Skip navigation

DSpace

機構典藏 DSpace 系統致力於保存各式數位資料(如:文字、圖片、PDF)並使其易於取用。

點此認識 DSpace
DSpace logo
English
中文
  • 瀏覽論文
    • 校院系所
    • 出版年
    • 作者
    • 標題
    • 關鍵字
    • 指導教授
  • 搜尋 TDR
  • 授權 Q&A
    • 我的頁面
    • 接受 E-mail 通知
    • 編輯個人資料
  1. NTU Theses and Dissertations Repository
  2. 醫學院
  3. 毒理學研究所
請用此 Handle URI 來引用此文件: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/40182
完整後設資料紀錄
DC 欄位值語言
dc.contributor.advisor郭明良(Min-Liang Kuo)
dc.contributor.authorHsin-Jung Kaoen
dc.contributor.author高訢榕zh_TW
dc.date.accessioned2021-06-14T16:42:16Z-
dc.date.available2013-09-11
dc.date.copyright2008-09-11
dc.date.issued2008
dc.date.submitted2008-07-31
dc.identifier.citation1. Greenlee, R.T., et al., Cancer statistics, 2001. CA Cancer J Clin, 2001. 51(1): p. 15-36.
2. Steeg, P.S., Metastasis suppressors alter the signal transduction of cancer cells. Nat Rev Cancer, 2003. 3(1): p. 55-63.
3. Travis, W.D., L.B. Travis, and S.S. Devesa, Lung cancer. Cancer, 1995. 75(1 Suppl): p. 191-202.
4. Sleeman, J.P., The lymph node as a bridgehead in the metastatic dissemination of tumors. Recent Results Cancer Res, 2000. 157: p. 55-81.
5. Pepper, M.S., Lymphangiogenesis and tumor metastasis: myth or reality? Clin Cancer Res, 2001. 7(3): p. 462-8.
6. Bowman, R.V., et al., Epigenetics of lung cancer. Respirology, 2006. 11(4): p. 355-65.
7. Esteller, M., Epigenetics in cancer. N Engl J Med, 2008. 358(11): p. 1148-59.
8. Herman, J.G. and S.B. Baylin, Gene silencing in cancer in association with promoter hypermethylation. N Engl J Med, 2003. 349(21): p. 2042-54.
9. Feinberg, A.P. and B. Tycko, The history of cancer epigenetics. Nat Rev Cancer, 2004. 4(2): p. 143-53.
10. Egger, G., et al., Epigenetics in human disease and prospects for epigenetic therapy. Nature, 2004. 429(6990): p. 457-63.
11. Esteller, M., Aberrant DNA methylation as a cancer-inducing mechanism. Annu Rev Pharmacol Toxicol, 2005. 45: p. 629-56.
12. Nguyen, C.T., F.A. Gonzales, and P.A. Jones, Altered chromatin structure associated with methylation-induced gene silencing in cancer cells: correlation of accessibility, methylation, MeCP2 binding and acetylation. Nucleic Acids Res, 2001. 29(22): p. 4598-606.
13. Fraga, M.F., et al., Loss of acetylation at Lys16 and trimethylation at Lys20 of histone H4 is a common hallmark of human cancer. Nat Genet, 2005. 37(4): p. 391-400.
14. Pruitt, K., et al., Inhibition of SIRT1 reactivates silenced cancer genes without loss of promoter DNA hypermethylation. PLoS Genet, 2006. 2(3): p. e40.
15. Hanahan, D. and R.A. Weinberg, The hallmarks of cancer. Cell, 2000. 100(1): p. 57-70.
16. Ausio, J. and K.E. Van Holde, The histones of the sperm of Spisula solidissima include a novel, cysteine-containing H-1 histone. Cell Differ, 1988. 23(3): p. 175-89.
17. Wolffe, A.P., Centromeric chromatin. Histone deviants. Curr Biol, 1995. 5(5): p. 452-4.
18. Mymryk, J.S., et al., Analysis of chromatin structure in vivo. Methods, 1997. 12(1): p. 105-14.
19. Luger, K., et al., Crystal structure of the nucleosome core particle at 2.8 A resolution. Nature, 1997. 389(6648): p. 251-60.
20. Bottomley, M.J., Structures of protein domains that create or recognize histone modifications. EMBO Rep, 2004. 5(5): p. 464-9.
21. Sterner, D.E. and S.L. Berger, Acetylation of histones and transcription-related factors. Microbiol Mol Biol Rev, 2000. 64(2): p. 435-59.
22. Grunstein, M., Histone acetylation in chromatin structure and transcription. Nature, 1997. 389(6649): p. 349-52.
23. Zhang, Y. and D. Reinberg, Transcription regulation by histone methylation: interplay between different covalent modifications of the core histone tails. Genes Dev, 2001. 15(18): p. 2343-60.
