Please use this identifier to cite or link to this item:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/4013
Full metadata record
???org.dspace.app.webui.jsptag.ItemTag.dcfield??? | Value | Language |
---|---|---|
dc.contributor.advisor | 李宣書 | |
dc.contributor.author | Yu-Jen Huang | en |
dc.contributor.author | 黃郁蓁 | zh_TW |
dc.date.accessioned | 2021-05-13T08:40:26Z | - |
dc.date.available | 2018-03-08 | |
dc.date.available | 2021-05-13T08:40:26Z | - |
dc.date.copyright | 2016-03-08 | |
dc.date.issued | 2016 | |
dc.date.submitted | 2016-02-01 | |
dc.identifier.citation | •Abdelmegeed MA, Moon KH, Chen C, Gonzalez FJ, Song BJ. Role of cytochrome P450 2E1 in protein nitration and ubiquitin-mediated degradation during acetaminophen toxicity. Biochem Pharmacol. 2010;79:57-66.
•Ayroldi E, Cannarile L, Migliorati G, Nocentini G, Delfino DV, Riccardi C. Mechanisms of the anti-inflammatory effects of glucocorticoids: genomic and nongenomic interference with MAPK signaling pathways. FASEB J. 2012;26:4805-20. •Banas A, Teratani T, Yamamoto Y, Tokuhara M, Takeshita F, Osaki M, Kawamata M, Kato T, Okochi H, Ochiya T. IFATS collection: in vivo therapeutic potential of human adipose tissue mesenchymal stem cells after transplantation into mice with liver injury. Stem Cells. 2008;26:2705-12. •Basma H, Soto-Gutiérrez A, Yannam GR, Liu L, Ito R, Yamamoto T, Ellis E, Carson SD, Sato S, Chen Y, Muirhead D, Navarro-Alvarez N, Wong RJ, Roy-Chowdhury J, Platt JL, Mercer DF, Miller JD, Strom SC, Kobayashi N, Fox IJ. Differentiation and transplantation of human embryonic stem cell-derived hepatocytes. Gastroenterology. 2009;136(3):990-999. •Belema-Bedada F, Uchida S, Martire A, Kostin S, Braun T. Efficient homing of multipotent adult mesenchymal stem cells depends on FROUNT-mediated clustering of CCR2. Cell Stem Cell. 2008;2(6):566-575. •Bernal W, Wendon J. N Engl J Med. Acute liver failure 2013;369(26):2525-2534. •Bigger BW, Siapati EK, Mistry A, Waddington SN, Nivsarkar MS, Jacobs L, Perrett R, Holder MV, Ridler C, Kemball-Cook G, Ali RR, Forbes SJ, Coutelle C, Wright N, Alison M, Thrasher AJ, Bonnet D, Themis M.Permanent partial phenotypic correction and tolerance in a mouse model of hemophilia B by stem cell gene delivery of human factor IX. Gene Ther.2006;13(2):117-126.. •Blum B, Bar-Nur O, Golan-Lev T, Benvenisty N. The anti-apoptotic gene surviving contributes to teratome formation by human embryonic stem cells. Nat Biotechnol. 2009;27(3):281-287. •Bolton-Maggs PH, Pasi KJ. Haemophilias A and B. Lancet 2003;361(9371):180-1809. •Burlina AB Hepatocyte transplantation for inborn errors of metabolism. J. Inherit. Metab. Dis. 2004;27(3):373-383. •Calne RY, Rolles K, White DJ, Thiru S, Evans DB, McMaster P, Dunn DC, Craddock GN, Henderson RG, Aziz S, Lewis P. Cyclosporin A initially as the only immunosuppressant in 34 recipients of cadaveric organs: 32 kidneys, 2 pancreases, and 2 livers. Lancet. 1979;2(8151):1033-1036. •Caplan AI, Bruder SP. Mesenchymal stem cells: building blocks for molecular medicine in the 21st century. Trends Mol Med. 2001;7:259-64. •Chan K, Han XD, Kan YW. An important function of Nrf2 in combating oxidative stress: detoxification of acetaminophen. PNAS 2001;98:4611-4616. •Chen YF, Tseng CY, Wang HW, Kuo HC, Yang VW, Lee OK. Rapid generation of mature hepatocyte-like cells from human induced pluripotent stem cells by an efficient three-step protocol. Hepatology.2012;55(4)1193-1203. •Chen YT, Sun CK, Lin YC, Chang LT, Chen YL, Tsai TH, et al. Adipose-derived mesenchymal