請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/40188
完整後設資料紀錄
DC 欄位 | 值 | 語言 |
---|---|---|
dc.contributor.advisor | 楊烽正 | |
dc.contributor.author | Ching-Shan Lai | en |
dc.contributor.author | 賴青杉 | zh_TW |
dc.date.accessioned | 2021-06-14T16:42:22Z | - |
dc.date.available | 2013-08-04 | |
dc.date.copyright | 2008-08-04 | |
dc.date.issued | 2008 | |
dc.date.submitted | 2008-08-01 | |
dc.identifier.citation | 1. Anily, S. and G. Mosheiov, The traveling salesman problem with delivery and backhauls. Operations Research Letters, 1994.
2. Bruun, A., U. Worsøe, and M.H. Pagh, Traveling Salesman With Pickup and Delivery. 2003. 3. Gendreau, M., A. Hertz, and G. Laporte, The traveling salesman problem with backhauls. Computers & Operations Research, 1996. 23(5): p. 501-509. 4. Gendreau, M., G. Laporte, and D. Vigo, Heuristics for the traveling salesman problem with pickup and delivery Computers & Operations Research, 1999. 26(7): p. 699-714. 5. Golden, B., et al., Approximate Traveling Salesman Algorithms. Operations Research, 1980. 28(3): p. 694-711. 6. Hernández-Pérez, H. and J.-J. Salazar-González, The one-commodity pickup-and-delivery travelling salesman problem. Lecture Notes in Computer Science, 2003. 2570: p. 89-104. 7. Hernández-Pérez, H. and J.-J. Salazar-González, A branch-and-cut algorithm for a traveling salesman problem with pickup and delivery. Discrete Applied Mathematics, 2004. 145(1). 8. Jih, W.-R., C.-Y. Kao, and J.Y.-J. Hsu. Using family competition genetic algorithm in pickup and delivery problem with time window constraints. 2002. Vancouver, Canada: Institute of Electrical and Electronics Engineers Inc. 9. Mosheiov, G., The traveling salesman problem with pick-up and delivery. European Journal of Operational Research, 1994: p. 299-310. 10. Nagy, G. and S. Salhi, Heuristic algorithms for single and multiple depot vehicle routing problems with pickups and deliveries. European Journal of Operational Research, 2005. 162(1): p. 126-141. 11. Renaud, J., F.F. Boctor, and G. Laporte, Perturbation heuristics for the pickup and delivery traveling salesman problem Computers and Operations Research, 2002. 29(9): p. 1129-1141. 12. Renaud, J., F.F. Boctor, and J. Ouenniche, A heuristic for the pickup and delivery traveling salesman problem. Computers and Operations Research, 2000. 27(9): p. 905-916. 13. Rozenkrantz, D., R. Stearns, and P. Lewis, Approximate Algorithms for the traveling Salesman Problem, in Proceedings of the 15th Annual IEEE Symposium of Switching and Automata Theory. 1974. 14. Ruland, K.S. and E.Y. Rodin, The Pickup and Delivery Problem: Faces and Branch-and-Cut Algorithm. Computers & Mathematics with Applications, 1997. 33(12): p. 1-13. 15. Swihart, M.R. and J.D. Papastavrou, A stochastic and dynamic model for the single-vehicle pick-up and delivery problem. European Journal of Operational Research, 1999. 114(3): p. 447-464. 16. Thangiah, S.R., J.-Y. Potvin, and S. Tong, Heuristic approaches to vehicle routing with backhauls and time windows. Computers & Operations Research, 1996. 23(11): p. 1043-1057. 17. Tzoreff, T.E., et al., The vehicle routing problem with pickups and deliveries on some special graphs. Discrete Applied Mathematics, 2002. 116(3): p. 235-271. 18. TSPLIB標竿問題參考網址http://www.iwr.uni-heidelberg.de/groups/comopt/software/TSPLIB95/index.html 19. 黃馨怡,2006,具載貨量限制取卸貨途程問題的啟發式演算法,碩士論文,國立台灣大學工業工程學研究所。 20. 張振邦,2004,兼營宅配業務之快遞業車輛路線規劃問題,碩士論文,南台科技大學行銷與流通管理研究所。 | |
dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/40188 | - |
dc.description.abstract | 隨著都會區定點間物流快遞服務的需求急遽增加,具載貨量與時窗限制的一對一取卸貨途程規劃問題日益重要。本文首先詳細定義本研究問題再提出以遺傳演算法為基的啟發式求解法。本問題是由車輛途程問題加上一對一先取後卸限制、載貨量上限限制、及時窗限制形成。前面二者在本研究中以硬式限制處理,而後者則以軟式限制視之。因此求解目標除了車行途程距離望小外,也期望時窗違反量最小。為處理載貨量及一對一先取後卸的硬式限制,本研究中開發一名為「導引併入式的演算法」以支援遺傳演算技術求解本問題。此演算程序可用於執行本問題的交配演算、修補傳統遺傳交配、突變產生的不合理解、以及建構符合硬式條件的初始解。因本問題尚無標竿問題可用,在不改變最佳解的狀態下,本研究藉由添加一對一取卸關係、衡量給定的載貨量上限、及設定最早和最晚服務時間,轉換TSPLIB中數個已知最佳路徑的旅行推銷員問題,作為測試對象。測試模式包括典型GA、GA加上本研究提示的導引併入式演算修補法、以及導引併入式的交配演算子三個模式。數值測試結果以模式二最佳且雖然模式三是使用本研究提示的新交配演算子,求解結果顯示新交配演算子仍有改善空間。 | zh_TW |
