請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/40191完整後設資料紀錄
| DC 欄位 | 值 | 語言 |
|---|---|---|
| dc.contributor.advisor | 陳水田 | |
| dc.contributor.author | Chia-Jung Chen | en |
| dc.contributor.author | 陳家榮 | zh_TW |
| dc.date.accessioned | 2021-06-14T16:42:24Z | - |
| dc.date.available | 2010-08-04 | |
| dc.date.copyright | 2008-08-04 | |
| dc.date.issued | 2008 | |
| dc.date.submitted | 2008-07-31 | |
| dc.identifier.citation | 1. Wu, S.H., Ryvarden, L., Chang, T.T., Antrodia cinnamomea ('niuchang-chih'), new combination of a medicinal fungus in Taiwan. Botanical bulletin of Academia Sinica 1997. 38: p. 273–275.
2. Tsai, Z.T., Liaw, S.L., The use and the effect of Ganoderma. Taichung, 1985: p. 116–117. 3. Song, T.Y. and G.C. Yen, Antioxidant properties of Antrodia camphorata in submerged culture. J Agric Food Chem, 2002. 50(11): p. 3322-7. 4. Hsiao, G., et al., Antioxidative and hepatoprotective effects of Antrodia camphorata extract. J Agric Food Chem, 2003. 51(11): p. 3302-8. 5. Chen, J.J., et al., Anti-inflammatory benzenoids from Antrodia camphorata. J Nat Prod, 2007. 70(6): p. 989-92. 6. Wang, G.J., et al., The vasorelaxation of Antrodia camphorata mycelia: involvement of endothelial Ca(2+)-NO-cGMP pathway. Life Sci, 2003. 73(21): p. 2769-83. 7. Shen, Y.C., et al., Anti-inflammatory activity of the extracts from mycelia of Antrodia camphorata cultured with water-soluble fractions from five different Cinnamomum species. FEMS Microbiol Lett, 2004. 231(1): p. 137-43. 8. Liu, J.J., et al., Antitumor effects of the partially purified polysaccharides from Antrodia camphorata and the mechanism of its action. Toxicol Appl Pharmacol, 2004. 201(2): p. 186-93. 9. Lee, I.H., et al., Antrodia camphorata polysaccharides exhibit anti-hepatitis B virus effects. FEMS Microbiol Lett, 2002. 209(1): p. 63-7. 10. Chen, C.C., et al., Neuroprotective diterpenes from the fruiting body of Antrodia camphorata. J Nat Prod, 2006. 69(4): p. 689-91. 11. Nakamura, N., et al., Five new maleic and succinic acid derivatives from the mycelium of Antrodia camphorata and their cytotoxic effects on LLC tumor cell line. J Nat Prod, 2004. 67(1): p. 46-8. 12. Lee, T.H., et al., A new cytotoxic agent from solid-state fermented mycelium of Antrodia camphorata. Planta Med, 2007. 73(13): p. 1412-5. 13. Chiang, H.C., Wu, D.P., Cherng, I.H. and Ueng, C.H., A sesquiterpene lactone, phenyl and biphenyl compounds from Antrodia cinnamomea. Phytochemistry, 1995. 39(3): p. 613-616. 14. Burt, S., Essential oils: their antibacterial properties and potential applications in foods--a review. Int J Food Microbiol, 2004. 94(3): p. 223-53. 15. Van de Braak, S.A.A.J., Leijten, G.C.J.J, Essential Oils and Oleoresins: A Survey in the Netherlands and other Major Markets in the European Union. CBI, Centre for the Promotion of Imports from Developing Countries, Rotterdam,, 1999: p. 116. 16. Bauer, K., Garbe, D. and Surburg, H, Common Fragrance and Flavor Materials: Preparation, Properties and Uses. Wiley-VCH, Weinheim, 2001: p. 293. 17. Sokmen, M., et al., In vitro antioxidant, antimicrobial, and antiviral activities of the essential oil and various extracts from herbal parts and callus cultures of Origanum acutidens. J Agric Food Chem, 2004. 52(11): p. 3309-12. 18. Oliva, B., et al., Antimycotic activity of Melaleuca alternifolia essential oil and its major components. Lett Appl Microbiol, 2003. 37(2): p. 185-7. 19. Juglal, S., R. Govinden, and B. Odhav, Spice oils for the control of co-occurring mycotoxin-producing fungi. J Food Prot, 2002. 65(4): p. 683-7. 20. Tabanca, N., et al., Chemical composition and antifungal activity of Arnica longifolia, Aster hesperius, and Chrysothamnus nauseosus essential oils. J Agric Food Chem, 2007. 