stem cell protects kidneys against ischemia-reperfusion injury through suppressing oxidative stress and inflammatory reaction. J Transl Med. 2011;9:51. •Chen, Y. F.; Tseng, C. Y.; Wang, H. W.; Kuo, H. C.; Yang, V. W.; Lee, O. K. Rapid generation of mature hepatocyte-like cells from human induced pluripotent stem cells by an efficient three-step protocol. Hepatology 2012;55(4):1193-1203. •Cheng Z, Ou L, Zhou X, Li F, Jia X, Zhang Y, Liu X, Li Y, Ward CA, Melo LG, Kong D, Targeted migration of mesenchymal stem cells modified with CXCR4 gene to infarcted myocardium improves cardiac performance. Mol her. 2008;16(3):571-579. •Chin MH, Pellegrini M, Plath K, Lowry WE. Molecular analyses of human induced pluripotent stem cells and embryonic stem cells. Cell Stem Cell 2010;7:263-267. •Cho KA, Woo SY, Seoh JY, Han HS, Ryu KH. Mesenchymal stem cells restore CCl4-induced liver injury by an antioxidative process. Cell Biol Int. 2012;36:1267-1274. •Choi SM, Kim Y, Liu H, Chaudhari P, Ye Z, Jang YY. Liver engraftment potential of hepatic cells derived patient-specific induced pluripotent stem cells. Cell Cycle. 2011;10(15):2423-2427. •Condic ML. Totipotency: what it is and what it is not. Stem Cells Dev. 2014 15;23(8):796-812. •de Lázaro I, Yilmazer A, Kostarelos K Induced pluripotent stem (iPS) cells: a new source for cell-based therapeutics? J Control Release 2014;185:37-44. •Ding Y, Xu D, Feng G, Bushell A, Muschel RJ, Wood KJ. Mesenchymal stem cells prevent the rejection of fully allogenic islet grafts by the immunosuppressive activity of matrix metalloproteinase-2 and -9. Diabetes. 2009;58(8):1797-1806. •Fox IJ, Chowdhury JR, Kaufman SS, Goertzen TC, Chowdhury NR, Warkentin PI, Dorko K, Sauter BC, Strom SC. Treatment of the Crigler-Najjar syndrome type I with hepatocyte transplantation. N Engl J Med. 1998;14:338(20)1422-1426. •Fox IJ, Daley GQ, Goldman SA, Huard J, Kamp TJ, Trucco M. Stem cell therapy. Use of differentiated pluripotent stem cells as replacement therapy for treating disease. Science 2014;345(6199):1247391. •Groth CG, Arborgh B, Bjorken C, Sundberg B, Lundgren G. Correction of hyperbilirubinemia in the glucuronyltransferase-deficient rat by intraportal hepatocyte transplantation. Transplant Proc. 1977;9(1):313-6. •Gum SI, Cho MK. Recent updates on acetaminophen hepatotoxicity: the role of nrf2 in hepatoprotection. Toxicol Res. 2013;29:165-72. •Gupta S, Lee CD, Vemuru RP, Bhargava KK. Therapeutic potential of adult bone marrow stem cells in liver disease and delivery approaches. Hepatology. 1994;19(3):750-7. •Hanna J, Wernig M, Markoulaki S, Sun CW, Meissner A, Cassady JP, Beard C, Brambrink T, Wu LC, Townes TM, Jaenisch R. Treatment of sickle cell anemia mouse model with iPS cells generated from autologous skin. Science 2007;318:1920-1923. •Harrill AH, Watkins PB, Su S, Ross PK, Harbourt DE, Stylianou IM, et al. Mouse population-guided resequencing reveals that variants in CD44 contribute to acetaminophen-induced liver injury in humans. Genome Res. 2009;19:1507-1515. •Heard KJ. Acetylcysteine for acetaminophen poisoning. N Engl J Med. 2008;359:285-292. •Hughes RD, Mitry RR, Dhawan A, Current status of hepatocyte transplantation. Transplantation 2012;93(4):342-347. •Inoue H, Nagata N, Kurokawa H, Yamanaka S. iPS cells: a game changer for future medicine. Embo j 2014;33(5):409-417. •James LP, Mayeux PR, Hinson JA. Acetaminophen-induced hepatotoxicity. Drug Metab Dispos. 