請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/3974完整後設資料紀錄
| DC 欄位 | 值 | 語言 |
|---|---|---|
| dc.contributor.advisor | 楊恩誠(En-Cheng Yang) | |
| dc.contributor.author | Yun-Wen Dai | en |
| dc.contributor.author | 戴允文 | zh_TW |
| dc.date.accessioned | 2021-05-13T08:39:32Z | - |
| dc.date.available | 2017-03-08 | |
| dc.date.available | 2021-05-13T08:39:32Z | - |
| dc.date.copyright | 2016-03-08 | |
| dc.date.issued | 2016 | |
| dc.date.submitted | 2016-02-15 | |
| dc.identifier.citation | Abbott WS. 1925. A method of computing the effectiveness of an insecticide. J Econ Entomol 18: 265-267.
Bai DL, Lummis SCR, Leicht W, Breer H, Sattelle DB. 1991. Actions of imidacloprid and a related nitromethylene on cholinergic receptors of an identified insect motor neurone. Pestic Sci 33: 197-204. Bao H, Liu S, Gu J, Wang X, Liang X, Liu Z. 2009. Sublethal effects of four insecticides on the reproduction and wing formation of brown planthopper, Nilaparvata lugens. Pest Manag Sci 65: 170-174. Barbieri RF, Lester PJ, Miller AS, Ryan KG. 2013. A neurotoxic pesticide changes the outcome of aggressive interactions between native and invasive ants. P Roy Soc B-biol Sci 280: 20132157. Bicker G. 1999. Histochemistry of classical neurotransmitters in antennal lobes and mushroom bodies of the honeybee. Microsc Res Techniq 45: 174-183. Bonmatin JM, Moineau I, Charvet R, Fleche C, Colin ME, Bengsch ER. 2003. A LC/APCI-MS/MS method for analysis of imidacloprid in soils, in plants, and in pollens. Anal Chem 75: 2027-2033. Bortolotti L, Montanari R, Marcelino J, Medrzycki P, Maini S, Porrini C. 2003. Effects of sub-lethal imidacloprid doses on the homing rate and foraging activity of honey bees. Bull Insectol 56: 63-67. Cerda X, Arnan X, Retana J. 2013. Is competition a significant hallmark of ant (Hymenoptera: Formicidae) ecology? Myrmecol News 18: 131-147. Colin ME, Bonmatin JM, Moineau I, Gaimon C, Brun S, Vermandere JP. 2004. A method to quantify and analyze the foraging activity of honey bees: Relevance to the sublethal effects induced by systemic insecticides. Arch Environ Con Tox 47: 387-395. Curé G, Schmidt H, Schmuck R. 1999. Results of a comprehensive field research programme with the systemic insecticide imidacloprid (Gaucho®). pp 49-59. In: Belzunces L, Pe´lissier C, Lewis G (eds). Hazards of Pesticides to Bees. France: INRA. Cutler GC, Ramanaidu K, Astatkie T, Isman MB. 2009. Green peach aphid, Myzus persicae (Hemiptera: Aphididae), reproduction during exposure to sublethal concentrations of imidacloprid and azadirachtin. Pest Manag Sci 65: 205-209. Dacher M, Lagarrigue A, Gauthier M. 2005. Antennal tactile learning in the honeybee: Effect of nicotinic antagonists on memory dynamics. Neuroscience 130: 37-50. Decourtye A, Devillers J. 2010. Ecotoxicity of neonicotinoid insecticides to bees. pp 85-95. In: Thany SH (ed). Insect nicotinic acetylcholine receptors. New York: Springer. Decourtye A, Lacassie E, Pham-Delegue MH. 2003. Learning performances of honeybees (Apis mellifera L) are differentially affected by imidacloprid according to the season. Pest Manag Sci 59: 269-278. Decourtye A, Devillers J, Cluzeau S, Charreton M, Pham-Delegue MH. 2004b. Effects of imidacloprid and deltamethrin on associative learning in honeybees under semi-field and laboratory conditions. Ecotox Environ Safe 57: 410-419. Decourtye A, Armengaud C, Renou