請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/40111完整後設資料紀錄
| DC 欄位 | 值 | 語言 |
|---|---|---|
| dc.contributor.advisor | 葉秀慧(Shiou-Hwei Yeh) | |
| dc.contributor.author | Ya-Wen Cheng | en |
| dc.contributor.author | 鄭雅紋 | zh_TW |
| dc.date.accessioned | 2021-06-14T16:41:24Z | - |
| dc.date.available | 2013-09-11 | |
| dc.date.copyright | 2008-09-11 | |
| dc.date.issued | 2008 | |
| dc.date.submitted | 2008-08-01 | |
| dc.identifier.citation | [1] O. C. Ocama P, Lee WM, 'Hepatitis B virus infection: current status. ,' Am J Med, vol. 118, 2005.
[2] M. L. Michel, S. Pol, C. Brechot, and P. Tiollais, 'Immunotherapy of chronic hepatitis B by anti HBV vaccine: from present to future,' Vaccine, vol. 19, pp. 2395-9, Mar 21 2001. [3] J. H. Hoofnagle and D. Lau, 'New therapies for chronic hepatitis B,' J Viral Hepat, vol. 4 Suppl 1, pp. 41-50, 1997. [4] R. P. Beasley, 'Hepatitis B virus. The major etiology of hepatocellular carcinoma,' Cancer, vol. 61, pp. 1942-56, May 15 1988. [5] C. J. Chen, L. Y. Wang, and M. W. Yu, 'Epidemiology of hepatitis B virus infection in the Asia-Pacific region,' J Gastroenterol Hepatol, vol. 15 Suppl, pp. E3-6, May 2000. [6] I. Merican, R. Guan, D. Amarapuka, M. J. Alexander, A. Chutaputti, R. N. Chien, S. S. Hasnian, N. Leung, L. Lesmana, P. H. Phiet, H. M. Sjalfoellah Noer, J. Sollano, H. S. Sun, and D. Z. Xu, 'Chronic hepatitis B virus infection in Asian countries,' J Gastroenterol Hepatol, vol. 15, pp. 1356-61, Dec 2000. [7] M. W. Yu and C. J. Chen, 'Hepatitis B and C viruses in the development of hepatocellular carcinoma,' Crit Rev Oncol Hematol, vol. 17, pp. 71-91, Oct 1994. [8] J. H. Hoofnagle, E. Doo, T. J. Liang, R. Fleischer, and A. S. Lok, 'Management of hepatitis B: summary of a clinical research workshop,' Hepatology, vol. 45, pp. 1056-75, Apr 2007. [9] P. Tiollais, C. Pourcel, and A. Dejean, 'The hepatitis B virus,' Nature, vol. 317, pp. 489-95, Oct 10-16 1985. [10] Y. Miyakawa, H. Okamoto, and M. Mayumi, 'The molecular basis of hepatitis B e antigen (HBeAg)-negative infections,' J Viral Hepat, vol. 4, pp. 1-8, Jan 1997. [11] R. C. Hirsch, J. E. Lavine, L. J. Chang, H. E. Varmus, and D. Ganem, 'Polymerase gene products of hepatitis B viruses are required for genomic RNA packaging as wel as for reverse transcription,' Nature, vol. 344, pp. 552-5, Apr 5 1990. [12] G. Radziwill, W. Tucker, and H. Schaller, 'Mutational analysis of the hepatitis B virus P gene product: domain structure and RNase H activity,' J Virol, vol. 64, pp. 613-20, Feb 1990. [13] H. Tang, L. Delgermaa, F. Huang, N. Oishi, L. Liu, F. He, L. Zhao, and S. Murakami, 'The transcriptional transactivation function of HBx protein is important for its augmentation role in hepatitis B virus replication,' J Virol, vol. 79, pp. 5548-56, May 2005. [14] F. Zoulim, J. Saputelli, and C. Seeger, 'Woodchuck hepatitis virus X protein is required for viral infection in vivo,' J Virol, vol. 68, pp. 2026-30, Mar 1994. [15] Z. Zhang, N. Torii, Z. Hu, J. Jacob, and T. J. Liang, 'X-deficient woodchuck hepatitis virus mutants behave like attenuated viruses and induce protective immunity in vivo,' J Clin Invest, vol. 108, pp. 1523-31, Nov 2001. [16] V. V. Keasler, A. J. Hodgson, C. R. Madden, and B. L. Slagle, 'Enhancement of hepatitis B virus replication by the regulatory X protein in vitro and in vivo,' J Virol, vol. 81, pp. 2656-62, Mar 2007. [17] M. Forgues, M. J. Difilippantonio, S. P. Linke, T. Ried, K. Nagashima, J. Feden, K. Valerie, K. Fukasawa, and X. W. Wang, 'Involvement of Crm1 in hepatitis B virus X protein-induced aberrant centriole replication