2003;31:1499-506. •Jin SZ, Meng XW, Sun X, Han MZ, Liu BR, Wang XH, Pei FH. Hepatocyte growth factor promotes liver regeneration induced by transfusion of bone marrow mononuclear cells in a murine acute liver failure model Hepatobiliary Pancreat Sci. 2011;18(3):397-405. •Jorge LP, Gonsebatt ME. The role of antioxidants and antioxidant-related enzymes in protective responses to environmentally induced oxidative stress. Mutat Res. 2009;674:137-147. •Jorns C, Ellis EC, Nowak G, Fischler B, Nemeth A, Strom SC, Ericzon BG. Hepatocyte transplantation for inherited metabolic diseases of the liver. J Intern Med. 2012;272(3):201-223. •Kaji, E. H.; Leiden, J. M. Gene and stem cell therapies. JAMA 2001;285(5):545-550. •Kay HY, Kim YW, Ryu H, Sung SH, Hwang SJ, Kim SG. Nrf2-mediated liver protection by sauchinone, an antioxidant lignan, from acetaminophen toxicity through the PKCδ-GSK3β pathway. Br J Pharmacol. 2011;163:1653-1665. •Kim HJ, Nel AE. The role of phase II antioxidant enzymes in protecting memory T cells from spontaneous apoptosis in young and old mice. J Immunol. 2005;175:2948-2959. •Kuo TK, Hung SP, Chuang CH. Stem cell therapy for liver disease: parameters governing the success of using bone marrow mesenchymal stem cells. Gastroenterology. 2008;134:2111-2121. •Kurtz A. Mesenchymal stem cell delivery routes and fate. Int J Stem Cells.2008;1(1):1-7. •Larsen A. Acetominophen hepatoxicity. Clin Liver Dis. 2007;11:525-548. •Lee OK, Kuo TK, Chen WM, Lee KD, Hsieh SL, Chen TH. Isolation of multipotent mesenchymal stem cells from umbilical cord blood. Blood. 2004;103(5)1669-1675. •Lee SS, Buters JT, Pineau T, Fernandez-Salguero P, Gonzalez FJ. Role of CYP2E1 in the hepatotoxicity of acetaminophen. J Biol Chem. 1996;271:12063-7. •Li HY, Chien Y, Chen YJ, Chen SF, Chang YL, Chiang CH, Jeng SY, Chang CM, Wang ML, Chen LK, Hung SI, Huo TI, Lee SD, Chiou SH. Reprogramming induced pluripotent stem cells in the absence of c-Myc for differentiation into hepatocyte-like cells Biomaterials. 2011;32(26):5994-6005. •Li T, Zhu J, Ma K, Liu N, Feng K, Li X, Wang S, Bie P. Autologous bone marrow-derived mesenchymal stem cell transplantation promotes liver regeneration after portal vein embolization in cirrhotic rats. J Surg Res 2013;184:1161–1173 •Liu Z, Meng F, Li C, Zhou X, He Y, Mrsny RJ, et al. Human umbilical cord mesenchymal stromal cells rescue mice from acetaminophen-induced acute liver failure. Cytotherapy. 2014;16:1207-1219. •Lowry WE, Richter L, Yachechko R, Pyle AD, Tchieu J, Sridharan R, Clark AT, Plath K. Generation of human induced pluripotent stem cells from dermal fibroblasts. Proc Natl Acad Sci USA 2008;105:2883-2888. •Malliaras K, Marbán E. Cardiac cell therapy: where we've been, where we are, and where we should be headed. Br Med Bull.2011;98:161-185. •Matas AJ. Hepatocellular transplantation for metabolic deficiencies: decrease of plasma bilirubin in Gunn rats. Science. 1976;192:892-894. •McGill MR, Jaeschke H. Metabolism and disposition of acetaminophen: recent advances in relation to hepatotoxicity and diagnosis. Pharm Res. 2013;30:2174-87. •Meier RP, Müller YD, Morel P, Gonelle-Gispert C, Bühler LH.Transplantation of mesenchymal stem cells for the treatment of liver diseases, is there enough evidence? Stem Cell Res. 2013;11(3):1348-1364. •Meirelles Júnior RF, Salvalaggio P, Rezende MB, Evangelista AS, Guardia BD, Matielo CE, Neves DB, Pandullo FL, Felga GE, Alves JA, Curvelo LA, Diaz LG, Rusi MB, Viveiros Mde M, Almeida MD, Pedroso PT, Rocco RA, Meira Filho SP. Liver transplantation: history, outcomes and perspectives. Einstein (Sao Paulo). 