24. Nowak, S.J. and V.G. Corces, Phosphorylation of histone H3: a balancing act between chromosome condensation and transcriptional activation. Trends Genet, 2004. 20(4): p. 214-20.
25. Davie, J.R. and L.C. Murphy, Level of ubiquitinated histone H2B in chromatin is coupled to ongoing transcription. Biochemistry, 1990. 29(20): p. 4752-7.
26. Nathan, D., D.E. Sterner, and S.L. Berger, Histone modifications: Now summoning sumoylation. Proc Natl Acad Sci U S A, 2003. 100(23): p. 13118-20.
27. Adamietz, P. and A. Rudolph, ADP-ribosylation of nuclear proteins in vivo. Identification of histone H2B as a major acceptor for mono- and poly(ADP-ribose) in dimethyl sulfate-treated hepatoma AH 7974 cells. J Biol Chem, 1984. 259(11): p. 6841-6.
28. Rea, S., et al., Regulation of chromatin structure by site-specific histone H3 methyltransferases. Nature, 2000. 406(6796): p. 593-9.
29. Kouzarides, T., Histone methylation in transcriptional control. Curr Opin Genet Dev, 2002. 12(2): p. 198-209.
30. Yeates, T.O., Structures of SET domain proteins: protein lysine methyltransferases make their mark. Cell, 2002. 111(1): p. 5-7.
31. Jenuwein, T., et al., SET domain proteins modulate chromatin domains in eu- and heterochromatin. Cell Mol Life Sci, 1998. 54(1): p. 80-93.
32. Tachibana, M., et al., Set domain-containing protein, G9a, is a novel lysine-preferring mammalian histone methyltransferase with hyperactivity and specific selectivity to lysines 9 and 27 of histone H3. J Biol Chem, 2001. 276(27): p. 25309-17.
33. Brown, S.E., R.D. Campbell, and C.M. Sanderson, Novel NG36/G9a gene products encoded within the human and mouse MHC class III regions. Mamm Genome, 2001. 12(12): p. 916-24.
34. Sedgwick, S.G. and S.J. Smerdon, The ankyrin repeat: a diversity of interactions on a common structural framework. Trends Biochem Sci, 1999. 24(8): p. 311-6.
35. Esteve, P.O., et al., Functional analysis of the N- and C-terminus of mammalian G9a histone H3 methyltransferase. Nucleic Acids Res, 2005. 33(10): p. 3211-23.
36. Chen, H., et al., Hypoxic stress induces dimethylated histone H3 lysine 9 through histone methyltransferase G9a in mammalian cells. Cancer Res, 2006. 66(18): p. 9009-16.
37. Tachibana, M., et al., G9a histone methyltransferase plays a dominant role in euchromatic histone H3 lysine 9 methylation and is essential for early embryogenesis. Genes Dev, 2002. 16(14): p. 1779-91.
38. Boulias, K. and I. Talianidis, Functional role of G9a-induced histone methylation in small heterodimer partner-mediated transcriptional repression. Nucleic Acids Res, 2004. 32(20): p. 6096-103.
39. Gyory, I., et al., PRDI-BF1 recruits the histone H3 methyltransferase G9a in transcriptional silencing. Nat Immunol, 2004. 5(3): p. 299-308.
40. Nishio, H. and M.J. Walsh, CCAAT displacement protein/cut homolog recruits G9a histone lysine methyltransferase to repress transcription. Proc Natl Acad Sci U S A, 2004. 101(31): p. 11257-62.
41. Roopra, A., et al., Localized domains of G9a-mediated histone methylation are required for silencing of neuronal genes. Mol Cell, 2004. 14(6): p. 727-38.
42. Wozniak, R.J., et al., 5-Aza-2'-deoxycytidine-mediated reductions in G9A histone methyltransferase and histone H3 K9 di-methylation levels are linked to tumor suppressor gene reactivation. Oncogene, 2007. 26(1): p. 77-90.
43. Feldman, N., et al., G9a-mediated irreversible epigenetic inactivation of Oct-3/4 during early embryogenesis. Nat Cell Biol, 2006. 8(2): p. 188-94.
44. Smallwood, A., et al., Functional cooperation between HP1 and DNMT1 mediates gene silencing. Genes Dev, 2007. 21(10): p. 1169-78.
45. Esteve, P.O., et al., Direct interaction between DNMT1 and G9a coordinates DNA and histone methylation during replication. Genes Dev, 2006. 20(22): p. 3089-103.
