請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/40192
完整後設資料紀錄
DC 欄位 | 值 | 語言 |
---|---|---|
dc.contributor.advisor | 蘇國棟(Guo-Ding Su) | |
dc.contributor.author | Shi-Chien Kao | en |
dc.contributor.author | 高世建 | zh_TW |
dc.date.accessioned | 2021-06-14T16:42:25Z | - |
dc.date.available | 2011-08-08 | |
dc.date.copyright | 2008-08-08 | |
dc.date.issued | 2008 | |
dc.date.submitted | 2008-08-01 | |
dc.identifier.citation | 1.E. Ayoob, R. Grace, A. Steinfeld, A User-center Drowsy-Driver Detection and Warning System, 2003, Transportation, trucking, intelligent vehicle initiative.
2.L. Moncada, G. Giudice, F. Salvetti, E. Scarano, L. de Santoli, Chemical indoor air quality control, BIBINF Healthy Buildings 95, edited by M Maroni, proceedings of a conference held Milan, Italy, 10-14 September 1995, pp 773-779 3.G. Ruffini, S. Dunne, L. Fuentemilla, C. Grau, E. Farres, J. Marco-Pallares, P. C. P. Watts, S. R. P. Silva (01 2007). 'First human trials of a dry electrophysiology sensor using a carbon nanotube array interface.'. 4.H. Aurlien, I.O. Gjerde, J. H. Aarseth, B. Karlsen, H. Skeidsvoll, N. E. Gilhus (03 2004). 'EEG background activity described by a large computerized database.'. Clinical Neurophysiology 115 (3): 665-673. 5.National Highway Traffic Safety Administration. (n.d.) Retrieved July 9th, 2006, from Vehicle Safety Research. 6.W. A.McDonald, Hoffmann, E. R. (1980). “Review of Relationships Between Steering Wheel Reversal Rate and Driving Task Demand.” Human Factors, 22(6), 733-739. 7.D. de Waard, Steyvers, F. J. J. M., & Brookhuis, K. A. (2004). “How much visual road information is needed to drive safely and comfortably.” Safety Science, 42, 639-655. 8.G. Knappe, A. Keinath, K. Bengler “Driving simulator as an evaluation tool – assessment of the influence of field of wiew and secondary tasks on lane keeping and steering performance”, 9.J. D. Spengler and Samet, J.M. (1991). 'Indoor air pollution: A health perspective'. Johns Hopkins University Press, Baltimore. 10.M. Ezzati, and D. M. Kammen. 2002. 'The health impacts of exposure to indoor air pollution from solid fuels in developing countries: knowledge, gaps, and data needs.' Environmental Health Perspectives 110.11 (Nov 2002): 1057(12). 27 April 2007. 11.Ventilation for Acceptable Indoor Air Quality, ASHRAE Standard 62, 1989. 12.Y. Bang, D. Lee, etc. al., “Thin film micro carbon dioxide sensor using MEMS process”, Sensors and Actuators B, vol. 102, 2004: p20-26. 13.R. Carluccio, J. Stoemenos, et. Al., Structure of poly-Si films obtained by laser annealing, Thin Solid Films, vol. 296, 1997: p57-60. 14.P. Baeri, E. Rimini, Laser annealing of silicon, Materials Chem. and Phys., vol. 46, 1996: p169-177. 15.R. Ishihara, W. Yeh, T. Hattori, M.Matsumura, Effects of Light Pluse Duration on Excimer-Laser Crystallization Characteristics of Silicon Thin Film, Jpn. J. Appl. Phys., vol. 34, 1995: p1759-1764. 16.M. Lee, K. Park, M. Han, et. al., Effects of selective Si ion implantation on excimer laser annealing of dehydrogenated a-Si film, Journal of Non-Crystalline Solids, vol. 299-302, 2002: p715-720. 17.R. Carluccio, S.Cina, et. al., Structure of poly-Si films obtained by laser annealing, Thin Solid Films, vol. 296, 1997, p57-60. 18.Hazardous Gas Monitors, Chapter 5. Infrared Gas Sensors, p55-72. 19.Brian R. Kinkade, James T. Daly, and Edward A. Johnson, “MEMS-Enabled Intrinsically Safe Infrared Combustible Gas Sensors”, Ion Optics. 20.C. Wilp and R. Eggers, “Capacitive Measurement of the Relative Humidity in Supercritical Carbon Dioxide”, Journal of Supercritical Fluids,1995,8,71-78. 