2015;13(1):149-152. •Nakagawa H, Maeda S, Hikiba Y. Deletion of apoptosis signal-regulating kinase 1 attenuates acetaminophen-induced liver injury by inhibiting c-Jun N-terminal kinase activation. Gastroenterology. 2008;135:1311-1321. •Nakagawa H, Maeda S. Molecular mechanisms of liver injury and hepatocarcinogenesis: focusing on the role of stress-activated MAPK. Patholog Res Int. 2012;2012:172894. •Pareja E, Cortes M, Bonora A, Fuset P, Orbis F, Lopez R, Mir J.New alternatives to the treatment of acute liver failure. ransplant Proc. 2010;42(8):2959-2961. •Parekkadan B, van Poll D, Suganuma K, Carter EA, Berthiaume F, Tilles AW, Yarmush ML. Mesenchymal stem cell-derived molecules reverse fulminant hepatic failure. PLoS One. 2007 Sep 26;2(9):e941. •Peyvandi F, Jayandharan G, Chandy M, Srivastava A, Nakaya SM, Johnson MJ, THompon AR, Goodeve A, Garagiola I, Lavoretano S, Menegatti M, Palla R, Spreafico M, Tagliabue L, Asselta R, Duga S, Mannucci PM. Genetic diagnosis of haemophilia and other inherited bleeding disorders. Haemophilia 2006;12 Suppl 3:82-89. •Rashid ST, Corbineau S, Hannan N, Marciniak SJ, Miranda E, Alexander G, Huang-Doran I, Griffin J, Ahrlund-Richter L, Skepper J, Semple R, Weber A, Lomas DA, Vallier L. Modeling inherited metabolic disorders of the liver using human induced pluripotent stem cells. Clin Invest. 2010;120(9):3127-3136. •Reid AB, Kurten RC, McCullough SS, Brock RW, Hinson JA. Mechanisms of acetaminophen-induced hepatotoxicity: role of oxidative stress and mitochondrial permeability transition in freshly isolated mouse hepatocytes. J Pharmacol Exp Ther. 2005;312:509-516. •Ren G, Zhao X, Zhang L, Zhang J, L'Huillier A, Ling W, Roberts AI, Le AD, Shi S, Shao C, Shi Y. Inflammatory cytokine-induced intercellular adhesion molecule-1 and vascular cell adhesion molecule-1 in mesenchymal stem cells are critical for immunosuppression. J Immunol. 2010;184(5):2321-2328. •Ries C, Egea V, Karow M, Kolb H, Jochum M, Neth P. MMP-2, MT1-MMP, and TIMP-2 are essential for the invasive capacity of human mesenchymal stem cells: differential regulation by inflammatory cytokines. Blood. 2007;109(9):4055-4063. •Robinton DA, Daley GQ. The promise of induced pluripotent stem cells in research and therapy. Nature 2012;481(7381):295-305. •Rosenthal RJ, Chen SC, Hewitt W, Wang CC, Eguchi S, Geller S, Phillips EH, Demetriou AA, Rozga J. Acute impairment of hepatic microcirculation and recruitment of nonparenchymal cells by intrasplenic hepatocyte transplantation. Surg Endosc. 1996;10(11):1075-9 •Rugsta HE, Robinson SH, Yannoni C, Tashjian AH, Jr. Transfer of bilirubin uridine diphosphate-glucuronyltransferase to enzyme-deficient rats. Science. 1970;30:170(3957):553-555. •Salomone F, Barbagallo I, Puzzo L, Piazza C, Li Volti G. Efficacy of adipose tissue-mesenchymal stem cell transplantation in rats with acetaminophen liver injury. Stem Cell Res. 2013;11:1037-44. •Sancho-Bru, P.; Najimi, M.; Caruso, M.; Pauwelyn, K.; Cantz, T.; Forbes, S.; Roskams, T.; Ott, M.; Gehling, U.; Sokal, E.; Verfaillie, C. M.; Muraca, M. Stem and progenitor cells for liver repopulation: can we standardise the process from bench to bedside? Gut 2009;58(4):594-603. •Sart S, Ma T, Li Y. Preconditioning stem cells for in vivo delivery. Biores Open Access. 2014;3:137-49. •Sebastiano, V.; Maeder, M. L.; Angstman, J. F.; Haddad, B.; Khayter, C.; Yeo, D. T.; Goodwin, M. J.; Hawkins, J. S.; Ramirez, C. L.; Batista, L. F.; Artandi, S. E.; Wernig, M.; Joung, J. K. In situ genetic correction of the sickle cell anemia mutation in human induced pluripotent stem cells using engineered zinc finger nucleases. Stem Cells 2011;29(11):1717-1726. •Shi M, Li J, Liao L, Chen B, Li B, Chen L, Jia H, Zhao RC. Regulation of CXCR4 expression in human mesenchymal stem cells by cytokine treatment: role in homing efficiency in NOD/SCID mice. Haematologica. 