and abnormal mitotic spindles,' Mol Cell Biol, vol. 23, pp. 5282-92, Aug 2003. [18] S. Murakami, 'Hepatitis B virus X protein: a multifunctional viral regulator,' J Gastroenterol, vol. 36, pp. 651-60, Oct 2001. [19] D. Cougot, Y. Wu, S. Cairo, J. Caramel, C. A. Renard, L. Levy, M. A. Buendia, and C. Neuveut, 'The hepatitis B virus X protein functionally interacts with CREB-binding protein/p300 in the regulation of CREB-mediated transcription,' J Biol Chem, vol. 282, pp. 4277-87, Feb 16 2007. [20] J. C. Cross, P. Wen, and W. J. Rutter, 'Transactivation by hepatitis B virus X protein is promiscuous and dependent on mitogen-activated cellular serine/threonine kinases,' Proc Natl Acad Sci U S A, vol. 90, pp. 8078-82, Sep 1 1993. [21] Y. Lin, H. Tang, T. Nomura, D. Dorjsuren, N. Hayashi, W. Wei, T. Ohta, R. Roeder, and S. Murakami, 'The hepatitis B virus X protein is a co-activator of activated transcription that modulates the transcription machinery and distal binding activators,' J Biol Chem, vol. 273, pp. 27097-103, Oct 16 1998. [22] A. S. Kekule, U. Lauer, L. Weiss, B. Luber, and P. H. Hofschneider, 'Hepatitis B virus transactivator HBx uses a tumour promoter signalling pathway,' Nature, vol. 361, pp. 742-5, Feb 25 1993. [23] J. Benn, F. Su, M. Doria, and R. J. Schneider, 'Hepatitis B virus HBx protein induces transcription factor AP-1 by activation of extracellular signal-regulated and c-Jun N-terminal mitogen-activated protein kinases,' J Virol, vol. 70, pp. 4978-85, Aug 1996. [24] J. Benn and R. J. Schneider, 'Hepatitis B virus HBx protein activates Ras-GTP complex formation and establishes a Ras, Raf, MAP kinase signaling cascade,' Proc Natl Acad Sci U S A, vol. 91, pp. 10350-4, Oct 25 1994. [25] Y. H. Lee and Y. Yun, 'HBx protein of hepatitis B virus activates Jak1-STAT signaling,' J Biol Chem, vol. 273, pp. 25510-5, Sep 25 1998. [26] M. J. Bouchard, L. H. Wang, and R. J. Schneider, 'Calcium signaling by HBx protein in hepatitis B virus DNA replication,' Science, vol. 294, pp. 2376-8, Dec 14 2001. [27] S. J. Mansour, W. T. Matten, A. S. Hermann, J. M. Candia, S. Rong, K. Fukasawa, G. F. Vande Woude, and N. G. Ahn, 'Transformation of mammalian cells by constitutively active MAP kinase kinase,' Science, vol. 265, pp. 966-70, Aug 12 1994. [28] N. P. Klein, M. J. Bouchard, L. H. Wang, C. Kobarg, and R. J. Schneider, 'Src kinases involved in hepatitis B virus replication,' EMBO J, vol. 18, pp. 5019-27, Sep 15 1999. [29] C. Yun, H. R. Um, Y. H. Jin, J. H. Wang, M. O. Lee, S. Park, J. H. Lee, and H. Cho, 'NF-kappaB activation by hepatitis B virus X (HBx) protein shifts the cellular fate toward survival,' Cancer Lett, vol. 184, pp. 97-104, Oct 8 2002. [30] Y. I. Lee, S. Kang-Park, and S. I. Do, 'The hepatitis B virus-X protein activates a phosphatidylinositol 3-kinase-dependent survival signaling cascade,' J Biol Chem, vol. 276, pp. 16969-77, May 18 2001. [31] J. Benn and R. J. Schneider, 'Hepatitis B virus HBx protein deregulates cell cycle checkpoint controls,' Proc Natl Acad Sci U S A, vol. 92, pp. 11215-9, Nov 21 1995. [32] S. G. Lee and H. M. Rho, 'Transcriptional repression of the human p53 gene by hepatitis B viral X protein,' Oncogene, vol. 19, pp. 468-71, Jan 20 2000. [33] S. A. Becker, T. H. Lee, J. S. Butel, and B. L. Slagle, 'Hepatitis B virus X protein interferes with cellular DNA repair,' J Virol, vol. 72, pp. 266-72, Jan 1998. [34] D. Sitterlin, T. H. Lee, S. Prigent, P. Tiollais, J. S. Butel, and C. Transy, 'Interaction of the UV-damaged DNA-binding protein with hepatitis B virus X protein is conserved among mammalian hepadnaviruses and restricted to transactivation-proficient X-insertion mutants,' J Virol, vol. 71, pp. 6194-9, Aug 1997. [35] B. Luber, N. Arnold, M. Sturzl, M. Hohne, P. Schirmacher, U. Lauer, J. Wienberg, P. H. Hofschneider, and A. S. Kekule, 'Hepatoma-derived integrated HBV DNA causes multi-stage transformation in vitro,' Oncogene, vol. 12, pp. 1597-608, Apr 18 1996. [36] J. Summers and W. S. Mason, 'Replication of the genome of a hepatitis B--like virus by reverse transcription of an RNA intermediate,' Cell, vol. 29, pp. 403-15, Jun 1982. [37] W. S. Mason, A. R. Jilbert, and J. Summers, 'Clonal expansion of hepatocytes during chronic woodchuck hepatitis virus infection,' Proc Natl Acad Sci U S A, vol. 102, pp. 1139-44, Jan 25 2005. [38] F. V. Chisari, C. A. Pinkert, D. R. Milich, P. Filippi, A. McLachlan, R. D. Palmiter, and R. L. Brinster, 'A transgenic mouse model of the chronic hepatitis B surface antigen carrier state,' Science, vol. 230, pp. 1157-60, Dec 6 1985. [39] C. M. Kim, K. Koike, I. Saito, T. Miyamura, and G. Jay, 'HBx gene of hepatitis B virus induces liver cancer in transgenic mice,' Nature, vol. 351, pp. 317-20, May 23 1991. [40] D. Y. Yu, H. B. Moon, J. K. Son, S. Jeong, S. L. Yu, H. Yoon, Y. M. Han, C. S. Lee, J. S. Park, C. H. Lee, B. H. Hyun, S. Murakami, and K. K. Lee, 'Incidence of hepatocellular carcinoma in transgenic mice expressing the hepatitis B virus X-protein,' J Hepatol, vol. 31, pp. 123-32, Jul 1999. [41] B. K. Wu, C. C. Li, H. J. Chen, J. L. Chang, K. S. Jeng, C. K. Chou, M. T. Hsu, and T. F. Tsai, 'Blocking of G1/S transition and cell death in the regenerating liver of Hepatitis B virus X protein transgenic mice,' Biochem Biophys Res Commun, vol. 340, pp. 916-28, Feb 17 2006. [42] P. Paterlini, K. Poussin, M. Kew, D. Franco, and C. Brechot, 'Selective accumulation of the X transcript of hepatitis B virus in patients negative for hepatitis B surface antigen with hepatocellular carcinoma,' Hepatology, vol. 21, pp. 313-21, Feb 1995. [43] H. Zhu, Y. Wang, J. Chen, G. Cheng, and J. Xue, 'Transgenic mice expressing hepatitis B virus X protein are more susceptible to carcinogen induced hepatocarcinogenesis,' Exp Mol Pathol, vol. 76, pp. 44-50, Feb 2004. [44] O. Terradillos, O. Billet, C. A. Renard, R. Levy, T. Molina, P. Briand, and M. A. Buendia, 'The hepatitis B virus X gene potentiates c-myc-induced liver oncogenesis in transgenic mice,' Oncogene, vol. 14, pp. 395-404, Jan 30 1997. [45] Y. Shiratori, S. Shiina, M. Imamura, N. Kato, F. Kanai, T. Okudaira, T. Teratani, G. Tohgo, N. Toda, M. Ohashi, and et al., 'Characteristic difference of hepatocellular carcinoma between hepatitis B- and C- viral infection in Japan,' Hepatology, vol. 22, pp. 1027-33, Oct 1995. [46] C. M. Lee, S. N. Lu, C. S. Changchien, C. T. Yeh, T. T. Hsu, J. H. Tang, J. H. Wang, D. Y. Lin, C. L. Chen, and W. J. Chen, 'Age, gender, and local geographic variations of viral etiology of hepatocellular carcinoma in a hyperendemic area for hepatitis B virus infection,' Cancer, vol. 86, pp. 1143-50, Oct 1 1999. [47] M. W. Yu, Y. C. Yang, S. Y. Yang, S. W. Cheng, Y. F. Liaw, S. M. Lin, and C. J. Chen, 'Hormonal markers and hepatitis B virus-related hepatocellular carcinoma risk: a nested case-control study among men,' J Natl Cancer Inst, vol. 93, pp. 1644-51, Nov 7 2001. [48] M. W. Yu, S. W. Cheng, M. W. Lin, S. Y. Yang, Y. F. Liaw, H. C. Chang, T. J. Hsiao, S. M. Lin, S. D. Lee, P. J. Chen, C. J. Liu, and C. J. Chen, 'Androgen-receptor gene CAG repeats, plasma testosterone levels, and risk of hepatitis B-related hepatocellular carcinoma,' J Natl Cancer Inst, vol. 92, pp. 2023-8, Dec 20 2000. [49] N. Nagasue, A. Ito, H. Yukaya, and Y. Ogawa, 'Androgen receptors in hepatocellular carcinoma and surrounding parenchyma,' Gastroenterology, vol. 89, pp. 643-7, Sep 1985. [50] P. K. Eagon, M. S. Elm, M. J. Epley, H. Shinozuka, and K. N. Rao, 'Sex steroid metabolism and receptor status in hepatic hyperplasia and cancer in rats,' Gastroenterology, vol. 110, pp. 1199-207, Apr 1996. [51] Y. C. Toh, 'Effect of neonatal castration on liver tumor induction by N-2-fluorenylacetamide in suckling BALB/c mice,' Carcinogenesis, vol. 2, pp. 1219-21, 1981. [52] C. J. Kemp, C. N. Leary, and N. R. Drinkwater, 'Promotion of murine hepatocarcinogenesis by testosterone is androgen receptor-dependent but not cell autonomous,' Proc Natl Acad Sci U S A, vol. 86, pp. 7505-9, Oct 1989. [53] I. J. McEwan, 'Molecular mechanisms of androgen receptor-mediated gene regulation: structure-function analysis of the AF-1 domain,' Endocr Relat Cancer, vol. 11, pp. 281-93, Jun 2004. [54] H. J. Lee and C. Chang, 'Recent advances in androgen receptor action,' Cell Mol Life Sci, vol. 60, pp. 1613-22, Aug 2003. [55] S. Kousteni, T. Bellido, L. I. Plotkin, C. A. O'Brien, D. L. Bodenner, L. Han, K. Han, G. B. DiGregorio, J. A. Katzenellenbogen, B. S. Katzenellenbogen, P. K. Roberson, R. S. Weinstein, R. L. Jilka, and S. C. Manolagas, 'Nongenotropic, sex-nonspecific signaling through the estrogen or androgen receptors: dissociation from transcriptional activity,' Cell, vol. 104, pp. 719-30, Mar 9 2001. [56] T. W. Marshall, K. A. Link, C. E. Petre-Draviam, and K. E. Knudsen, 'Differential requirement of SWI/SNF for androgen receptor activity,' J Biol Chem, vol. 278, pp. 30605-13, Aug 15 2003. [57] K. A. Link, C. J. Burd, E. Williams, T. Marshall, G. Rosson, E. Henry, B. Weissman, and K. E. Knudsen, 'BAF57 governs androgen receptor action and androgen-dependent proliferation through SWI/SNF,' Mol Cell Biol, vol. 25, pp. 2200-15, Mar 2005. [58] C. A. Heinlein and C. Chang, 'Androgen receptor (AR) coregulators: an overview,' Endocr Rev, vol. 23, pp. 175-200, Apr 2002. [59] M. Fu, C. Wang, A. T. Reutens, J. Wang, R. H. Angeletti, L. Siconolfi-Baez, V. Ogryzko, M. L. Avantaggiati, and R. G. Pestell, 'p300 and p300/cAMP-response element-binding protein-associated factor acetylate the androgen receptor at sites governing hormone-dependent transactivation,' J Biol Chem, vol. 275, pp. 20853-60, Jul 7 2000. [60] S. Majumder, Y. Liu, O. H. Ford, 3rd, J. L. Mohler, and Y. E. Whang, 'Involvement of arginine methyltransferase CARM1 in androgen receptor function and prostate cancer cell viability,' Prostate, vol. 66, pp. 1292-301, Sep 1 2006. [61] H. Wang, Z. Q. Huang, L. Xia, Q. Feng, H. Erdjument-Bromage, B. D. Strahl, S. D. Briggs, C. D. Allis, J. Wong, P. Tempst, and Y. Zhang, 'Methylation of histone H4 at arginine 3 facilitating transcriptional activation by nuclear hormone receptor,' Science, vol. 293, pp. 853-7, Aug 3 2001. [62] M. Fu, M. Liu, A. A. Sauve, X. Jiao, X. Zhang, X. Wu, M. J. Powell, T. Yang, W. Gu, M. L. Avantaggiati, N. Pattabiraman, T. G. Pestell, F. Wang, A. A. Quong, C. Wang, and R. G. Pestell, 'Hormonal control of androgen receptor function through SIRT1,' Mol Cell Biol, vol. 26, pp. 8122-35, Nov 2006. [63] L. Wang, C. L. Hsu, and C. Chang, 'Androgen receptor corepressors: an overview,' Prostate, vol. 63, pp. 117-30, May 1 2005. [64] I. Rees, S. Lee, H. Kim, and F. T. Tsai, 'The E3 ubiquitin ligase CHIP binds the androgen receptor in a phosphorylation-dependent manner,' Biochim Biophys Acta, vol. 1764, pp. 1073-9, Jun 2006. [65] H. K. Lin, L. Wang, Y. C. Hu, S. Altuwaijri, and C. Chang, 'Phosphorylation-dependent ubiquitylation and degradation of androgen receptor by Akt require Mdm2 E3 ligase,' EMBO J, vol. 21, pp. 4037-48, Aug 1 2002. [66] O. Y. Khan, G. Fu, A. Ismail, S. Srinivasan, X. Cao, Y. Tu, S. Lu, and Z. Nawaz, 'Multifunction steroid receptor coactivator, E6-associated protein, is involved in development of the prostate gland,' Mol Endocrinol, vol. 20, pp. 544-59, Mar 2006. [67] I. R. Logan, L. Gaughan, S. R. McCracken, V. Sapountzi, H. Y. Leung, and C. N. Robson, 'Human PIRH2 enhances androgen receptor signaling through inhibition of histone deacetylase 1 and is overexpressed in prostate cancer,' Mol Cell Biol, vol. 26, pp. 6502-10, Sep 2006. [68] S. Yeh, Y. C. Hu, M. Rahman, H. K. Lin, C. L. Hsu, H. J. Ting, H. Y. Kang, and C. Chang, 'Increase of androgen-induced cell death and androgen receptor transactivation by BRCA1 in prostate cancer cells,' Proc Natl Acad Sci U S A, vol. 97, pp. 11256-61, Oct 10 2000. [69] S. Shin and I. M. Verma, 'BRCA2 cooperates with histone acetyltransferases in androgen receptor-mediated transcription,' Proc Natl Acad Sci U S A, vol. 100, pp. 7201-6, Jun 10 2003. [70] J. Prescott and G. A. Coetzee, 'Molecular chaperones throughout the life cycle of the androgen receptor,' Cancer Lett, vol. 231, pp. 12-9, Jan 8 2006. [71] L. Abu-Elheiga, A. Jayakumar, A. Baldini, S. S. Chirala, and S. J. Wakil, 'Human acetyl-CoA carboxylase: characterization, molecular cloning, and evidence for two isoforms,' Proc Natl Acad Sci U S A, vol. 92, pp. 4011-5, Apr 25 1995. [72] J. Ha, J. K. Lee, K. S. Kim, L. A. Witters, and K. H. Kim, 'Cloning of human acetyl-CoA carboxylase-beta and its unique features,' Proc Natl Acad Sci U S A, vol. 93, pp. 11466-70, Oct 15 1996. [73] L. Abu-Elheiga, D. B. Almarza-Ortega, A. Baldini, and S. J. Wakil, 'Human acetyl-CoA carboxylase 2. Molecular cloning, characterization, chromosomal mapping, and evidence for two isoforms,' J Biol Chem, vol. 272, pp. 10669-77, Apr 18 1997. [74] M. R. Munday, 'Regulation of mammalian acetyl-CoA carboxylase,' Biochem Soc Trans, vol. 30, pp. 1059-64, Nov 2002. [75] L. Abu-Elheiga, W. R. Brinkley, L. Zhong, S. S. Chirala, G. Woldegiorgis, and S. J. Wakil, 'The subcellular localization of acetyl-CoA carboxylase 2,' Proc Natl Acad Sci U S A, vol. 97, pp. 1444-9, Feb 15 2000. [76] J. E. Cronan, Jr. and G. L. Waldrop, 'Multi-subunit acetyl-CoA carboxylases,' Prog Lipid Res, vol. 41, pp. 407-35, Sep 2002. [77] J. Solbiati, A. Chapman-Smith, and J. E. Cronan, Jr., 'Stabilization of the biotinoyl domain of Escherichia coli acetyl-CoA carboxylase by interactions between the attached biotin and the protruding 'thumb' structure,' J Biol Chem, vol. 277, pp. 21604-9, Jun 14 2002. [78] H. Zhang, Z. Yang, Y. Shen, and L. Tong, 'Crystal structure of the carboxyltransferase domain of acetyl-coenzyme A carboxylase,' Science, vol. 299, pp. 2064-7, Mar 28 2003. [79] A. W. Alberts, R. M. Bell, and P. R. Vagelos, 'Acyl carrier protein. XV. Studies of -ketoacyl-acyl carrier protein synthetase,' J Biol Chem, vol. 247, pp. 3190-8, May 25 1972. [80] S. J. Wakil, J. K. Stoops, and V. C. Joshi, 'Fatty acid synthesis and its regulation,' Annu Rev Biochem, vol. 52, pp. 537-79, 1983. [81] S. H. Park, S. R. Gammon, J. D. Knippers, S. R. Paulsen, D. S. Rubink, and W. W. Winder, 'Phosphorylation-activity relationships of AMPK and acetyl-CoA carboxylase in muscle,' J Appl Physiol, vol. 92, pp. 2475-82, Jun 2002. [82] M. C. Barber, N. T. Price, and M. T. Travers, 'Structure and regulation of acetyl-CoA carboxylase genes of metazoa,' Biochim Biophys Acta, vol. 1733, pp. 1-28, Mar 21 2005. [83] H. J. Harwood, Jr., 'Treating the metabolic syndrome: acetyl-CoA carboxylase inhibition,' Expert Opin Ther Targets, vol. 9, pp. 267-81, Apr 2005. [84] G. Medes, A. Thomas, and S. Weinhouse, 'Metabolism of neoplastic tissue. IV. A study of lipid synthesis in neoplastic tissue slices in vitro,' Cancer Res, vol. 13, pp. 27-9, Jan 1953. [85] F. P. Kuhajda, 'Fatty-acid synthase and human cancer: new perspectives on its role in tumor biology,' Nutrition, vol. 16, pp. 202-8, Mar 2000. [86] J. V. Swinnen, F. Vanderhoydonc, A. A. Elgamal, M. Eelen, I. Vercaeren, S. Joniau, H. Van Poppel, L. Baert, K. Goossens, W. Heyns, and G. Verhoeven, 'Selective activation of the fatty acid synthesis pathway in human prostate cancer,' Int J Cancer, vol. 88, pp. 176-9, Oct 15 2000. [87] L. Z. Milgraum, L. A. Witters, G. R. Pasternack, and F. P. Kuhajda, 'Enzymes of the fatty acid synthesis pathway are highly expressed in in situ breast carcinoma,' Clin Cancer Res, vol. 3, pp. 2115-20, Nov 1997. [88] K. Brusselmans, E. De Schrijver, G. Verhoeven, and J. V. Swinnen, 'RNA interference-mediated silencing of the acetyl-CoA-carboxylase-alpha gene induces growth inhibition and apoptosis of prostate cancer cells,' Cancer Res, vol. 65, pp. 6719-25, Aug 1 2005. [89] V. Chajes, M. Cambot, K. Moreau, G. M. Lenoir, and V. Joulin, 'Acetyl-CoA carboxylase alpha is essential to breast cancer cell survival,' Cancer Res, vol. 66, pp. 5287-94, May 15 2006. [90] C. Magnard, R. Bachelier, A. Vincent, M. Jaquinod, S. Kieffer, G. M. Lenoir, and N. D. Venezia, 'BRCA1 interacts with acetyl-CoA carboxylase through its tandem of BRCT domains,' Oncogene, vol. 21, pp. 6729-39, Oct 3 2002. [91] K. Moreau, E. Dizin, H. Ray, C. Luquain, E. Lefai, F. Foufelle, M. Billaud, G. M. Lenoir, and N. D. Venezia, 'BRCA1 affects lipid synthesis through its interaction with acetyl-CoA carboxylase,' J Biol Chem, vol. 281, pp. 3172-81, Feb 10 2006. [92] M. E. Thompson, R. A. Jensen, P. S. Obermiller, D. L. Page, and J. T. Holt, 'Decreased expression of BRCA1 accelerates growth and is often present during sporadic breast cancer progression,' Nat Genet, vol. 9, pp. 444-50, Apr 1995. [93] T. Kanno, N. Kurioka, S. Kim, A. Tamori, K. Kim, H. Oka, T. Kuroki, Y. Mizoguchi, and K. Kobayashi, 'Implications of hyperechoic lesions in small hepatocellular carcinoma,' Gastroenterol Jpn, vol. 24, pp. 528-34, Oct 1989. [94] N. Yahagi, H. Shimano, K. Hasegawa, K. Ohashi, T. Matsuzaka, Y. Najima, M. Sekiya, S. Tomita, H. Okazaki, Y. Tamura, Y. Iizuka, R. Nagai, S. Ishibashi, T. Kadowaki, M. Makuuchi, S. Ohnishi, J. Osuga, and N. Yamada, 'Co-ordinate activation of lipogenic enzymes in hepatocellular carcinoma,' Eur J Cancer, vol. 41, pp. 1316-22, Jun 2005. [95] C. M. Chiu, S. H. Yeh, P. J. Chen, T. J. Kuo, C. J. Chang, W. J. Yang, and D. S. Chen, 'Hepatitis B virus X protein enhances androgen receptor-responsive gene expression depending on androgen level,' Proc Natl Acad Sci U S A, vol. 104, pp. 2571-8, Feb 20 2007. [96] G. Rigaut, A. Shevchenko, B. Rutz, M. Wilm, M. Mann, and B. Seraphin, 'A generic protein purification method for protein complex characterization and proteome exploration,' Nat Biotechnol, vol. 17, pp. 1030-2, Oct 1999. [97] O. Puig, F. Caspary, G. Rigaut, B. Rutz, E. Bouveret, E. Bragado-Nilsson, M. Wilm, and B. Seraphin, 'The tandem affinity purification (TAP) method: a general procedure of protein complex purification,' Methods, vol. 24, pp. 218-29, Jul 2001. [98] T. Burckstummer, K. L. Bennett, A. Preradovic, G. Schutze, O. Hantschel, G. Superti-Furga, and