55(21): p. 8430-5. 21. Gleiser, R.M. and J.A. Zygadlo, Insecticidal properties of essential oils from Lippia turbinata and Lippia polystachya (Verbenaceae) against Culex quinquefasciatus (Diptera: Culicidae). Parasitol Res, 2007. 101(5): p. 1349-54. 22. Solomakos, N., et al., The antimicrobial effect of thyme essential oil, nisin, and their combination against Listeria monocytogenes in minced beef during refrigerated storage. Food Microbiol, 2008. 25(1): p. 120-7. 23. Rutledge, D.N. and C.J. Jones, Effects of topical essential oil on exercise volume after a 12-week exercise program for women with fibromyalgia: a pilot study. J Altern Complement Med, 2007. 13(10): p. 1099-106. 24. Edris, A.E., Pharmaceutical and therapeutic potentials of essential oils and their individual volatile constituents: a review. Phytother Res, 2007. 21(4): p. 308-23. 25. GT., T., The clinical relevance of chirality. Prescriber’s J, 1991. 31: p. 189-197. 26. Gunther, C.M., A., Stereoisomere Aromastoffe XV. Chirospezifische Analyse natiirlicher Aromastoffe: 3-Methyl-4- octanolid-”Quercus-, Whiskylacton”. Z. Lebensm. Unters.-Forsch, 1987. 185: p. 1. 27. Gunther, A.M.a.C., Stereoisomeric Flavor Compounds. 20.1 Structure and Properties of g-Lactone Enantiomers. J. Agric. Food Chem., 1989. 37: p. 413-418. 28. Valim, M.F., R.L. Rouseff, and J. Lin, Gas chromatographic-olfactometric characterization of aroma compounds in two types of cashew apple nectar. J Agric Food Chem, 2003. 51(4): p. 1010-5. 29. Li, B., H.J. Jia, and G. Okamoto, Effects of post-harvest light conditions on quality and aromatic volatile formation in 'Hakuho' peach (Prunus persica Batsch) fruits. Zhi Wu Sheng Li Yu Fen Zi Sheng Wu Xue Xue Bao, 2007. 33(3): p. 205-12. 30. Khanna, S., et al., Upregulation of oxidant-induced VEGF expression in cultured keratinocytes by a grape seed proanthocyanidin extract. Free Radic Biol Med, 2001. 31(1): p. 38-42. 31. Kulkarni, S.D., et al., Evaluation of the antioxidant activity of wheatgrass (Triticum aestivum L.) as a function of growth under different conditions. Phytother Res, 2006. 20(3): p. 218-27. 32. Chien, C.M., et al., Polysaccharides of Ganoderma lucidum alter cell immunophenotypic expression and enhance CD56+ NK-cell cytotoxicity in cord blood. Bioorg Med Chem, 2004. 12(21): p. 5603-9. 33. Guardia, T., et al., Anti-inflammatory properties of plant flavonoids. Effects of rutin, quercetin and hesperidin on adjuvant arthritis in rat. Farmaco, 2001. 56(9): p. 683-7. 34. Hussein, G., et al., Astaxanthin, a carotenoid with potential in human health and nutrition. J Nat Prod, 2006. 69(3): p. 443-9. 35. Pederson, T., The immunome. Mol Immunol, 1999. 36(15-16): p. 1127-8. 36. Ortutay, C. and M. Vihinen, Immunome: a reference set of genes and proteins for systems biology of the human immune system. Cell Immunol, 2006. 244(2): p. 87-9. 37. Jung, U.J., et al., Antihyperglycemic and antioxidant properties of caffeic acid in db/db mice. J Pharmacol Exp Ther, 2006. 318(2): p. 476-83. 38. Zola, H., Markers of cell lineage, differentiation and activation. J Biol Regul Homeost Agents, 2000. 14(3): p. 218-9. 39. Cebrian, M., et al., Triggering of T cell proliferation through AIM, an activation inducer molecule expressed on activated human lymphocytes. J Exp Med, 1988. 168(5): p. 1621-37. 40. Testi, R., et al., The CD69 receptor: a multipurpose cell-surface trigger for hematopoietic cells. Immunol Today, 1994. 15(10): p. 479-83. 41. Sancho, D., M. Gomez, and F. Sanchez-Madrid, CD69 is an immunoregulatory molecule induced following activation. Trends Immunol, 2005. 26(3): p. 136-40. 