2007;92(7):897-904. •Si-Tayeb K, Noto FK, Nagaoka M, Li J, Battle MA, Duris C, North PE, Dalton S, Duncan SA. Highly efficient generation of human hepatocyte-like cells from induced pluripotent stem cells.Hepatology. 2010;51(1):297-305. •Song H, Cha MJ, Song BW. Reactive oxygen species inhibit adhesion of mesenchymal stem cells implanted into ischemic myocardium via interference of focal adhesion complex. Stem Cells. 2010;28:555-563. •Song, Z.; Cai, J.; Liu, Y.; Zhao, D.; Yong, J.; Duo, S.; Song, X.; Guo, Y.; Zhao, Y.; Qin, H.; Yin, X.; Wu, C.; Che, J.; Lu, S.; Ding, M.; Deng, H. Efficient generation of hepatocyte-like cells from human induced pluripotent stem cells. Cell Res 2009;19(11):1233-1242. •Starzl TE, Groth CG, Brettschneider L, Penn I, Fulginiti VA, Moon JB, Blanchard H, Martin AJ Jr, Porter KA. Orthotopic homotransplantation of the human liver. Ann Surg. 1968;168(3):392-415. •Starzl TE, Marchioro TL, Vonkaulla KN, Hermann G, Brittain RS, Waddell Wr. Homotransplantation of the liver in humans. Surg Gynecol Obstet 193;117:659-676. •Strong RW, Lynch SV, Ong TH, Matsunami H, Koido Y, Balderson GA. Successful liver transplantation from a living donor to her son. N Engl J Med. 1990;322(21):1505-1507. •Takahashi, K; Yamanaka, S. Induction of pluripotent stem cells from mouse embryonic and adult fibroblast cultures by defined factor. Cell 2016;126 (4): 663–676. •Takami T, Terai S, Sakaida I. Stem cell therapy in chronic liver disease, Techniques for intrasplenic hepatocyte transplantation in the large animal model.Curr Opin Gastroenterol 2012;28:203-208. •Wernig M, Zhao JP, Pruszak J, Hedlund E, Fu D, Soldner F, Broccoli V, Constantine-Paton M, Isacson O, Jaenisch R. Neurons derived from reprogrammed fibroblasts functionally integrate into the fetal brain and improve symptoms of rats with Parkinson’s disease. Proc Natl Acad Sci U S A 2008;105:5856-5861. •Wilhelm A, Leister I, Sabandal P, Krause P, Becker H, Markus PM. 111Indium labeling of hepatocytes for analysis of short-term biodistribution of transplanted cells. J Pediatr Surg. 2004;39(8):1214-1219. •Wu SM, Hochedlinger K, Harnessing the potential of induced pluripotent stem cells for regenerative medicine. Nat Cell Biol. 2011;13(5):497-505. •Wu YM, Joseph B, Berishvili E, Kumaran V, Gupta S. Hepatocyte transplantation and drug-induced perturbations in liver cell compartments. Hepatology. 2008;47(1):279-287. •Wynn RF, Hart CA, Corradi-Perini C, O'Neill L, Evans CA, Wraith JE, Fairbairn LJ, Bellantuono I. A small proportion of mesenchymal stem cells strongly expresses functionally active CXCR4 receptor capable of promoting migration to bone marrow. Blood. 2004;104(9):2643-2645. •XU D, AlipioZ, Fink LM, Adcock DM, Yang J, Ward DC, Ma Y. Phenotypic correction of murine hemophilia A using an iPS cell-based therapy. Proc Natl Acad Sci USA. 2009;106(3):803-813. •Xu YQ, Liu ZC. Therapeutic potential of adult bone marrow stem cells in liver disease and delivery approaches. Stem Cell Rev. 2008;4(2):101-112. •Yagi H, Soto-Gutierrez A, Parekkadan B, Kitagawa Y, Tompkins RG, Kobayashi N, et al. Mesenchymal stem cells: mechanisms of immunomodulation and homing. Cell Transplant. 2010;19:667-679. •Yagi T, Hardin JA, Valenzuela YM, Miyoshi H, Gores GJ, Nyberg SL.Caspase inhibition reduces apoptotic death of cryopreserved porcine hepatocytes. Hepatology 2001;33(6):1432-1440. •Yang R, Miki K, He X, Killeen ME, Fink MP. Prolonged treatment with N-acetylcystine delays liver recovery from acetaminophen hepatotoxicity. Crit Care. 2009;13:R55. •Yu Y, Fisher JE, Lillegard JB, Rodysill B, Amiot B, Nyberg SL.Cell therapies for liver diseases. Liver Transpl. 2012;18(1):9-21. •Zhu X, He B, Zhou X, Ren J. Effects of transplanted bone-marrow-derived mesenchymal stem cells in animal models of acute hepatitis. Cell Tissue Res 2013;351:477–486. •Zuk PA, Zhu M, Ashjian P, De Ugarte DA, Huang JI, Mizuno H, Alfonso ZC, Fraser JK, Benhaim P, Hedrick MH. Human adipose tissue is a source of multipotent stem cells. Mol Biol Cell. 2002;13(12):4279-4295. | |
dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/4013 | - |
dc.description.abstract | 細胞移植 (cell transplantation) 可以取代器官移植 (organ transplantation) 成為器官衰竭病人的第一治療選擇。不管在動物實驗或臨床上肝細胞移植 (hepatocyte transplantation) 已被證明可用來治療多種不同的肝臟疾病。然而肝細胞移植的發展仍需克服肝細胞來源短缺以及異體排斥的問題。幹細胞移植近年來被應用在許多疾病上並且具有治療的可行性。因此,幹細胞療法 (stem cell therapy) 有可能成為協助治療肝臟疾病的新選擇。目前幹細胞被應用於動物實驗與臨床試驗做為修補和組織再生之用途。本論文利用誘導性全能幹細胞 (induce pluripotent stem cells, iPSCs) 的分化潛能獲得具有功能性的肝細胞以及網膜脂肪幹細胞 (adipose stem cells, ASCs) 做為細胞移植的細胞來源,並分別移植到不同類型的肝臟疾病-第九凝血因子(clotting factor IX, FIX) 剔除之B型血友病 (hemophilia B, HB) 的基因缺陷的疾病模式與乙醯胺酚 (acetaminophen, APAP) 引起的急性肝臟衰竭 (acute liver failure, ALF) 的動物模式分別探討其治療潛能性。誘導性全能幹細胞具有與胚胎幹細胞 (embryonic stem cells, ESCs) 相同特質,並且具有可分化成特定細胞的能力。在體外誘導條件下將誘導性全能幹細胞分化成具有功能性的肝細胞並進一步去探討其細胞對於基因缺陷肝臟疾病的治療效果。結果顯示來自誘導性全能幹細胞分化而成的肝細胞具有肝臟的主要功能,包含合成血清白蛋白 (albumin) 與尿素 (uric acid)、代謝功能並儲存肝醣 (glycogen) 能力。將此細胞移植到第九凝血因子剔除之B型血友病小鼠後可在宿主的血清中偵測到第九凝血因子活性並改善凝血能力且可嵌入 (engraftment) 宿主的肝臟組織中。因此,來自於誘導性全能幹細胞所分化的肝細胞可提供做為細胞移植的細胞來源並做為基因缺陷肝臟疾病的新治療選擇。再者,從網膜脂肪組織去提取脂肪幹細胞並探討其細胞對於急性肝衰竭的治療潛力。網膜脂肪幹細胞做為細胞移植的來源可以明顯改善急性肝衰竭動物的死亡率並且抑制細胞色素P450 (cytochrome P450) 表現,進而減少硝基酪氨酸 (nitrotyrosine)的堆積並同時提高NF-E2-related factor 2 (Nrf2)的表現進而減低乙醯胺酚的毒性傷害達到保護肝臟。綜合上述實驗結果顯示幹細胞療法提供肝臟疾病治療的新契機。 | zh_TW |
dc.description.abstract | Cell transplantation are expected to replace the whole organ transplantation as the first therapeutic choice for patients with organ failure. Hepatocyte transplantation has been proved with the ability of treating a wide variety of liver disease in both animal experiments and clinical studies. However, the hepatocytes shortage and allograft rejection remained unsolved during the development of hepatocyte transplantation. On the other hand, stem cell therapy has been shown to have the therapeutic potential in many kinds of diseases, and the autograft of stem cell is suggested as the key of organ shortage and allograft rejection. Therefore, the stem cell transplantation is gathering the attention with the potential of being the next therapeutic strategy for liver diseases. For the reason, various cell types have been tried, whether in animal models or in clinical trials, to repair or regenerate the damage tissue. In this dissertation, we allowed hepatocyte-like cell derived from induce pluripotent stem cells (iPSCs) and adipose stem cells (ASCs) generated from omentum adipose tissue as the candidates, and addressed their therapeutic potential in inherited diseases-hemophilia B and acute liver failure (ALF) induced by acetaminophen (APAP), respectively. iPSCs, shared some characteristics with the ESCs, have been demonstrated with the capability of differentiating into different somatic cells. However, whether hepatocytes differentiated from iPSCs is functioning with the therapeutic