46. Litvinov, S.V., et al., Ep-CAM: a human epithelial antigen is a homophilic cell-cell adhesion molecule. J Cell Biol, 1994. 125(2): p. 437-46.
47. Munz, M., et al., The carcinoma-associated antigen EpCAM upregulates c-myc and induces cell proliferation. Oncogene, 2004. 23(34): p. 5748-58.
48. Fidler, I.J., Tumor heterogeneity and the biology of cancer invasion and metastasis. Cancer Res, 1978. 38(9): p. 2651-60.
49. Joo, M., et al., Expression of Ep-CAM in intestinal metaplasia, gastric epithelial dysplasia and gastric adenocarcinoma. J Gastroenterol Hepatol, 2005. 20(7): p. 1039-45.
50. Kim, J.H., et al., Identification of epithelial cell adhesion molecule autoantibody in patients with ovarian cancer. Clin Cancer Res, 2003. 9(13): p. 4782-91.
51. Songun, I., et al., Loss of Ep-CAM (CO17-1A) expression predicts survival in patients with gastric cancer. Br J Cancer, 2005. 92(9): p. 1767-72.
52. Rao, C.G., et al., Expression of epithelial cell adhesion molecule in carcinoma cells present in blood and primary and metastatic tumors. Int J Oncol, 2005. 27(1): p. 49-57.
53. Basak, S., et al., Colorectal carcinoma invasion inhibition by CO17-1A/GA733 antigen and its murine homologue. J Natl Cancer Inst, 1998. 90(9): p. 691-7.
54. Takes, R.P., et al., Markers for assessment of nodal metastasis in laryngeal carcinoma. Arch Otolaryngol Head Neck Surg, 1997. 123(4): p. 412-9.
55. Spizzo, G., et al., Methylation status of the Ep-CAM promoter region in human breast cancer cell lines and breast cancer tissue. Cancer Lett, 2007. 246(1-2): p. 253-61.
56. Tai, K.Y., et al., DNA methylation and histone modification regulate silencing of epithelial cell adhesion molecule for tumor invasion and progression. Oncogene, 2007. 26(27): p. 3989-97.
57. Suzuki, H., et al., A genomic screen for genes upregulated by demethylation and histone deacetylase inhibition in human colorectal cancer. Nat Genet, 2002. 31(2): p. 141-9.
58. Jones, P.A. and S.B. Baylin, The fundamental role of epigenetic events in cancer. Nat Rev Genet, 2002. 3(6): p. 415-28.
59. Melki, J.R., P.C. Vincent, and S.J. Clark, Concurrent DNA hypermethylation of multiple genes in acute myeloid leukemia. Cancer Res, 1999. 59(15): p. 3730-40.
60. Levine, S.S., et al., The core of the polycomb repressive complex is compositionally and functionally conserved in flies and humans. Mol Cell Biol, 2002. 22(17): p. 6070-8.
61. Cao, R., et al., Role of histone H3 lysine 27 methylation in Polycomb-group silencing. Science, 2002. 298(5595): p. 1039-43.
62. Bracken, A.P., et al., EZH2 is downstream of the pRB-E2F pathway, essential for proliferation and amplified in cancer. Embo J, 2003. 22(20): p. 5323-35.
63. Varambally, S., et al., The polycomb group protein EZH2 is involved in progression of prostate cancer. Nature, 2002. 419(6907): p. 624-9.
64. Guillemot, J.C., et al., Ep-CAM transfection in thymic epithelial cell lines triggers the formation of dynamic actin-rich protrusions involved in the organization of epithelial cell layers. Histochem Cell Biol, 2001. 116(4): p. 371-8.