42. Marzio, R., J. Mauel, and S. Betz-Corradin, CD69 and regulation of the immune function. Immunopharmacol Immunotoxicol, 1999. 21(3): p. 565-82. 43. Lechmann, M., et al., Role of CD83 in the immunomodulation of dendritic cells. Int Arch Allergy Immunol, 2002. 129(2): p. 113-8. 44. Hathcock, K.S., et al., Comparative analysis of B7-1 and B7-2 costimulatory ligands: expression and function. J Exp Med, 1994. 180(2): p. 631-40. 45. Melichar, B., et al., Lineage-negative human leukocyte antigen-DR+ cells with the phenotype of undifferentiated dendritic cells in patients with carcinoma of the abdomen and pelvis. Clin Cancer Res, 1998. 4(3): p. 799-809. 46. Caux, C., et al., B70/B7-2 is identical to CD86 and is the major functional ligand for CD28 expressed on human dendritic cells. J Exp Med, 1994. 180(5): p. 1841-7. 47. Lange, C., et al., Dendritic cell-regulatory T-cell interactions control self-directed immunity. Immunol Cell Biol, 2007. 85(8): p. 575-81. 48. Medzhitov, R., Toll-like receptors and innate immunity. Nat Rev Immunol, 2001. 1(2): p. 135-45. 49. Schantz, S.P., et al., Evidence for the role of natural immunity in the control of metastatic spread of head and neck cancer. Cancer Immunol Immunother, 1987. 25(2): p. 141-8. 50. Bukowski, J.F., et al., Natural killer cell depletion enhances virus synthesis and virus-induced hepatitis in vivo. J Immunol, 1983. 131(3): p. 1531-8. 51. Degli-Esposti, M.A. and M.J. Smyth, Close encounters of different kinds: dendritic cells and NK cells take centre stage. Nat Rev Immunol, 2005. 5(2): p. 112-24. 52. French, A.R. and W.M. Yokoyama, Natural killer cells and viral infections. Curr Opin Immunol, 2003. 15(1): p. 45-51. 53. Baptista, M.J., et al., In vitro IL-2 incubation induces CD69 expression and other phenotypic changes on NK subpopulations present in PBPC collections. Exp Hematol, 2004. 32(11): p. 1023-4. 54. Pisegna, S., et al., Src-dependent Syk activation controls CD69-mediated signaling and function on human NK cells. J Immunol, 2002. 169(1): p. 68-74. 55. Trapani, J.A., Target cell apoptosis induced by cytotoxic T cells and natural killer cells involves synergy between the pore-forming protein, perforin, and the serine protease, granzyme B. Aust N Z J Med, 1995. 25(6): p. 793-9. 56. Russell, J.H. and T.J. Ley, Lymphocyte-mediated cytotoxicity. Annu Rev Immunol, 2002. 20: p. 323-70. 57. Smyth, M.J., et al., Activation of NK cell cytotoxicity. Mol Immunol, 2005. 42(4): p. 501-10. 58. Waldmann, T.A., The biology of interleukin-2 and interleukin-15: implications for cancer therapy and vaccine design. Nat Rev Immunol, 2006. 6(8): p. 595-601. 59. Chen, C.J., et al., A screening platform for compounds with potential immuno-regulatory activities using human cord blood mononuclear cells. Comb Chem High Throughput Screen, 2006. 9(10): p. 777-84. 60. Borrego, F., et al., CD69 is a stimulatory receptor for natural killer cell and its cytotoxic effect is blocked by CD94 inhibitory receptor. Immunology, 1999. 97(1): p. 159-65. 61. Saba, A., et al., Identification of 9(E),11(E)-18:2 fatty acid methyl ester at trace level in thermal stressed olive oils by GC coupled to acetonitrile CI-MS and CI-MS/MS, a possible marker for adulteration by addition of deodorized olive oil. J Agric Food Chem, 2005. 53(12): p. 4867-72. 62. Zhang, X., Y.N. Ma, and J.W. Zhang, Human erythroid progenitors from adult bone marrow and cord blood in optimized liquid culture systems respectively maintained adult and neonatal characteristics of globin gene expression. Biol Res, 2007. 40(1): p. 41-53. 63. Borrego, F., J. Pena, and R. Solana, Regulation of CD69 expression on human natural killer cells: differential involvement of protein kinase C and protein tyrosine kinases. Eur J Immunol, 1993. 