efficiency of genetic liver disease, the hemophilia B disease (factor IX knockout mice model), has never been proved. Our data showed that iPSCs derived hepatocytes shared many characteristics with hepatocytes, including albumin synthesis, metabolic capacity, glycogen storage, and ureagenesis. In fact, iPSCs-derived hepatocytes transplantation led to increased coagulation factor IX activity, improved thrombus generation, and better hemostasis parameters, moreover, the transferred cells were localized in the liver in recipient HB mice. As a result, hepatocyte-like cells derived from iPSCs is suggested to be a potential cell source for cell-based therapy in the treatment of HB. Another study is about the therapeutic potential of omentum derived adipose stem cells in APAP-induced ALF. We successfully acquired the ASCs from omentum adipose tissue, and proved the antioxidant activity of the candidate. Our data showed that ASCs transplantation significantly improved the survival rate of mice with ALF, and attenuated the severity of APAP-induced liver damage by suppressing cytochrome P450 activity. Following the activity, the cell reduced the accumulation of toxic nitrotyrosine and the upregulation of NF-E2-related factor 2 (Nrf2) expression, and in sequential resulted in the increase of antioxidant activity. Taken together, our results suggested the stem cell therapy is an opportunity to open up entirely new perspectives for treatment of severe liver diseases. | en |
dc.description.provenance | Made available in DSpace on 2021-05-13T08:40:26Z (GMT). No. of bitstreams: 1 ntu-105-D98642004-1.pdf: 5100312 bytes, checksum: b6dbd37f58959dfc3cdae08efbe0ba9f (MD5) Previous issue date: 2016 | en |
dc.description.tableofcontents | CONTENTS
口試委員會審定書 誌謝………………………………………………………………………………………………3 摘要……………………………………………………………………………………………....4 Abstract…………………………………………………………………………………………..5 Contents………………………………………………………………………………………….7 List of Tables………………………………………………………………………………….....10 List of Figures……………………………………………………………………………………11 Abbreviations…………………………………………………………………………………….13 Chapter 1 Literature Review…………………………………………………………………...15 1-1 Introduction…………………………………………………………………………………..16 1-2 Liver transplantation………………………………………………………………………….16 1-3 Cell therapy…………………………………………………………………………………...17 1-3-1 Hepatocyte transplantation…………………………………………………………………….17 1-3-2 Stem cell therapy…………………………………………………………………………………18 1-4 Stem cells source for liver diseases……………………………………………………………19 1-4-1 Pluripotent stem cells…………………………………………………………………………….19 1-4-2 Multipotent stem cells……………………………………………………………………………20 1-4-3 Hepatocyte-like cells……………………………………………………………………………..21 1-5 Cell therapy for liver diseases…………………………………………………………………21 1-5-1 Acute liver failure………………………………………………………………………………..21 1-5-2 Inherited metabolic liver disease………………………………………………………………22 1-5-3 End-stage liver disease (cirrhosis)…………………………………………………………….23 1-6 Delivery route for cell therapy…………………………………………………………………23 1.7 Hypothesis and aims…………………………………………………………………………...24 Chapter 2 Therapeutic potential of iPSCs derived hepatocytes in genetic liver disease……………………………………………………………………………….26 2.1 Summary ……………………………………………………………………………………27 2.2 Introduction………………………………………………………………………………….28 2.3 Materials and Methods………………………………………………………………………30 2.3.1 Animal…………………………………………………………………………………………….30 2.3.2 iPSCs and hepatocyte differentiation…………………………………………………………30 2.3.3 Primary hepatocytes…………………………………………………………………………….31 2.3.4 Cell transplantation and preconditioned