A. Bauch, 'An efficient tandem affinity purification procedure for interaction proteomics in mammalian cells,' Nat Methods, vol. 3, pp. 1013-9, Dec 2006. [99] D. J. Mulholland, H. Cheng, K. Reid, P. S. Rennie, and C. C. Nelson, 'The androgen receptor can promote beta-catenin nuclear translocation independently of adenomatous polyposis coli,' J Biol Chem, vol. 277, pp. 17933-43, May 17 2002. [100] P. Alen, F. Claessens, G. Verhoeven, W. Rombauts, and B. Peeters, 'The androgen receptor amino-terminal domain plays a key role in p160 coactivator-stimulated gene transcription,' Mol Cell Biol, vol. 19, pp. 6085-97, Sep 1999. [101] L. N. Song, R. Herrell, S. Byers, S. Shah, E. M. Wilson, and E. P. Gelmann, 'Beta-catenin binds to the activation function 2 region of the androgen receptor and modulates the effects of the N-terminal domain and TIF2 on ligand-dependent transcription,' Mol Cell Biol, vol. 23, pp. 1674-87, Mar 2003. [102] Y. C. Hu, S. Yeh, S. D. Yeh, E. R. Sampson, J. Huang, P. Li, C. L. Hsu, H. J. Ting, H. K. Lin, L. Wang, E. Kim, J. Ni, and C. Chang, 'Functional domain and motif analyses of androgen receptor coregulator ARA70 and its differential expression in prostate cancer,' J Biol Chem, vol. 279, pp. 33438-46, Aug 6 2004. | |
| dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/40111 | - |
| dc.description.abstract | 肝癌為全球最常見的惡性腫瘤,B型肝炎病毒(HBV)感染為引發肝癌的危險因子之一。台灣為B型肝炎病毒(HBV)感染高流行區,HBV相關之肝癌,有好發於男性之特性,但HBV如何影響肝癌發展及造成性別上的差異,其機制尚未清楚。本實驗室先前研究發現,HBV所表現的病毒蛋白HBx可在男性荷爾蒙的存在下正向調控男性荷爾蒙受體(androgen receptor, AR)的轉錄能力,為HBV相關肝癌好發於男性提供一可能機制。有鑑於在前列腺癌研究中,發現許多AR 協同作用蛋白(co-regulator)可藉由影響AR的轉錄活性促進癌症的發展。為了瞭解HBx如何影響AR轉錄活性,本研究著眼於探討HBx是否可能藉由影響AR的co-regulator而增強AR轉錄活性。研究策略即尋找HBx存在下,與AR結合發生改變之特定蛋白質,純化之並利用蛋白質譜(Mass spectrophotometry) 方式決定其身份,並進一步探討此特定蛋白於HBx促進AR轉錄活性過程中所扮演之角色進行功能性分析。
本實驗所使用的蛋白純化方法為Tandem Affinity Purification (TAP)系統。實驗設計為製備TAP-AR融合質體,於Huh-7 hepatoma細胞株細胞中表現,再利用兩步驟的樹脂純化AR及其結合蛋白。此方法的優點為可使蛋白複合體在接近生理狀態下,被完整的分離出來,且無損蛋白的活性。首先製備pN(C)TAP-AR融合質體,將質體送入細胞中表現,觀察AR的蛋白質表現及確定HBx增強AR的活性之效果。實驗結果發現,HBx 增強NTAP-AR之轉錄活性相較於CTAP-AR 顯著許多,因此決定使用NTAP-AR進行後續純化實驗。將NTAP-AR送入Huh-7細胞後收細胞進行純化,發現HBV存在下,有幾條蛋白質band與單獨表現AR時得到的純化蛋白質結果不同,其中尤以大於170KD之蛋白質band表現差異最大。經蛋白質譜結果得知其為Acetyl-CoA carboxylase-alpha(ACCα)蛋白,為一參與脂肪酸合成過程之重要酵素。以ACCα專一性抗體分析TAP純化及共同免疫沉澱(co-immunoprecipitation)分析,證實ACCα蛋白的確會與AR結合,同時也發現ACCa與AR的交互作用可受到HBx影響。 進一步探討ACCα與AR之結合是否影響了AR的轉錄活性或蛋白表現之研究,利用核質分離方式發現兩者的交互作用位置主要於細胞質中,推測ACCα不會直接影響AR的轉錄活性。接著利用lenti-si-ACCα降低Huh-7細胞中ACCα蛋白表現量,以探討ACCα對HBV活化AR轉錄活性的影響。結果發現降低ACCα表現量,AR蛋白量也隨之下降,利用定量PCR(quantitative PCR)證實此調控不在RNA層面。接著,以蛋白水解酶(proteasome)抑制劑(MG132)發現此調控可影響proteasome的作用。 以上研究結果發現了一個新的AR結合蛋白ACCα。ACCα與AR的交互作用可受HBx調控且影響了AR蛋白表現量,為HBx促進AR轉錄活性過程提出另一可能調控機制。由於AR訊息傳遞路徑之過度活化為男性肝癌形成之一重要機制,此研究結果因此提出可針對抑制ACCα表現作為為來治療男性肝癌之可能性 | zh_TW |
| dc.description.abstract | Taiwan is a hyperendemic area for hepatitis B virus (HBV) infection, which significantly increase the risk of HCC. One characteristic for HBV-related HCC is the male gender preference. Our previous studies identified a possible mechanism underlying the male gender preference, showing that HBx viral protein can up-regulate the transcriptional activity of androgen receptor (AR) in an androgen concentration dependent manner. However, how does HBx enhances the AR activity still remained un-clarified. According to the findings in prostate cancers that the transcriptional activity of AR can be regulated by its associated co-regulators. We propose to test the possibility that HBx can also through affecting the AR associated co-regulators to enhance its transcriptional activity as one possible mechanism.
