Please use this identifier to cite or link to this item:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/3993Full metadata record
| ???org.dspace.app.webui.jsptag.ItemTag.dcfield??? | Value | Language |
|---|---|---|
| dc.contributor.advisor | 黃念祖 | |
| dc.contributor.author | Sheng Yang | en |
| dc.contributor.author | 楊昇 | zh_TW |
| dc.date.accessioned | 2021-05-13T08:40:01Z | - |
| dc.date.available | 2019-02-08 | |
| dc.date.available | 2021-05-13T08:40:01Z | - |
| dc.date.copyright | 2017-02-08 | |
| dc.date.issued | 2016 | |
| dc.date.submitted | 2016-10-31 | |
| dc.identifier.citation | [1] Bashir, R. BioMEMS: state-of-the-art in detection, opportunities and prospects. Advanced drug delivery reviews 56, 1565-1586, (2004).
[2] Grayson, A. C. R., Shawgo, R. S. & Johnson, A. M. A BioMEMS review: MEMS technology for physiologically integrated devices. Proceedings of the IEEE 92, 6-21, (2004). [3] Chin, C. D., Linder, V. & Sia, S. K. Lab-on-a-chip devices for global health: Past studies and future opportunities. Lab on a Chip 7, 41-57, (2007). [4] Mark, D., Haeberle, S., Roth, G., von Stetten, F. & Zengerle, R. Microfluidic lab-on-a-chip platforms: requirements, characteristics and applications. Chemical Society reviews 39, 1153-1182, (2010). [5] Culbertson, C. T. & Mickleburgh, T. G. Micro total analysis systems: Fundamental advances and biological applications. Analytical chemistry 86, 95-118, (2013). [6] Kovarik, M. L., Ornoff, D. M., Melvin, A. T. & Dobes, N. C. Micro total analysis systems: fundamental advances and applications in the laboratory, clinic, and field. Analytical chemistry 85, 451-472, (2012). [7] Vilkner, T., Janasek, D. & Manz, A. Micro total analysis systems. Recent developments. Analytical chemistry 76, 3373-3386, (2004). [8] Chow, K. et al. Predictive value of dialysate cell counts in peritonitis complicating peritoneal dialysis. Clinical Journal of the American Society of Nephrology 1, 768-773, (2006). [9] Johnson, D. W., Wiggins, K. J. & Armstrong, K. A. Elevated white cell count at commencement of peritoneal dialysis predicts overall and cardiac mortality. Kidney international, (2005). [10] Kofteridis, D. P., Valachis, A., Perakis, K. & Maraki, S. Peritoneal dialysis-associated peritonitis: clinical features and predictors of outcome. International Journal of Infectious Diseases 14, e489-e493, (2010). [11] Lin, C. Y., Roberts, G. W. & Kift-Morgan, A. Pathogen-specific local immune fingerprints diagnose bacterial infection in peritoneal dialysis patients. Journal of the American Society of Nephrology 24, 2002-2009, (2013). [12] Daugirdas, J. T., Blake, P. G. & Ing, T. S. Handbook of dialysis. (Lippincott Williams & Wilkins, 2012). [13] Iv, S. C. W., Reyes, C. D. & López, G. P. Microfluidic cell sorting: a review of the advances in the separation of cells from debulking to rare cell isolation. Lab on a Chip 15, 1230-1249, (2015). [14] Sajeesh, P. & Sen, A. K. Particle separation and sorting in microfluidic devices: a review. Microfluidics and nanofluidics 17, 1-52, (2014). [15] Rusconi, R., Garren, M. & Stocker, R. Microfluidics expanding the frontiers of microbial ecology. Annual review of biophysics 43, 65, (2014). [16] Ahmed, D., Mao, X., Juluri, B. K. & Huang, T. J. A fast microfluidic mixer based on acoustically driven sidewall-trapped microbubbles. Microfluidics and Nanofluidics 7, 727-731, (2009). [17] Mao, X., Juluri, B. K., Lapsley, M. I., Stratton, Z. S. & Huang, T. J. Milliseconds microfluidic chaotic bubble mixer. Microfluidics and Nanofluidics 8, 139-144, (2010). [18] Whitesides, G. M. The origins and the future of microfluidics. Nature 442, 368-373, (2006). [19] Landenberger, B., Höfemann, H., Wadle, S. & Rohrbach, A. Microfluidic sorting of arbitrary cells with dynamic optical tweezers. Lab on a Chip 12, 3177-3183, (2012). [20] Werner, M., Merenda, F., Piguet, J., Salathe, R.