dc.identifier.urihttp://tdr.lib.ntu.edu.tw/jspui/handle/123456789/40182-
dc.description.abstract表觀遺傳修飾(epigenetic modification)參與在染色質重組和基因轉錄的過程中,而發生在特定組蛋白 (histone) 殘基上的甲基化可調控基因轉錄。胚胎發育和癌症發生的過程中,組蛋白H3上離胺酸 (K9) 的甲基化對基因轉錄的抑制扮演關鍵性的角色。G9a為一組蛋白甲基轉移酶,負責催化組蛋白H3K9的甲基化。已知在缺氧的情形下,會誘發G9a表現及增加其甲基轉移酶活性進而調控基因表現。在乳癌細胞中,G9a也被發現可降低腫瘤抑制基因的表現,除此之外目前對於G9a在癌症上扮演的角色仍不甚清楚。因此,我們企圖探討G9a在癌症發展過程中的重要性及其調控機轉。
在本篇研究中,我們發現G9a高度表現在不同類型癌症病人的腫瘤組織中,且與腫瘤分化的情形呈現高度相關性,顯示G9a可能參與、調控癌症轉移的過程。此外G9a的表現與肺癌細胞株的轉移浸襲能力呈正相關。短暫轉殖DN-G9a質體阻斷G9a的組蛋白甲基轉移活性,可以抑制肺癌細胞之轉移浸襲能力,顯示G9a的酵素活性參與在G9a調控肺癌轉移的機轉中。接下來我們在惡性度高的肺癌細胞株中剔除G9a的表現,發現可以顯著抑制肺癌細胞之轉移浸襲能力,同時增加Ep-CAM的表現量。我們進一步研究Ep-CAM是否參與在G9a所調控之肺癌細胞浸襲能力中,實驗結果顯示,當剔除Ep-CAM表現,可以回復剔除G9a所抑制之肺癌細胞浸襲能力。此外動物實驗結果顯示,剔除G9a可以抑制癌細胞轉移及腫瘤生長,顯示G9a在癌症發生過中扮演重要的調控角色。綜合以上實驗結果,G9a極可能為肺癌之生物指標分子,未來有機會運用在腫瘤轉移之臨床檢測與治療上。
zh_TW
dc.description.abstractEpigenetic modifications are important for chromatin organization and gene transcription. Methylation of specific histone residues has important regulatory functions in gene transcription. Notably, methylated histone H3 lysine 9 (H3K9me) is a critical epigenetic marker for gene repression and plays critical role in embryogenesis and carcinogenesis. G9a, a mammalian histone methyltransferase, is a candidate for histone 3 lysine 9 dimethylation (H3K9me2). Here, we attempt to study the role of G9a in lung cancer progression.
Results of our present study indicated that G9a was expressed in tumors of different cancer types and correlated with tumor differentiation status. In addition, G9a expression was also inversely correlated with in vitro migration and invasion abilities in lung cancer cells. Blockage of G9a methyltransferase activity by transfecting with a dominant negative (DN)-G9a inhibited cell migration/invasion abilities, suggesting that the histone methyltransferase activity of G9a was essential for the regulation of lung cancer metastasis. In CL1-5 and H1299 cells, G9a knockdown inhibited migration/invasion abilities through up-regulation of Ep-CAM. Treatment with Ep-CAM shRNA restored the invasion ability of stable G9a knockdown cells. Moreover, in vivo animal model showed that G9a knockdown suppressed metastatic colonization in lung and primary tumorigenesis. In conclusion, our data suggested that G9a promoted aggressive phenotypes in lung cancer may be a potential target for cancer treatment.
en
dc.description.provenanceMade available in DSpace on 2021-06-14T16:42:16Z (GMT). No. of bitstreams: 1
ntu-97-R94447006-1.pdf: 3851253 bytes, checksum: ebbeee9815de4235957fee25b7219e0f (MD5)
Previous issue date: 2008
en
dc.description.tableofcontents中文摘要 4
Abstract 5
Introduction 6
Materials and Methods 15
Results 22
G9a expressed in tumors and correlated with
differentiation status 22
G9a expression induced an invasive phenotype in lung
cancer cells 23
G9a promoted metastatic colonization in animal model 25
Gene expression profiling of G9a knockdown cells 26
Ep-CAM acted as an effector in G9a-induced invasive
phenotype 27
Discussion 29
References 35
Figures and figure legends 40
Table 58
dc.language.isoen
dc.subject肺癌zh_TW
dc.subject轉移zh_TW
dc.subject組蛋白甲基轉移&#37238zh_TW
dc.subjectMetastasisen
dc.subjectLung canceren
dc.subjecthistone mehtyltransferase G9aen
dc.title組蛋白甲基轉移酶G9a藉由Ep-CAM調控肺癌轉移之探討zh_TW
dc.titleHistone Methyltransferase G9a Regulated Metastasis in Lung Cancer through Epigenetic Inactivation of Ep-CAMen
dc.typeThesis
dc.date.schoolyear96-2
dc.description.degree碩士
dc.contributor.oralexamcommittee王朝鐘(Chau-Jong Wang),翁一鳴(Yat-Ming Yung),夏興國,蕭宏昇
dc.subject.keyword組蛋白甲基轉移&#37238,肺癌,轉移,zh_TW
dc.subject.keywordhistone mehtyltransferase G9a,Lung cancer,Metastasis,en
dc.relation.page58
dc.rights.note有償授權
dc.date.accepted2008-08-01
dc.contributor.author-college醫學院zh_TW
dc.contributor.author-dept毒理學研究所zh_TW
顯示於系所單位:毒理學研究所

文件中的檔案:
檔案 大小格式 
ntu-97-1.pdf
  未授權公開取用
3.76 MBAdobe PDF
顯示文件簡單紀錄


系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved