 2.6.2 滲透灌漿之原理 14 2.6.3 滲透灌漿之特性 19 2.6.4 灌漿材料的種類 20 2.6.5 灌漿材料的選擇 20 2.7 室內灌漿試驗 20 2.8 灌注漿體體積 26 第三章 研究方法 29 3.1 試驗材料 29 3.1.1 灌漿材料及性質 29 3.1.2 試驗砂土 33 3.1.2.1 試驗砂土基本性質試驗 33 3.2 超微粒水泥滲透灌漿模擬試驗 39 3.2.1滲透灌漿模擬試驗規劃 39 3.2.2 滲透灌漿模擬試驗設備 42 3.2.3 滲透灌漿模擬試驗程序 47 3.2.4滲透灌漿模擬試驗步驟 47 3.3試體改良評估 58 3.3.1酚酞指示劑檢測 58 3.3.2 抗壓強度試驗 58 3.3.3孔隙率試驗 61 第四章 結果與討論 64 4.1 砂柱試體重模 64 4.2 滲透灌漿模擬試驗 64 4.2.1 爐石添加百分比之影響 66 4.2.2 水灰比與灌注量 68 4.2.3水灰比與單位時間內灌注漿體之體積變化 68 4.2.4 水灰比與灌注時間 72 4.3 試體改良成效之成果 72 4.3.1 改良後試體之抗壓強度 74 4.3.2 改良後試體之孔隙率 80 4.4 與前人成果之比較 80 4.5 綜合比較 84 第五章 結論與建議 90 5.1 結論 90 5.2 後續建議 90 參考文獻 93 附錄 98 | |
| dc.language.iso | zh-TW | |
| dc.subject | 低壓滲透灌漿 | zh_TW |
| dc.subject | 高速渦流攪拌機 | zh_TW |
| dc.subject | 抗壓強度 | zh_TW |
| dc.subject | 孔隙率 | zh_TW |
| dc.subject | 超微粒水泥 | zh_TW |
| dc.subject | high speed vortex colloidal mixer | en |
| dc.subject | porosity and compressive strength. | en |
| dc.subject | microfine cement | en |
| dc.subject | low-pressure permeation grouting | en |
| dc.title | 超微粒水泥滲透灌漿與灌注量之研究 | zh_TW |
| dc.title | A Study on Permeation Grouting and Quantity of Injection with Microfine Cement Grout | en |
| dc.type | Thesis | |
| dc.date.schoolyear | 96-2 | |
| dc.description.degree | 碩士 | |
| dc.contributor.oralexamcommittee | 陳榮河(Rong-her Chen),王藝峰(Yi-Fung Wang),廖國偉(Kuo-Wei Liao) | |
| dc.subject.keyword | 高速渦流攪拌機,低壓滲透灌漿,超微粒水泥,孔隙率,抗壓強度, | zh_TW |
| dc.subject.keyword | high speed vortex colloidal mixer,low-pressure permeation grouting,microfine cement,porosity and compressive strength., | en |
| dc.relation.page | 97 | |
| dc.rights.note | 有償授權 | |
| dc.date.accepted | 2008-08-01 | |
| dc.contributor.author-college | 生物資源暨農學院 | zh_TW |
| dc.contributor.author-dept | 生物環境系統工程學研究所 | zh_TW |
| 顯示於系所單位: | 生物環境系統工程學系 | |
文件中的檔案:
| 檔案 | 大小 | 格式 | |
|---|---|---|---|
| ntu-97-1.pdf 未授權公開取用 | 5.64 MB | Adobe PDF |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。