-P. & Vogel, H. Microfluidic array cytometer based on refractive optical tweezers for parallel trapping, imaging and sorting of individual cells. Lab on a Chip 11, 2432-2439, (2011). [21] Wang, M. M. et al. Microfluidic sorting of mammalian cells by optical force switching. Nature biotechnology 23, 83-87, (2005). [22] Jonáš, A. & Zemanek, P. Light at work: The use of optical forces for particle manipulation, sorting, and analysis. Electrophoresis 29, 4813-4851, (2008). [23] Cheng, I.-F., Chang, H.-C., Hou, D. & Chang, H.-C. An integrated dielectrophoretic chip for continuous bioparticle filtering, focusing, sorting, trapping, and detecting. Biomicrofluidics 1, 021503, (2007). [24] Hu, X. et al. Marker-specific sorting of rare cells using dielectrophoresis. Proceedings of the National Academy of Sciences of the United States of America 102, 15757-15761, (2005). [25] Xia, N. et al. Combined microfluidic-micromagnetic separation of living cells in continuous flow. Biomedical Microdevices 8, 299-308, (2006). [26] Pamme, N. & Wilhelm, C. Continuous sorting of magnetic cells via on-chip free-flow magnetophoresis. Lab on a Chip 6, 974-980, (2006). [27] Evander, M. et al. Noninvasive acoustic cell trapping in a microfluidic perfusion system for online bioassays. Analytical chemistry 79, 2984-2991, (2007). [28] Rettig, J. R. & Folch, A. Large-scale single-cell trapping and imaging using microwell arrays. Analytical chemistry 77, 5628-5634, (2005). [29] Huang, L. R., Cox, E. C., Austin, R. H. & Sturm, J. C. Continuous particle separation through deterministic lateral displacement. Science 304, 987-990, (2004). [30] Carlo, D., Wu, L. Y. & Lee, L. P. Dynamic single cell culture array. Lab on a Chip 6, 1445-1449, (2006). [31] Zheng, S. et al. Membrane microfilter device for selective capture, electrolysis and genomic analysis of human circulating tumor cells. Journal of chromatography A 1162, 154-161, (2007). [32] Tan, W.-H. H. & Takeuchi, S. A trap-and-release integrated microfluidic system for dynamic microarray applications. Proceedings of the National Academy of Sciences of the United States of America 104, 1146-1151, (2007). [33] Kim, J., Erath, J., Rodriguez, A. & Yang, C. A high-efficiency microfluidic device for size-selective trapping and sorting. Lab on a Chip 14, 2480-2490, (2014). [34] Yung, C. W., Fiering, J., Mueller, A. J. & Ingber, D. E. Micromagnetic–microfluidic blood cleansing device. Lab on a Chip 9, 1171-1177, (2009). [35] Kuijpers, T. et al. Membrane surface antigen expression on neutrophils: a reappraisal of the use of surface markers for neutrophil activation. Blood 78, 1105-1111, (1991). [36] Wu, H.-W., Hsu, R.-C., Lin, C.-C., Hwang, S.-M. & Lee, G.-B. An integrated microfluidic system for isolation, counting, and sorting of hematopoietic stem cells. Biomicrofluidics 4, 024112, (2010). | |
| dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/3993 | - |
| dc.description.abstract | 腹膜透析是一種用來治療腎衰竭患者的透析療法。為了避免透析過程中可能會發生的腹膜發炎情形,監控透析液中白血球的比例及數目是非常重要的。傳統的檢測方式是使用流式細胞儀及自動細胞計數器對透析液中的白血球做定量,然而這些技術有以下的問題,像是(1)無法處理低濃度的樣本(<300 cells/μL),(2)實驗儀器較為龐大且昂貴,這些問題限制了其使用性。為解決以上問題,本論文開發一利用流體動力學原理之微流道生醫晶片,此微流道系統操作簡單,製作成本低、製程簡單,可同時進行細胞、免疫微珠的抓取及分類。為了讓此微流道平台更加符合定點照護的需求,未來將與智慧型手機進行整合,並搭配軟體或是APP進行自動化影像處理、分析及資料傳輸。本論文主要分兩大部分,第一部分為免疫微珠抓取中性球之效率及能力測試,第二部分則為微流道分選並抓取白血球、免疫微珠的表現測試,未來則希望以Matlab軟體對白血球數目及微珠抓取細胞結果進行自動化定量。此微流道平台將能於定點照護的環境下偵測不同感染階段的腹膜炎,助醫生進行即時且正確的治療。 | zh_TW |