Therefore, the specific aim of this study is to investigate the AR associated proteins involved in HBV enhanced AR activation. The strategy is to identify the specific AR coregulators changing the affinity with AR in the presence of HBx, and then further investigate their functional roles in the HBx-enhanced AR transactivation. The Tandem Affinity Purification (TAP) system was used to purify the AR associated proteins in the current study, due to its great advantages for isolation of proteins with high specificity under physiological conditions. We have constructed pNTAP-AR and pNCTAP-AR plasmids, and found that HBx can enhance the transcriptional activity of pNTAP-AR (but not pNCTAP-AR) close to the level of wild type AR without tag. We thus co-transfected pNTAP-AR and 1.5-mer HBV constructs into Huh-7 cells for the subsequent TAP purification studies. Aided by the MALDI-TOF MS analysis, we have identified one protein, Acetyl-coA carboxylase alpha (ACCα), which was enriched in the fraction of HBV+AR compared with AR only. Further study pointed out that the increased interaction is caused by HBx viral protein. Aided by co-immunoprecipitation analysis, we found that ACCαcan indeed interact with AR. ACCα is an enzyme involved in the synthesis of fatty acid through catalyzing the condensation of malonyl-CoA. To further investigate the functional effect of the interaction between ACCαand AR on AR activity, we approached by knockdown the expression of ACCαby lentivirus based si-RNA in Huh-7 cells. Intriguingly, we found that both the protein level and transcriptional activity of AR were significantly deceased. Aided by quantitative PCR, we found that the effect of si-ACCαon AR protein did not occur at the RNA level. Instead, the results from MG132 treatment suggested that the effect might be attributed by the effect ACCαon regulating the protein degradation of AR. Moreover, we have identified that the interaction of AR and ACCα might mainly occur at the cytosol rather than in the nucleus. In summary, we have identified a novel AR associated protein, ACCα, with its association with AR enhanced by HBx. It might provide a possible regulatory mechanism for HBx enhanced AR activation. Although how does the cytosolic ACCα regulate the protein amount of AR through affecting its degradation process awaits further investigation, the current study points out ACCα as one potential target for blocking the AR activation in male hepatocarcinogenesis. | en |
| dc.description.provenance | Made available in DSpace on 2021-06-14T16:41:24Z (GMT). No. of bitstreams: 1 ntu-97-R95445104-1.pdf: 4055554 bytes, checksum: 12d7f61765e2be2509af4c762c81f1d1 (MD5) Previous issue date: 2008 | en |
| dc.description.tableofcontents | 目錄
口試委員會審定書……………………………………………………………………..i 致謝……………………………………………………………………………………..ii 中文摘要……………………………………………………………………………….iii 英文摘要………………………………………………………………………………v 第一章、序論 (一) B型肝炎病毒(hepatitis virus B, HBV ) B型肝炎病毒的結構與流行病學…………………………………………………1 B型肝炎病毒X蛋白質(HBx)的功能…………………………………………….2 HBx引發肝癌之動物模式………………………………………………………...3 (二) 男性荷爾蒙受體(androgen receptor, AR) 男性荷爾蒙及其受體與B型肝炎病毒相關肝癌發生之相關性…………………5 以動物實驗探討男性荷爾蒙受體與肝癌的相關性……………………………...5 男性荷爾蒙受體(androgen receptor)之構造與功能………………………………6 男性荷爾蒙受體協同作用蛋白(coregulator)之作用……………………………..7 (三) 乙醯輔酶A羧化酶α(acetyl-coenzyme A carboxylase α) 乙醯輔酶A羧化酶α的結構與功能……………………………….……………...9 乙醯輔酶A羧化酶α與癌症的相關性…………………………………..10 (四) 研究目的…………….......................................12 第二章、材料與方法…………………..............................14 第三章、結果.............................................25 1. 確認pN(C)TAP-AR的AR蛋白質表現及功能...................................................................25 2. 利用Mef2c 及Mef2a 蛋白建立TAP之純化系統之positive control…........26 3.利用TAP純化系統尋找受HBV影響之AR association proteins...............................27 4. 確認乙醯輔酶A羧化酶α (ACCa)為TAP-AR之結合蛋白,及此結合是否受到HBV(HBx)及AR ligand之存在所調控.........................................................28 5. 於in vivo觀察乙醯輔酶A羧化酶α(ACCα)與AR的交互作用.....................29 6. 探討ACCα蛋白是否影響AR的蛋白質表現及功能...................................30 7. 探討ACCα影響AR蛋白質表現之機制.......................................................31 8. ACCα與AR的交互作用位置主要發生於細胞質中....................................32 第四章、結果討論..........................................34 第五章、參考文獻......................................................39 圖附錄.........................................................48 | |
| dc.language.iso | zh-TW | |
| dc.subject | alpha | zh_TW |
| dc.subject | B型肝炎病毒 | zh_TW |
| dc.subject | 男性賀爾蒙受體 | zh_TW |
| dc.subject | 乙醯輔酶 | zh_TW |
| dc.subject | A羧化酶 | zh_TW |
| dc.subject | HBV | en |
| dc.subject | acetyl-CoA carboxylase alpha | en |
| dc.subject | TAP | en |
| dc.subject | androgen receptor | en |
| dc.title | 探討AR協同作用蛋白參與HBV活化男性荷爾蒙受體轉錄活性過程之可能機制 | zh_TW |
| dc.title | Identification of Androgen Receptor Associated Proteins Related with HBV Enhanced AR Activity | en |
| dc.type | Thesis | |
| dc.date.schoolyear | 96-2 | |
| dc.description.degree | 碩士 | |
| dc.contributor.oralexamcommittee | 陳培哲(Pei-Jer Chen),陳玉如(Yu-Ju Chen) | |
| dc.subject.keyword | B型肝炎病毒,男性賀爾蒙受體,乙醯輔酶,A羧化酶,alpha, | zh_TW |
| dc.subject.keyword | HBV,androgen receptor,TAP,acetyl-CoA carboxylase alpha, | en |
| dc.relation.page | 68 | |
| dc.rights.note | 有償授權 | |
| dc.date.accepted | 2008-08-01 | |
| dc.contributor.author-college | 醫學院 | zh_TW |
| dc.contributor.author-dept | 微生物學研究所 | zh_TW |
| 顯示於系所單位: | 微生物學科所 | |
文件中的檔案:
| 檔案 | 大小 | 格式 | |
|---|---|---|---|
| ntu-97-1.pdf 未授權公開取用 | 3.96 MB | Adobe PDF |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。
