請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/40113完整後設資料紀錄
| DC 欄位 | 值 | 語言 |
|---|---|---|
| dc.contributor.advisor | 莊晴光 | |
| dc.contributor.author | Yu-Jui Huang | en |
| dc.contributor.author | 黃昱瑞 | zh_TW |
| dc.date.accessioned | 2021-06-14T16:41:25Z | - |
| dc.date.available | 2013-08-08 | |
| dc.date.copyright | 2008-08-08 | |
| dc.date.issued | 2008 | |
| dc.date.submitted | 2008-08-01 | |
| dc.identifier.citation | [1] L. Wang, R. Kraemer, and J. Borngraeber, “An Improved Highly-Linear Low- Power Down-Conversion Micromixer for 77GHz Automotive Radar in SiGe Technology,” IEEE MTT-S International Microwave Symposium (IMS), San Francisco, USA, Jun. 2006.
[2] S. T. Nicolson, P. Chevalier, A. Chantre, B. Sautreuil, and S. P. Voinigescu, “A 77–79 GHz Doppler radar transceiver in silicon,” IEEE CSICS, pp. 252-255, Oct. 2007. [3] Dennis Buss, Brian L. Evans, Jeff Bellay, William Krenik, Baher Haroun, Dirk Leipold, Ken Maggio, Jau-Yuann Yang, and Ted Moise ; “SOC CMOS Technology for Personal Internet Product” ,IEEE Trans. ELECTRON DEVICES, vol. 50, no. 3, pp. 546-556, Mar. 2003. . [4] S. F. Wei, I. H. Lin, H. Wang, “A monolithic K-band MMIC receiver”, Microwave Conference, Asia-Pacific, 2001, Vol. 1, 3-6 Dec. 2001 pp. 299–302. [5] E. Sonmez, S. Chartier, C. Schick, A. Trasser, and H. Schumacher, “Fully integrated differential 24 GHz receiver using a 0.8μm SiGe HBT technology,” 35th European Microwave Conference, Paris, France, 2005. [6] P. Wennekers, A. Ghazionour, and R. Reuter, “An integrated SiGe transmitter circuit for 24 GHz radar sensors,” in Proc. BCTM, Sep. 2002, pp. 212–215. [7] G. Chien, W. Feng, Y. A. Hsu, L. Tse, “A 2.4GHz CMOS Transceiver and Baseband Processor Chipset for 802.11b Wireless LAN Application,” ISSCC. Dig. Tech. Papers, pp. 358-359, Feb. 2003. [8] M. Zargari, M. Terrovitis, S. Hung-Min Jen, B. J. Kaczynski, M. Lee, M. P. Mack, S. S. Mehta, S.Mendis, K. Onodera, H. Samavati, W. W. Si, K. Singh, A. Tabatabaei, D. Weber, D. K. Su, and Bruce A. Wooley, “A Single-Chip Dual-Band Tri-Mode CMOS Transceiver for IEEE 802.11a/b/g Wireless LAN,” IEEE J. Solid-State Circuits, vol. 39, no. 12, pp. 2239-2249, Dec. 2004. [9] Z. Xu, S. Jiang, Y. Wu, Heng-yu Jian, G. Chu, K. Ku, P Wang, N. Tran, Q. Gu, Ming-zhi Lai, C. Chien, M. F. Chang, P. D. Chow, “A Compact Dual-Band Direct-Conversion CMOS Transceiver for 802.11a/b/g WLAN,” ISSCC Dig. Tech. Papers, pp. 98-99, Feb. 2005 [10] Taiwan Semiconductor Manufacturing Co., LTD. Design Manual. [11] F. O. Eynde et al, ”A Fully Integrated Single-Chip SoC for Bluetooth,” IEEE ISSCC tech. Dig., pp. 196-197, 2001. [12] A. Leeuwenburgh et al, “A 1.9GHz Fully Integrated CMOS DECT Transceiver,” IEEE ISSCC Tech. Dig., page 450, 2003. [13] Giuseppe Gramegna, Philip G. Matto, Marco Losi, Sabyasachi Das, Massimo Franciotta, Nino G. Bellantone, Michele Vaiana, Valentina Mandara, and Mario Paparo, ”A 56-mW 23- Single-Chip 180-nm CMOS GPS Receiver with 27.2-mW 41- Radio,” IEEE JSSC, vol. 41, no.3, March 2006. [14] Ching-Kuang C. Tzuang, Chi-Ho Chang, Hsien-Shun Wu, Sen Wang, Si-Xian Lee, Chih-Chia Chen, Chi-Yang Hsu, Kun-Hung Tsai, Johnsea Chen, “An X-band CMOS Multifunction-Chip FMCW Radar,” in IEEE MTT-S Int. Microwave Symposium Digest, pp. 2011-2014, 2006. [15] Meng-Ju Chiang, “Design and Application of CMOS Synthetic Quasi-TEM Transmission Lines,” Doctoral Dissertation, NTU, January, 