21.D. Mutschall, E. Obermeier, “A capacitive CO2 sensor with on-chip heating”, Sensors and Actuators B 24-25 (1995) 412-414. 22.Hanns-Erik Endres, Ralf Hartinger, Markus Schwaiger, Gerhard Gmelch, Mathias Roth, “A capacitive CO sensor system with suppression of the humidity interference”, Sensors and Actuators B 57 1999 83–87. 23.D. Kim, J. Yoon, H. Park, K. Kim, Fabrication and characteristics of CO2-gas sensor using Li2CO3-Li3PO4-Al2O3 electrolyte and LiMn2O4 reference electrode, Sensors and Actuators B, vol. 76, 2001: p594-599. 24.S. Yao, Y. Shimizu, N. Miura, N. Yamazoe, Solid Electrolyte CO2 Sensor Using Binary Carboate Electrode, Chem.Lett., 1990: p2033-2036 25.S. Yao, Y. Shimizu, N. Miura, et. al., Solid electrolyte carbon dioxide sensorusing sodium ionic conductor and lithium carbonate-based auxiliary phase, Appl.Phys. A, 57, 1993: p25-29 26.N. Miura, N. Yamazoe, Solid-state potentiometric CO2 sensors using anion conductor and metal carbonate, Sensors and Actuators B, vol.24-25, 1995: p260-265 27.S. Yao, Y. Shimizr, N. Miura, et. al., Solid electrolyte CO2 sensor using NASICON and Li-based binary carbonate electrode, Chem.Lett., 1991: p2069-2072 28.N, Miura, N. Yamazoe, Stabilized zironia based CO2 sensors combined with carbonate auxiliary phase, Chem.Lett, 1994: p393-396 29.K. Shimanoe, H. Kawate, N. Miura and N. Yamazoe, Interfacial structure of CO2 sensing devices using Li2CO3-CaCO3/NASICON junction, International Symposium on Electrochemistry of Ordered Interfaces, Sapporo, September 11-12, 1998. 30.J.-S.Lee,J.-H.Lee, S.Hong, Solid-state amperometric CO2 sensor using a sodium ion conductor, Journal of the European Ceramic Society, vol. 24, 2004: p1431-1434. 31.N. Miura, S. Yao, N. Yamazoe, etc. al., Solid-state potentiometric CO2 sensors using anion conductor and metal carbonate, Sensors and Actuators B, vol. 24-25, 1995: p260-265. 32.Yi Can Zhang, Miroru Kaneko, Kiyoshi Uchida, Junichiro Mizusaki, and Hiroaki Tagawac, “Solid Electrolyte CO2 Sensor with Lithium-Ion Conductor and Li Transition Metal Complex Oxide as Solid Reference Electrode”, Journal of The Electrochemical Society, 148 (8) H81-H84, 2001 33.Andrew Mills, Anne Lepre, Lorraine Wild, “Brath-by-breath measurement of carbon dioxie using a plastic film optical sensor”, Sensors and Actuators B, 1997, 38-39, 419-425. 34.Moncada Lo Giudice G, Salvetti F, Scarano E, de Santoli L, Chemical indoor air quality control, BIBINF Healthy Buildings 95, edited by M Maroni, proceedings of a conference held Milan, Italy, 10-14 September 1995, pp 773-779 35.Ventilation for Acceptable Indoor Air Quality, ASHRAE Standard 62, 1989. 36.Martin Chaplin and Christopher Bucke, “Enzyme Technology”, Cambridge University Press, 1990 37.A. Bard, L. Faulkner, Electrochemical Methods- Fundamentals and Applications. 38.Y. Yinbao, L. Chung-Chiun, “Development of a NASICON-based amperometric carbon dioxide sensor”, Sensors and Actuators B 62 2000 30–34 39.Z. Zhong-Bai, Liang-Dong Feng, Ya-Min Zhou, “Microamperometric solid- electrolyte CO2 gas sensors”, Sensors and Actuators B 76, p600-604 40.J. Ross Macdonald, “Impedance spectroscopy : emphasizing solid materials andsystems”. 41.J. Ross Macdonald and Evgenij Barsoukov, “Impedance Spectroscopy: Theory, Experiment, and Applications”, 2nd Edition, ISBN: 0-471-64749-7 42.Scully/Silverman/Kendig , 'Electrochemical Impedance'. 43.M. John and L. Frank, “Electrochemistry of Semiconductors Electronics: Processes and Devices”. 