M, Devillers J, Cluzeau S, Gauthier M, Pham-Delegue MH. 2004a. Imidacloprid impairs memory and brain metabolism in the honeybee (Apis mellifera L.). Pestic Biochem Phys 78: 83-92. Desneux N, Decourtye A, Delpuech J-M. 2007a. The sublethal effects of pesticides on beneficial arthropods. Annu Rev Entomol 52: 81-106. Devine GJ, Harling ZK, Scarr AW, Devonshire AL. 1996. Lethal and sublethal effects of imidacloprid on nicotine-tolerant Myzus nicotianae and Myzus persicae. Pestic Sci 48: 57-62. El Hassani AK, Dacher M, Gary V, Lambin M, Gauthier M, Armengaud C. 2008. Effects of sublethal doses of acetamiprid and thiamethoxam on the behavior of the honeybee (Apis mellifera). Arch Environ Con Tox 54: 653-661. Elbert A, Overbeck H, Iwaya K, Tsuboi S. 1990. Imidacloprid, a novel systemic nitromethylene analogue insecticide for crop protection. Brighton Crop Prot Conf, Pests Dis 2: 21-28. Elbert A, Becker B, Hartwig J, Erdelen C. 1991. Imidacloprid - a new systemic insecticide. Pflanzenschutz-Nachrichten Bayer 44: 113-146. Ellison AM, Record S, Arguello A, Gotelli NJ. 2007. Rapid inventory of the ant assemblage in a temperate hardwood forest: Species composition and assessment of sampling methods. Environ Entomol 36: 766-775. Elton CS. 2013. The ecology of invasions by animals and plants, London: The University of Chicago Press. 181pp. Faucon JP, Aurieres C, Drajnudel P, Mathieu L, Ribiere M, Martel AC, Zeggane S, Chauzat MP, Aubert MFA. 2005. Experimental study on the toxicity of imidacloprid given in syrup to honey bee (Apis mellifera) colonies. Pest Manag Sci 61: 111-125. Galvanho JP, Carrera MP, Moreira DDO, Erthal M, Silva CP, Samuels RI. 2013. Imidacloprid inhibits behavioral defences of the leaf-cutting ant Acromyrmex subterraneus subterraneus (Hymenoptera: Formicidae). J Insect Behav 26: 1-13. Gerlach J, Samways M, Pryke J. 2013. Terrestrial invertebrates as bioindicators: an overview of available taxonomic groups. J Insect Conserv 17: 831-850. He YX, Zhao JW, Wu DD, Wyckhuys KAG, Wu KM. 2011. Sublethal effects of imidacloprid on Bemisia tabaci (Hemiptera: Aleyrodidae) under laboratory conditions. J Econ Entomol 104: 833-838. James DG. 1997. Imidacloprid increases egg production in Amblyseius victoriensis (Acari: Phytoseiidae). Exp Appl Acarol 21: 75-82. James DG, Price TS. 2002. Fecundity in two spotted spider mite (Acari : Tetranychidae) is increased by direct and systemic exposure to imidacloprid. J Econ Entomol 95: 729-732. Jeschke P, Nauen R, Schindler M, Elbert A. 2010. Overview of the status and global strategy for neonicotinoids. J Agr Food Chem 59: 2897-2908. Jong JJ. 2008. Models of division of labor and expression of biological clock in the colony of gray-black spiny ant, Polyrhachis dives Smith (Hymenoptera: Formicidae). Taipei, Taiwan: National Taiwan University. 110 pp. Kagabu S. 1997. Chloronicotinyl insecticides: discovery, application and future perspective. Rev Toxicol 1: 75-129. Kagabu S, Medej S. 1995. Stability comparison of imidacloprid and related compounds under simulated sunlight, hydrolysis conditions, and to oxygen. Biosci Biotech Bioch 59: 980-985. Kagabu S, Akagi T. 1997. Quantum chemical consideration of photostability of imidacloprid and related compounds. J Pestic Sci 22: 84-89. Kimura-Kuroda J, Komuta Y, Kuroda Y, Hayashi M, Kawano H. 2012. Nicotine-like effects of the neonicotinoid insecticides acetamiprid and imidacloprid on cerebellar neurons from neonatal rats. PLoS One 7(2): e32432. doi:10.1371/journal.pone.0032432. Klein A-M, Vaissiere BE, Cane JH, Steffan-Dewenter I, Cunningham SA, Kremen C, Tscharntke T. 2007. Importance of pollinators in changing landscapes for world crops. P Roy Soc B-biol Sci 274: 303-313. Kremen C, Williams NM, Aizen MA, Gemmill-Herren B, LeBuhn G, Minckley R, Packer L, Potts SG, Roulston Ta, Steffan-Dewenter I, Vazquez DP, Winfree R, Adams L, Crone EE, Greenleaf SS, Keitt TH, Klein A-M, Regetz J, Ricketts TH. 2007. Pollination and other ecosystem services produced by mobile organisms: a conceptual framework for the effects of land-use change. Ecol Lett 10: 299-314. Kunkel BA, Held DW, Potter DA. 2001. Lethal and sublethal effects of bendiocarb, halofenozide, and imidacloprid on Harpalus pennsylvanicus (Coleoptera: carabidae) following different modes of exposure in turfgrass. J Econ Entomol 94: 60-67. Lester PJ, Baring CW, Longson CG, Hartley S. 2003. Argentine and other ants (Hymenoptera: Formicidae) in New Zealand horticultural ecosystems: distribution, hemipteran hosts, and review. New Zeal Entomol 26: 79-89. Li GP, Feng HQ, Liang SS, Qiu F. 2008. Sublethal effects of four insecticides on the development and reproduction of Adelphocoris suturalis Jakovlev (Hemiptera: Miridae). Acta Entomol Sinica 51: 1260-1264. Liefke C, Holldobler B, Maschwitz U. 2001. Recruitment behavior in the ant genus Polyrhachis (Hymenoptera, Formicidae). J Insect Behav 14: 637-657. Liefke C, Dorow WHO, Holldobler B, Maschwitz U. 1998. Nesting and food resources of syntopic species of the ant genus Polyrhachis (Hymenoptera, Formicidae) in West-Malaysia. Insect Soc 45: 411-425. Liu MY, Casida JE. 1993. High Affinity binding of [H-3]imidacloprid in the insect acetylcholine receptor. Pestic Biochem Phys 46: 40-46. Lozano VC, Armengaud C, Gauthier M. 2001. Memory impairment induced by cholinergic antagonists injected into the mushroom bodies of the honeybee. J Comp Physiol A 187: 249-254. Matsuda K, Buckingham SD, Kleier D, Rauh JJ, Grauso M, Sattelle DB. 2001. Neonicotinoids: insecticides acting on insect nicotinic acetylcholine receptors. Trends Pharmacol Sci 22: 573-580. Medrzycki P, Montanari R, Bortolotti L, Sabatini AG, Maini S, Porrini C. 2003. Effects of imidacloprid administered in sub-lethal doses on honey bee behaviour. Laboratory tests. Bull Insectology 56: 59-62. Mercier JL, Lenoir A. 1999. Individual flexibility and choice of foraging strategy in Polyrhachis laboriosa F. Smith (Hymenoptera, Formicidae). Insect Soc 46: 267-272. Moriya K, Shibuya K, Hattori Y, Tsuboi S-i, Shiokawa K, Kagabu S. 1992. 1-(6-Chloronicotinyl)-2-nitroimino-imidazolidines and related compounds as potential new insecticides. Biosci Biotech Bioch 56: 364-365. Mullins JW. 1993. Imidacloprid - a new nitroguanidine insecticide. Acs Sym Ser 524: 183-198. Nauen R. 1995. Behaviour modifying effects of low systemic concentrations of imidacloprid on Myzus persicae with special reference to an antifeeding response. Pestic Sci 44: 145-153. Nauen R, Elbert A. 1997. Apparent tolerance of a field-collected strain of Myzus nicotianae to imidacloprid due to strong antifeeding responses. Pestic Sci 49: 252-258. Nauen R, Koob B, Elbert A. 1998. Antifeedant effects of sublethal dosages of imidacloprid on Bemisia tabaci. Entomol Exp Appl 88: 287-293. Nauen