animal model……………………………………31 2.3.5 Engraftment assay………………………………………………………………………………31 2.3.6 Reverse transcription-polymerase chain reaction (RT-PCR)……………………………..32 2.3.7 Functional assay for hepatocyte-like derived from iPSCs…………………………………32 2.3.8 Immunofluorescence…………………………………………………………………………….33 2.3.9 FIX clotting activity assay …………………………………………………………………….33 2.3.10 Hemostatic function assay……………………………………………………………………34 2.3.11 Statistical analysis…………………………………………………………………………….34 2.4 Result………………………………………………………………………………………..34 2.4.1 Generation and characterization of hepatocytes from mouse iPSCs…………………….34 2.4.2 Transplantation of iPSCs-derived hepatocytes in HB mice 3.1.3 Engraftment of iPSCs-derivedhepatocytes ………………………………………………………………….…36 2.4.3 Engraftment of iPSCs-derived hepatocytes………………………………………………….37 2.5 Discussion…………………………………………………………………………………..38 2.6 Tables and Figures…………………………………………………………………………..41 Chapter 3 Therapeutic Potential of Omentum Adipose Derived Stem Cells in Acute Liver Failure………………………………………………………………………………51 3.1 Summary ……………………………………………………………………………………52. 3.2 Introduction …………………………………………………………………………………53 3.3 Material and Methods………………………………………………………………………..55 3.3.1 Animal………………………………………………………………………………………………..55 3.3.2 Hepatocyte…………………………………………………………………………………………..55 3.3.3 Isolation and characterization of omentum ASCs……………………………………………..55 3.3.4 ALF model and omentum ASC transplantation………………………………………………..56 3.3.5 Real-time quantitative PCR (QPCR)……………………………………………………………57 3.3.6 Immunohistology…………………………………………………………………………………..57 3.3.7 Antioxidant enzyme activity assay and GSH content measurement…………………………58 3.3.8 Western blot………………………………………………………………………………………..58 3.3.9 ROS, viability and LDH assays………………………………………………………………….59 3.3.10 Statistical analysis………………………………………………………………………………59 3.4 Results………………………………………………………………………………………..59 3.4.1 Omentum ASCs characterization……………………………………………………………….59 3.4.2 Effects of omentum ASCs on APAP-induced damage in isolated hepatocytes……………60 3.4.3 Omentum ASCs improve the survival rate of mice on acute liver failure induced by APAP………………………………………………………………………………………………………..61 3.4.4 Omentum ASC transplantation prevents GSH depletion and enhances antioxidant enzyme activity……………………………………………………………………………………………………...62 3.5 Discussion……………………………………………………………………………………64 3.6 Tables and Figures……………………………………………………………………………68 Prospective aspects……………………………………………………………………………….92 Reference…………………………………………………………………………………………94 List of publications……………………………………………………………………………….103 | |
dc.language.iso | en | |
dc.title | 幹細胞療法在肝臟疾病的應用 | zh_TW |
dc.title | Stem Cell Therapy for Liver Diseases | en |
dc.type | Thesis | |
dc.date.schoolyear | 104-1 | |
dc.description.degree | 博士 | |
dc.contributor.coadvisor | 吳耀銘 | |
dc.contributor.oralexamcommittee | 林淑華,黃敏銓,宋麗英 | |
dc.subject.keyword | 細胞移植,器官移植幹,幹細胞療法,誘導性全能幹細胞,網膜脂肪幹細胞,第九凝血因子,血友病B型,乙醯胺酚,急性肝臟衰竭, | zh_TW |
dc.subject.keyword | Cell transplantation,Organ transplantation,Stem cell therapy,induce pluripotent stem cells,Omentum adipose stem cells,Clotting factor IX,Acetaminophen,Acute liver failure, | en |
dc.relation.page | 144 | |
dc.rights.note | 同意授權(全球公開) | |
dc.date.accepted | 2016-02-01 | |
dc.contributor.author-college | 生物資源暨農學院 | zh_TW |
dc.contributor.author-dept | 生物科技研究所 | zh_TW |
Appears in Collections: | 生物科技研究所 |
Files in This Item:
File | Size | Format | |
---|---|---|---|
ntu-105-1.pdf | 4.98 MB | Adobe PDF | View/Open |
Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.