23(5): p. 1039-43. 64. Munz, C., et al., Mature myeloid dendritic cell subsets have distinct roles for activation and viability of circulating human natural killer cells. Blood, 2005. 105(1): p. 266-73. 65. Hou, R., et al., Interleukin-12 and interleukin-2-induced invariant natural killer T-cell cytokine secretion and perforin expression independent of T-cell receptor activation. Immunology, 2003. 110(1): p. 30-7. 66. Romero-Reyes, M., et al., Potent induction of TNF-alpha during interaction of immune effectors with oral tumors as a potential mechanism for the loss of NK cell viability and function. Apoptosis, 2007. 12(11): p. 2063-75. 67. Young, H.A. and J. Ortaldo, Cytokines as critical co-stimulatory molecules in modulating the immune response of natural killer cells. Cell Res, 2006. 16(1): p. 20-4. 68. Peter Werkhoff, S.B., Wilfried Bretschneider, Matthias Giintert, Rudolf Hopp, Horst Surburg, Chirospecific analysis in essential oil, fragrance and flavor research. Z Lebensm Unters Forsch, 1993. 196: p. 307-328. | |
| dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/40191 | - |
| dc.description.abstract | 牛樟芝在台灣是一種傳統的中國草藥,已經被利用來治療多種疾病。不過,牛樟芝香氣成分的免疫活化功能目前還未有相關的研究。本研究的目的在於分離及鑑定牛樟芝精油的主要香氣成分及探討此成分的化學結構及生物功能之間的關連性。利用氣相層析/質譜 (GC/MS) 分析鑑定出牛樟芝精油主要的香氣成份為gamma-dodecalactone (gamma-DDL)。透過氣相層析和流式細胞儀分析 (flow cytomertry),發現gamma-DDL可以進入細胞並誘導臍帶血單核球細胞表徵改變及活化自然殺手細胞(NK cells)。同時我們也發現gamma-DDL可以轉變成開環形式的4-hydroxydodecanoic acid後進而活化自然殺手細胞。利用對掌性衍生劑 (chiral derivatising agents) 及高壓液體層析 (HPLC) 分離具有活性結構的gamma-DDL。結果只有R結構的gamma-DDL具有活化自然殺手細胞的能力。此外,也鑑定出存在於牛樟芝中的gamma-DDL是屬於R結構的。最後,我們觀察到在自然殺手細胞中gamma-DDL可以快速的活化介白素-2 (interferon-2) 基因的表現並且透過介白素-2自體分泌循環機制 (autocrine) 活化自然殺手細胞。除了自然殺手細胞外,gamma-DDL也可能透過不同的活化機制去誘導T細胞、B細胞、單核球細胞、樹突狀細胞的活化。 | zh_TW |
| dc.description.abstract | In Taiwan, Antrodia camphorata (A. camphorata) is a traditional Chinese medicine and it has been utilized to treat a wide variety of diseases. However, the immuno-activating function of the flavor components from A. camphorata had not yet been investigated. In the present work, the volatile oil of A. camphorata was analyzed with the aim of isolating and identifying the major flavor compound and investigating the relationship between the chemical structure and biological functions of compound. The major component of A. camphorata volatile oil was identified as gamma-dodecalactone (gamma-DDL) by GC/MS analysis. By GC and flow cytomertry analysis, suggested that gamma-DDL entered the cells for the induction of human umbilical cord blood mononuclear cells (hUCB-MNCs) phenotypic changes and activation of NK cells. gamma-DDL was found to convert its open ring form: 4-hydroxydodecanoic acid for the activation of NK cells. The active configuration of gamma-DDL was deduced with the help of chiral derivatising agents (CDAs) and HPLC analysis. Only the R-configurated form of gamma-DDL was able to mediate NK cell activation. Furthermore, the configuration of gamma-DDL was identified in A. camphorata also as R-form. Finally, gamma-DDL induced rapid activation of interferon-2 (IL-2) gene in NK cells and the IL-2 autocrine system to activate NK cells. gamma-DDL also induced the activation of T cells, B cells, monocytes and DCs, but there might be different mechanisms of activation. | en |
| dc.description.provenance | Made available in DSpace on 2021-06-14T16:42:24Z (GMT). No. of bitstreams: 1 ntu-97-D93B46001-1.pdf: 1850539 bytes, checksum: 4ee80126fed901a941f61bca67b7ab8d (MD5) Previous issue date: 2008 | en |
| dc.description.tableofcontents | 謝 誌 i