44.W. Jospeh, Analytical Electrochemistry 2d Ed 45.S.G. Kim, “Unanswered Question of Ideal Grain Growth: Grain Size Distribution”, Kunsan National University 46.H. Rautio, Olli Silven, 'Average Grain Size Determination using Mathematical Morphology and Texture Analysis' 47.D. W. Nicoletti, N. Bilgutay, B. Onaral, 'Power-Law Relationships Between the Dependence of Ultrasonic Attenuation on Wavelength and the Grain Size Distribution', Journal of the Acoustical Society of America, vol. 91, n.6, pp. 3278-3284, 1992. 48.H. Jan ter, Relationship between dynamic recrystallization, grain size distribution and rheology, 2002 49.F., H.J., and M.F. Ashby, Deformation-mechanism maps: The plasticity and creep of metals and ceramics, 166 pp., Pergamon Press, Oxford, 1982. 50.W., Z.-C., and S. Ji, Diffusion creep of fine-grained garnetite: implications for the flow strength of subducting slabs, Geoph. Res. Lett., 27, 2333-2336, 2000. 51.“Characterization of Zirconia Engineering Ceramics by a.c. Impedance Spectroscopy”, E. P. Butler and N. Bonanos [1985] The, Mat. Sci. Eng. 71, 49–56. 52.O. Jaoul, Multicomponent diffusion and creep in olivine, J. Geoph. Res., 95, 17631-17642, 1990. 53.S. De Meer, and C.J. Spiers, Diffusive properties of fluid-filled grain boundaries measured electrically during active pressure solution, Earth Planet. Sci. Lett., in press, 2002. 54.E. P. Butler and N. Bonanos, “Characterization of Zirconia Engineering Ceramics by a.c. Impedance Spectroscopy”, [1985] The, Mat. Sci. Eng. 71, 49–56. 55.K. Holub, G. Tessari, and P. Delahay [1967] Electrode Impedance without a priori Separation of Double-Layer Charging and Faradaic Process, J. Phys. Chem. 71, 2612–2618. 56.R. L. Birke, “Operational Admittance of an Electrode Process where an a priori Dependence of Rate Constant on Potential Is Not Assumed”, 1971, J. Electroanal. Chem. 33, 201–207. 57.R. Carluccio, J. Stoemenos, “Microstructure of polycrystalline silicon films obtained by combined furnace and laser annealing” Appl. Phys. Lett. 66 (11), p1394-1396, 1995 58.R. Carluccio, S. Cina, etc., “Structure of poly-Si film obtain by laser annealing”, Thin Solid films 296, p57-60, 1997. 59.Tochiyuki Sameshima, etc., “Crystalline Properties of Laser Crystallized Silicon Films”, Jpn. J. Appl. Phys., vol. 36, pL1360-L1363, part 2, No.10, 1997. 60.Tochiyuki Sameshima, etc., “Electrical Properties of Pulsed Laser Crystallized Silicon Films”, Jpn. J. Appl. Phys., vol. 38, p1892-1897, part 1, No.4A, 1999. 61.Hiroyuki Kuriyama, etc., “Enlargement of poly-Si film grain size by ELA and its application to high-performance poly-Si thin film”, Jpn. J. Appl. Phys., vol. 30, p3700-3703, No.12B, 1991. 62.James S. Im and H. J. Kim, “Phase transformation mechanisms involved in excimer laser crystallization of amorphous silicon films”, Appt. Phys. Lett. 63 (14), p1969-1971, 1993 63.Akito Hara,etc., “High Performance Low Temperature Polycrystalline Silicon Thin Film Transistors on Non-alkaline Glass Produced Using Diode Pumped Solid State Continuous Wave Laser Lateral Crystallization”, Jpn. J. Appl. Phys., vol. 43, p1269-1276, No.4A, 2004. 64.John McHardy and Frank Ludwig, “Electrochemistry of semiconductors and electronics: Processes and devices”, 1992 65.W. Bogusz, F. Krok, W. Piszczatowski; 'Particular Features of Admittance Spectra of Polycrystalline NASICON Samples', Solid State Ionics, 119 (1999) 165 | |
dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/40192 | - |
dc.description.abstract | 化學感測器為微機電領域上的重要應用方向之一,而二氧化碳感測器對於室內空氣品質監控的應用日趨重要,電解質式二氧化碳感測器同時逐漸成為感測二氧化碳的主要方式之一。
本篇論文以微機電製程所製作之4 mm x 4 mm大小之感測器為主要研究元件,其包含碳酸鋰化合物 (Li2CO3) 為感測層、以及鈉超離子導體 (Na2Zr2Si2P3O12; NASICON) 為主要材料的電解質式二氧化碳感測器進行改良。在實驗過程中,設定一般之室內二氧化碳濃度以及對人體健康產生威脅之警戒濃度為主要的量測區間 (800~4500 ppm) ,以達到實用於室內二氧化碳濃度監控之目的。並以雷射退火法將感測器薄膜進行再結晶現象,透過改變鈉超離子導體之結晶邊界以及結晶大小,改善鈉超離子導體較為良好之導電性,因此獲得感測器解析度之改良效果。 在實驗結果中,將420 mJ之雷射能量、7雷射脈衝發數、1Hz脈衝頻率、第二次雷射退火之改良,以二氧化碳濃度區間1000~1700 ppm獲得39.62% 解析度之增加、以及1700~4500 ppm獲得103.38%解析度之增加為最佳實驗結果。並且在解析度獲得增加的同時,其數據之線性程度亦獲得增加。 | zh_TW |
dc.description.abstract | This paper demonstrates the results of improvement of the sensor using laser annealing. A solid-state carbon dioxide (CO2) gas sensor based on NASICON solid electrolyte (Na2Zr2Si2P3O12) with a Li2CO3 auxiliary layer is fabricated by micromachining processes and the die size is 4 mm × 4 mm. In order to observe the sensor performance in the indoor CO2 concentration, the range of measurement of the CO2 concentration will be controlled in 700~4500 ppm. Re-crystalline by the heating of laser annealing changes the grain size and grain boundary of the NASICON layer, and the resolution of the sensor will be improved. There is the highest change of the sensor resolution when laser energy was controlled by 420 mJ, 1 Hz repetition rate, and 7 pulse number at the second time laser annealing. 39.62% resolution change in 1000~1700 ppm and 103.38% change in 1700~4500 ppm CO2 concentration can be observed. | en |
dc.description.provenance | Made available in DSpace on 2021-06-14T16:42:25Z (GMT). No. of bitstreams: 1 ntu-97-R93941075-1.pdf: 2031520 bytes, checksum: 60bcceea5a10aebd714f11dfdda4da00 (MD5) Previous issue date: 2008 | en |
dc.description.tableofcontents | 論文摘要 I
Abstract II Contents III List of figures IV List of tables VI Chapter 1. Introduction 1 1.1 Fundamentals of monitoring air quality inside automobiles 1 1.2 Controlling IAQ by CO2 concentration 3 1.3 The way to improvement of solid electrolyte CO2 sensor 5 Chapter 2. Theory 9 2.1 MEMs and CO2 sensors 9 2.2 Information of electrolyte CO2 sensor 15 2.3 Fundamentals of potentiometric sensors 26 2.4 Grain theory and crystallization of NASICON 34 2.5 Laser annealing apply to electrolyte CO2 sensors 40 Chapter 3. Experiments 46 3.1 Fundamental 46 3.2 The detecting system 48 3.3 Determination of the detecting region 52 3.4 The linearity analysis 53 3.5 Laser annealing system 54 3.6 Direction of laser annealing 57 3.7 Estimation of the annealing temperature 58 Chapter 4. Results 64 4.1 Results for thermal annealing temperature (7 pulse number) 64 4.2 Confirmation of the experiment results at 7 pulse numbers 78 4.3 Annealing with lower temperature (lower pulse number) 80 Chapter 5. Discussions 85 5.1 Discussion of three times laser annealing at 7 pulse numbers 85 5.2 Discussion of laser annealing at lower pulse numbers 92 Chapter 6. Conclusion 93 Reference 95 | |
dc.language.iso | en | |
dc.title | 雷射退火法改善鈉離子導體電解式二氧化碳感測器之研究 | zh_TW |
dc.title | Effects of Laser Annealing on NASICON-based Electrolyte Sensors | en |
dc.type | Thesis | |
dc.date.schoolyear | 96-2 | |
dc.description.degree | 碩士 | |
dc.contributor.oralexamcommittee | 蔡睿哲(Jui-Che Tsai),黃建璋(Jian-Jang Huang) | |
dc.subject.keyword | 雷射退火法,準分子雷射,鈉離子導體,電解質式,二氧化碳感測器, | zh_TW |
dc.subject.keyword | Laser annealing,Excimer laser,NASICON,Solid electrolyte,CO2 sensors, | en |
dc.relation.page | 100 | |
dc.rights.note | 有償授權 | |
dc.date.accepted | 2008-08-01 | |
dc.contributor.author-college | 電機資訊學院 | zh_TW |
dc.contributor.author-dept | 光電工程學研究所 | zh_TW |
顯示於系所單位: | 光電工程學研究所 |
文件中的檔案:
檔案 | 大小 | 格式 | |
---|---|---|---|
ntu-97-1.pdf 目前未授權公開取用 | 1.98 MB | Adobe PDF |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。