dc.description.abstract | Due to the increasing demand of point-to-point parcel deliveries in metropolitan area, a time window and capacity constrained one-to-one pickup and delivery single vehicle routing problem arises. This paper rigorously defined this problem and then proposed GA-based heuristic methods for the problem. In this problem, pickup and delivery points are exclusively defined and paired with a one-on-one and pickup-delivery relationship. The time window constraint for the pickup/delivery service times imposed on each point is regarded as soft constraints in this problem. Therefore, the goal of the problem is to find a route with a minimal routing distance and a minimal amount of time window violation. To assure a route satisfying the capacity and one-on-one pickup and delivery constraints, this paper presents a heuristic operation named as “guided merge operation (GMO).” GMO can be used to generate hard constraints satisfied routes to serve as the initial population for a GA-based solving model. It can be used to repair constraint-violated routes generated from traditional GA crossover and mutation operations. In addition, GMO is further enhanced to serve as a GA crossover operator that can generate two constraint-satisfied child routes from two parent ones. Without changing the optimal route, several benchmarks from the TSPLIB were adapted and transformed into sample problems for the problem by adding pickup/delivery one-on-one attribute and the earliest and latest service times to each city. Three GA computation models were constructed for the numerical tests: a simple GA, a GA+GMO-based repairing, and a GA with the GMO-crossover operator. Results indicated that the model with GMO repairing model outperformed others. However, the GMO-crossover operation requires further improvement. | en |
dc.description.provenance | Made available in DSpace on 2021-06-14T16:42:22Z (GMT). No. of bitstreams: 1 ntu-97-R95546018-1.pdf: 615452 bytes, checksum: 2edf6bb120dee02363960615c178ddc2 (MD5) Previous issue date: 2008 | en |
dc.description.tableofcontents | 致謝 I
中文摘要 II ABSTRACT III 目錄 IV 圖目錄 VII 表目錄 IX 中英文名詞對照表 X 第1章 緒論 1 1.1 研究背景與目的 1 1.2 研究流程 2 1.3 研究架構 5 第2章 文獻探討 6 2.1 旅行推銷員相關問題 6 2.2 車輛途程相關問題 17 2.3 遺傳演算法 20 2.4 時窗限制 25 2.5 文獻探討小結 25 第3章 具載貨量與時窗限制取卸貨車輛途程問題的遺傳演算法 27 3.1 具載貨量與時窗限制取卸貨車輛途程問題的定義 27 3.1.1 問題描述與假設 27 3.1.2 數學模式 30 3.2 TWCC-PDVRP的求解模式架構 31 3.3 具載貨量與時窗限制取卸貨車輛途程問題的遺傳演算模式 32 3.3.1 導引併入式演算法 32 3.3.2 GMO演算程序 38 3.4 本研究執行及測試的遺傳演算模式 49 3.4.1 典型GA求解模式 50 3.4.2 典型GA求解法加上修補法模式 51 3.4.3 使用GMO交配運算子的GA求解模式 52 3.5 本問題的遺傳演算流程 53 3.5.1 遺傳演算的時窗限制處理 57 3.5.2 區域搜尋(Local Search) 57 第4章 演算法效能分析與實例驗證 61 4.1 TSP標杆問題轉換成本問題的測試範例 61 4.2 效能分析測試 62 4.2.1 三種遺傳演化模式求解結果比較 63 4.2.2 GA加入兩種區域搜尋的求解效果比較 65 4.2.3 TCC-PDVRP在不同時窗寬鬆程度下的結果比較 66 4.3 小結 67 第5章 結論與未來研究建議 68 5.1 結論 68 5.2 未來研究與建議 69 參考文獻 70 附錄A 73 | |
dc.language.iso | zh-TW | |
dc.title | 具載貨量與時窗限制取卸貨車輛途程問題的遺傳演算為基啟發式求解法 | zh_TW |
dc.title | Genetic Algorithm Based Heuristic Method for Time Window and Capacity Constrained Pickup and Delivery Vehicle Routing Problem | en |
dc.type | Thesis | |
dc.date.schoolyear | 96-2 | |
dc.description.degree | 碩士 | |
dc.contributor.oralexamcommittee | 徐旭昇,翁偉泰,陳啟明,黃遵鉅 | |
dc.subject.keyword | 時窗限制,旅行推銷員問題,導引併入式演算法,遺傳演算法, | zh_TW |
dc.subject.keyword | Time Window Constraints,TSP,Guided Merge Operation,Genetic Algorithm, | en |
dc.relation.page | 72 | |
dc.rights.note | 有償授權 | |
dc.date.accepted | 2008-08-01 | |
dc.contributor.author-college | 工學院 | zh_TW |
dc.contributor.author-dept | 工業工程學研究所 | zh_TW |
顯示於系所單位: | 工業工程學研究所 |
文件中的檔案:
檔案 | 大小 | 格式 | |
---|---|---|---|
ntu-97-1.pdf 目前未授權公開取用 | 601.03 kB | Adobe PDF |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。