中 文 摘 要 ⅳ Abstract ⅴ Abbreviations ⅹ List of Figures xi ⅹⅱ List of Tables ⅹⅳ 1. Introduction 1 1-1.1 Antodia camphorata 1 1-1.2 The components of A. camphorata 2 1-1.3 The components of volatile oil from plants and herbs 5 1-2.1 Isomers 9 1-2.2 Enantiomers : chiral compounds 11 1-2.3 gamma-Dodoecalactone (gamma-DDL) 13 1-3.1 Screening platform of immune system 15 1-3.2 The activation of immune cells 17 1-3.3 NK cells 21 1-3.4 IL-2 and IL-2 receptor 23 2. Materials and methods 25 2.1 Materials 25 2.2 Methods 27 2.2-1.Analysis of gamma-DDL from the volatile oil by FID-GC 27 2.2-2 Identification of gamma-DDL from volatile oil by GC/MS 27 2.2-3 Measurement of the hUCB and hPB phenotypic changes by flow cytometric analysis 28 2.2-4. Determination of cell viability by WST assay 29 2.2-5. Detection of NK cells activation after treatment of g-DDL 29 2.2-6. Determination of gamma-DDL concentration in medium and cells by GC analysis 30 2.2-7 Determination of immune cells activation by Q-PCR assay 31 2.2-8 Determination of IL-2 concentration in medium by cytokine ELISA 33 2.2-9 Synthesis of 4-hydroxydodecanoic acid (gamma-DDL(OR)) 33 2.2-10 Chiral separation by chiral derivatising agents (CDAs) method 34 2.2-11 Identification gamma-DDL and gamma-DDL(OR) extracted from A. camphorata by HPLC 36 3. Rationale and study aim 37 4. Results 39 4-1.Identification of the major compound (gamma-DDL) from volatile oil of A. camphorata 39 4-2. Effect of pure gamma-DDL and volatile oil of A. camphorata on the phenotypic changes of hUCB 43 4-3. Stimulation of CD56 marker expression of hUCB-NK cells 47 4-4. Induction of CD69 gene expression of CD3, CD14, CD19, CD56 and CD83 cell populations by gamma-DDL 49 4-5. Comparison of the CD69 marker activation between hUCB-NK cell and hPB-NK cells treated with gamma-DDL 51 4-6. Intracellular or extracellular activation of gamma-DDL on hPBMCs and hPB-NK cells 55 4-7. Conversion of gamma-DDL into 4-hydroxydodecanoic acid (gamma-DDL(OR)) in NK cells 59 4-8 Deduction of major configuration of gamma-DDL to activate NK cells 64 4-9 Determination of the configuration of gamma-DDL from A.camphorata 67 4-10. Induction of gene expression of NK cells activation by gamma-DDL 69 4-11. gamma-DDL enhanced CD69, FasL and granzyme B gene expression through IL-2 autocrine system 72 4-12. gamma-DDL or gamma-DDL(OR) can activate different immune cell populations through the induction of CD69 expression. 74 5. Discussions 76 6. Conclusion 81 References 82 Research publications………………………………………………….90 | |
| dc.language.iso | en | |
| dc.subject | 精油 | zh_TW |
| dc.subject | 牛樟芝 | zh_TW |
| dc.subject | 對掌性 | zh_TW |
| dc.subject | 自然殺手細胞 | zh_TW |
| dc.subject | 香氣成份 | zh_TW |
| dc.subject | IL-2 autocrine system | en |
| dc.subject | γ-DDL | en |
| dc.subject | Antrodia camphorata | en |
| dc.subject | hUCB-MNCs | en |
| dc.subject | NK cells | en |
| dc.subject | active configuration | en |
| dc.title | γ-dodecalactone化學結構與生物活性作用之研究 | zh_TW |
| dc.title | Structure and functions of γ-dodecalactone isolated from Antrodia camphorata | en |
| dc.type | Thesis | |
| dc.date.schoolyear | 96-2 | |
| dc.description.degree | 博士 | |
| dc.contributor.oralexamcommittee | 施子弼,吳世雄,林雲蓮,許清玫 | |
| dc.subject.keyword | 牛樟芝,精油,對掌性,自然殺手細胞,香氣成份, | zh_TW |
| dc.subject.keyword | γ-DDL,Antrodia camphorata,hUCB-MNCs,NK cells,active configuration,IL-2 autocrine system, | en |
| dc.relation.page | 89 | |
| dc.rights.note | 有償授權 | |
| dc.date.accepted | 2008-08-01 | |
| dc.contributor.author-college | 生命科學院 | zh_TW |
| dc.contributor.author-dept | 生化科學研究所 | zh_TW |
| 顯示於系所單位: | 生化科學研究所 | |
文件中的檔案:
| 檔案 | 大小 | 格式 | |
|---|---|---|---|
| ntu-97-1.pdf 未授權公開取用 | 1.81 MB | Adobe PDF |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。