| dc.description.abstract | Peritoneal dialysis is a treatment for patients who suffer from severe chronic kidney disease. To prevent any infection during the treatment, it is important to monitor the population of white blood cell in peritoneal dialysis. At present, fluorescence-based flow cytometry and the automated hemocytometer are two prevailing methods to quantify the population of white blood cell. However, these techniques usually exist several limitations, such as (1) cannot deal with low white blood cell level (<300 cells/μL), (2) laborious assay preparation and manipulation steps. To address the above problems, we develop a microfluidic device with hydrodynamic trap arrays to capture white blood cells. The microfluidic microtrap array with multiple dimensions can trap general white blood cells and specific white blood cell subpopulation conjugated with 30μm polystyrene beads. This microfluidic platform enables simultaneously cell trapping, selection and can perform simple and real-time cell counting without complicated sample processing steps and equipment. To make the system more user-friendly and be suitable for point-of-care (POC) settings, we plan to make this microfluidic device compatible to existing smartphones and APP, which can perform image processing, analysis and data transmission. We believe this microfluidic platform for surveillance of white blood cell level will hold significant promise to provide the detailed infection status of patient for doctors to perform timely treatment. | en |
| dc.description.provenance | Made available in DSpace on 2021-05-13T08:40:01Z (GMT). No. of bitstreams: 1 ntu-105-R03945033-1.pdf: 4227982 bytes, checksum: c31f88b6615035a6bae3e60a1baa891c (MD5) Previous issue date: 2016 | en |
| dc.description.tableofcontents | 口試委員會審定書 #
中文摘要 i ABSTRACT ii 目錄 iii 圖目錄 vi 表目錄 ix Chapter 1 緒論 1 1.1 研究背景 1 1.2 文獻回顧 2 1.2.1 腹膜炎感染階段與腹膜透析液中白血球數目及比例的關係 3 1.2.2 於微流道以外力分離及捕捉細胞 3 1.2.3 流體動力學式微流道分離及捕捉細胞 6 1.2.4 使用生物標定技術在微流道進行分離及捕捉細胞 9 1.3 研究動機及目的 9 1.4 論文架構簡介 10 Chapter 2 實驗原理介紹及微流道設計 11 2.1 流體動力學式微流道粒子分離及捕捉原理 11 2.2 流體動力學式微流道設計 13 2.3 免疫微珠抓取原理 15 2.3.1 抗體抗原鍵結原理 15 2.3.2 免疫微珠與抗體鍵結原理 16 Chapter 3 實驗流程 17 3.1 晶片製程 17 3.1.1 模具製作-光微影製程流程 17 3.1.2 光微影製程參數設定 21 3.1.3 軟微影製程 23 3.2 腹膜透析液樣本處理方式 26 3.2.1 腹膜透析液樣本取得 26 3.2.2 細胞染色 26 3.2.3 樣本細胞濃度確認 26 3.3 免疫微珠捕捉中性球實驗 28 3.3.1 化學藥品與免疫微珠的準備 28 3.3.2 實驗步驟 28 3.4 微流道實驗 30 Chapter 4 實驗結果 33 4.1 免疫微珠捕捉中性球 33 4.1.1 免疫微珠選擇 33 4.1.2 於不同中性球濃度免疫微珠捕捉實驗 35 4.2 微流道製作結果與量測 36 4.3 螢光珠及免疫微珠微流道捕捉及分離實驗 39 4.4 THP-1 細胞及免疫微珠微流道捕捉及分離實驗 42 4.5 真實腹膜透析液白血球捕捉及分離 47 Chapter 5 結論與未來展望 52 5.1 結論 52 5.2 未來展望 52 參考文獻 55 | |
| dc.language.iso | zh-TW | |
| dc.subject | 微流道 | zh_TW |
| dc.subject | 腹膜透析 | zh_TW |
| dc.subject | 細胞計數 | zh_TW |
| dc.subject | microfluidics | en |
| dc.subject | cell counting | en |
| dc.subject | Peritoneal dialysis | en |
| dc.title | 開發流體動力學式微流道晶片應用於腹膜透析液中白血球計數 | zh_TW |
| dc.title | Developing a microfluidic device with hydrodynamic trap arrays for white blood cell counting in peritoneal dialysis solution | en |
| dc.type | Thesis | |
| dc.date.schoolyear | 105-1 | |
| dc.description.degree | 碩士 | |
| dc.contributor.oralexamcommittee | 林致廷,黃榮山,陳奕帆 | |
| dc.subject.keyword | 腹膜透析,細胞計數,微流道, | zh_TW |
| dc.subject.keyword | Peritoneal dialysis,cell counting,microfluidics, | en |
| dc.relation.page | 57 | |
| dc.identifier.doi | 10.6342/NTU201603717 | |
| dc.rights.note | 同意授權(全球公開) | |
| dc.date.accepted | 2016-10-31 | |
| dc.contributor.author-college | 電機資訊學院 | zh_TW |
| dc.contributor.author-dept | 生醫電子與資訊學研究所 | zh_TW |
| Appears in Collections: | 生醫電子與資訊學研究所 | |
Files in This Item:
| File | Size | Format | |
|---|---|---|---|
| ntu-105-1.pdf | 4.13 MB | Adobe PDF | View/Open |
Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.