2008. [16] B. Razavi, RF Microelectronics, Prentice Hall, 1998. [17] Keng Leong Fong and Robert G. Meyer, “Monolithic RF active mixer design,” IEEE Trans., Circuits and systems, Vol.46, Issue3, pp. 231-239, Mar.1999. [18] FONG, K. and MEYER, R.G., “Monolithic RF active mixer design,” IEEE Trans. Circuits Syst. II, vol. 46, pp. 231–239, Mar. 1999. [19] Stephen A. Maas, “Microwave Mixers,” Artech House Publishers; 2nd edition (September 1992). [20] L. G. Maloratsky, “Passive RF and Microwave Integrated Circuits,” Newnes, 2004. [21] R. K. Mongia, I. J. Bahl, P. Bhartia and J.-S. Hong, “RF and Microwave Coupled-Line Circuits,” Norwood, MA, Artech House, 2007. [22] Design Manual of 1P6M 0.18um CMOS, CMSC. [23] M.-J. Chiang, H.-S. Wu, and C.-K. C. Tzuang, “Design of synthetic quasi-TEM transmission line for CMOS compact integrated circuit,” IEEE Trans. Microwave Theory and Tech., vol. 55, no.12, part 1, pp. 2512-2520, Dec. 2007. [24] N. Marchand, “Transmission line conversion transformers,’’ Electronics, vol. 17, pp. 142–145, Dec. 1944. [25] Q. Sun, J. Yuan, V. T. Vo and A. A. Rezazadeh, “Design and realization of spiral Marchand balun using CPW multilayer GaAs technology,” in EuMA European Microwave Conf., pp. 68-71, Sep. 2006. [26] J.-X. Liu, C.-Y. Hsu, H.-R. Chuang and C.-Y. Chen, “A 60-GHz millimeter-wave CMOS Marchand balun,” in IEEE Radio Frequency Integrated Circuits Symp., 2007, pp. 445–448. [27] R. Schwindt, and C. Nguyen, “Computer-aided analysis and design of a planar multilayer Marchand balun,” IEEE Trans. Microwave Theory and Tech., vol. 42, No. 7, pp. 1429-1434, July 1994. [28] P.-S. Wu, C.-S. Lin, T.-W. Huang, H. Wang, Y.-C. Wang and C.-S. Wu, “A millimeter-wave ultra-compact broadband diode mixer using modified Marchand balun,” 2005 European Gallium Arsenide and Other Semiconductor Application Symp., pp. 349–352, 2005. [29] M. C. Tsai, “A new compact balun,” in IEEE MTT-S Int. Microw. Symp. Dig., 1993, pp. 141–143. [30] S. A. Maas and K.-W. Chang, “A broadband, planar, doubly balanced monolithic Ka-band diode mixer,” IEEE Trans. Microwave Theory and Tech., vol. 41, No. 12, pp. 2330-2335, Dec.1993. [31] C.-S. Lin, P.-S. Wu, M.-C. Yeh, J.-S. Fu, H.-Y. Chang, K.-Y. Lin, and H. Wang, “Analysis of multiconductor coupled-line Marchand baluns for miniature MMIC design,” IEEE Trans. Microwave Theory and Tech., vol. 55, No. 6, pp. 1190-1199, Jun. 2007. [32] P.-S. Wu, C.-H. Wang, T.-W. Huang, and H. Wang, “Compact and broad-band millimeter-wave monolithic transformer balanced mixers,” IEEE Trans. Microwave Theory and Tech., vol. 53, No. 10, pp. 3106-3114, Oct. 2005. [33] S.-C. Tseng, C.-C. Meng, C.-H. Chang and G.-W. Huang “SiGe HBT Gilbert downconverter with an integrated miniaturized Marchand balun for UWB applications,” in IEEE MTT-S Int. Microw. Symp. Dig., 2007, pp. 2141–2144. [34] K. S. Ang, and I. D. Robertson, “Analysis and design of impedance- transforming planar Marchand baluns,” IEEE Trans. Microwave Theory and Tech., vol. 49, No. 2, pp. 402-406, Feb. 2001. [35] S. A. Maas, “The RF and microwave circuit design cookbook,” Artech House, 1998. [36] L. A. MacEachern and T. Manku, “A charge-injection method for Gilbert cell biasing,” in Proc. IEEE Canadian Conf. Electric Computer Eng., vol. 1, May 1998, pp. 365–368. [37] S.-G. Lee and J.-K. Choi, “Current-reuse bleeding mixer,” Electron. Lett., vol. 36, no. 8, pp. 696–697, Apr. 2000. | |
| dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/40113 | - |
| dc.description.abstract | 本論文利用0.18微米互補性金屬氧化物半導體(CMOS)製程,提出了一個24GHz 微波降頻混波器應用在K 頻段之調頻連續波(FMCW)雷達系統。電路設計方面,考慮到高頻之本地振盪訊號能量取得不易,故於設計上致力於降低最佳操作之本地振盪訊號能量點;此外為了免於干擾系統中其它電路的功能,本設計藉由高對稱性之佈局技術、抗干擾之傳輸線應用與混波器架構之選擇,提升混頻器在整個系統的隔離度(isolation)。被動元件方面,使用互補式金屬圖案所構成合成傳輸線(CCS TL)、MIM電容、MFC電容。 | zh_TW |
| dc.description.abstract | This thesis presents a 24GHz microwave down-converting mixer for K-band Frequency Modulated Continuous Wave (FMCW) Radar System which is realized in 0.18μm CMOS process. At circuit design level, due to the difficulty of acquiring power for high frequency local oscillating signal, reducing the optimal operating power level is a priority. In addition, high symmetrical layout technique, application of interference rejecting transmission lines, and the choice of the schematic in mixer all contribute to outstanding isolation performance. Complementary-conducting-strips (CCS) transmission line, Metal-Insulator-Metal (MIM) capacitor, and Metal-Finger Capacitor (MFC) are used as passive components. | en |
| dc.description.provenance | Made available in DSpace on 2021-06-14T16:41:25Z (GMT). No. of bitstreams: 1 ntu-97-R95942008-1.pdf: 4865839 bytes, checksum: 37f51c1ae4347c1a90af95f226ecd508 (MD5) Previous issue date: 2008 | en |
| dc.description.tableofcontents | 中文摘要 ..I
ABSTRACT ..II CHAPTER 1 INTRODUCTION ……1 1.1 Background and Research Motivation…………1 1.2 Thesis Organization…………………4 CHAPTER 2 DESIGN CONSIDERATIONS FOR MIXERS…..5 2.1 Introduction……………….5 2.2 Mixer Fundamentals………………7 2.2.1 Mixing Mechanisms………………7 2.2.2 Conversion Gain……………….10 2.2.3 Port-to-Port Isolation……………………12 2.2.4.1 1dB Compression Point………15 2.2.4.2 Inter-modulation (IM3) Perfromance…17 2.2.4.3 Dynamic Range……………………..19 2.2.5 Noise In Mixer………………………………….20 2.2.6 Port Return Loss……………………..24 CHAPTER 3 SYNTHETIC QUASI-TEM TRANSMISSION LINE APPLICATION……………25 3.1 Conventional Micro-strip Line………………………25 3.2 Complementary-Conduction-Strip Transmission line (CCS-TL)……...28 3.3 CCS-TL Application— Marchand Balun Design………32 3.3.1 An Introduction to the Balun……………..32 3.3.2 Design of the Directional Coupler……….34 3.3.3 Design of the Marchand Balun……………37 CHAPTER 4 Down-Conversion Mixer Design…………41 4.1 Introduction………………….……41 4.2 Down-Conversion Double-Balanced Mixer Design….43 4.3 Measurement and Simulation Result………….50 CHAPTER 5 Conclusion…………..58 REFERENCE……………………….59 | |
| dc.language.iso | en | |
| dc.subject | 混頻器 | zh_TW |
| dc.subject | 隔離度 | zh_TW |
| dc.subject | CCS傳輸線 | zh_TW |
| dc.subject | CCS transmission line | en |
| dc.subject | isolation | en |
| dc.subject | mixer | en |
| dc.title | K頻段調頻連續波雷達系統之混頻器設計 | zh_TW |
| dc.title | Design of Mixer for K-band FMCW Radar System | en |
| dc.type | Thesis | |
| dc.date.schoolyear | 96-2 | |
| dc.description.degree | 碩士 | |
| dc.contributor.oralexamcommittee | 許博文,陳仲羲,王德惠 | |
| dc.subject.keyword | 混頻器,CCS傳輸線,隔離度, | zh_TW |
| dc.subject.keyword | mixer,CCS transmission line,isolation, | en |
| dc.relation.page | 65 | |
| dc.rights.note | 有償授權 | |
| dc.date.accepted | 2008-08-01 | |
| dc.contributor.author-college | 電機資訊學院 | zh_TW |
| dc.contributor.author-dept | 電信工程學研究所 | zh_TW |
| 顯示於系所單位: | 電信工程學研究所 | |
文件中的檔案:
| 檔案 | 大小 | 格式 | |
|---|---|---|---|
| ntu-97-1.pdf 未授權公開取用 | 4.75 MB | Adobe PDF |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。