R, Ebbinghaus-Kintscher U, Elbert A, Jeschke P, Tietjen K. 2001. Acetylcholine receptors as sites for developing neonicotinoid insecticides. pp 77-105. In: Ishaaya I, (ed). Biochemical sites of insecticide action and resistance. Berlin: Springer-Verlad. Ozaki M, Wada-Katsumata A, Fujikawa K, Iwasaki M, Yokohari F, Satoji Y, Nisimura T, Yamaoka R. 2005. Ant nestmate and non-nestmate discrimination by a chemosensory sensillum. Science 309: 311-314. Palmer MJ, Moffat C, Saranzewa N, Harvey J, Wright GA, Connolly CN. 2013. Cholinergic pesticides cause mushroom body neuronal inactivation in honeybees. Nat Commun 4: 1634. Pareja L, Colazzo M, Perez-Parada A, Niell S, Carrasco-Letelier L, Besil N, Veronica Cesio M, Heinzen H. 2011. Detection of pesticides in active and depopulated beehives in Uruguay. Int J Environ Res Pu 8: 3844-3858. Rabhi KK, Esancy K, Voisin A, Crespin L, Le Corre J, Tricoire-Leignel H, Anton S, Gadenne C. 2014. Unexpected effects of low doses of a neonicotinoid insecticide on behavioral responses to sex pheromone in a pest insect. PLoS One 9: e114411. doi:10.1371/journal.pone.0114411 Ramirez-Romero R, Chaufaux J, Pham-Delegue MH. 2005. Effects of Cry1Ab protoxin, deltamethrin and imidacloprid on the foraging activity and the learning performances of the honeybee Apis mellifera, a comparative approach. Apidologie 36: 601-611. Rao A, Vinson SB. 2009. The Initial behavioral sequences and strategies of various ant species during individual interactions with Solenopsis invicta. Ann Entomol Soc Am 102: 702-712. Riley JR, Greggers U, Smith AD, Reynolds DR, Menzel R. 2005. The flight paths of honeybees recruited by the waggle dance. Nature 435: 205-207. Rondeau G, Sanchez-Bayo F, Tennekes HA, Decourtye A, Ramirez-Romero R, Desneux N. 2014. Delayed and time-cumulative toxicity of imidacloprid in bees, ants and termites. Sci Rep 4: 8. Rust MK, Reierson DA, Klotz JH. 2004. Delayed toxicity as a critical factor in the efficacy of aqueous baits for controlling argentine ants (Hymenoptera : Formicidae). J Econ Entomol 97: 1017-1024. Sagata K, Lester PJ. 2009. Behavioural plasticity associated with propagule size, resources, and the invasion success of the Argentine ant Linepithema humile. J Appl Ecol 46: 19-27. Sattelle DB, Buckingham SD, Wafford KA, Sherby SM, Bakry NM, Eldefrawi AT, Eldefrawi ME, May TE. 1989. Actions of the insecticide 2(nitromethylene)-tetrahydro-1,3-thiazine on insect and vertebrate nicotinic acetylcholine Receptors. P Roy Soc B-biol Sci 237: 501-514. Schmuck R. 1999. No causal relationship between Gaucho® seed dressing in sunflowers and French bee syndrome. Pflanzenschutz Nachrichten Bayer 52: 257-299. Schmuck R, Schoning R, Stork A, Schramel O. 2001. Risk posed to honeybees (Apis mellifera L. Hymenoptera) by an imidacloprid seed dressing of sunflowers. Pest Manag Sci 57: 225-238. Schneider CW, Tautz J, Gruenewald B, Fuchs S. 2012. RFID Tracking of Sublethal effects of two neonicotinoid insecticides on the foraging behavior of Apis mellifera. PLoS One 7: e30023. doi:10.1371/journal.pone.0030023. Schroeder ME, Flattum RF, Sanborn JR. 1984. The mode of action and neurotoxic properties of the nitromethylene heterocycle insecticides. Pestic Biochem Phys 22(2): 148-160. Sih A, Cote J, Evans M, Fogarty S, Pruitt J. 2012. Ecological implications of behavioural syndromes. Ecol Lett 15: 278-289. Stokstad E. 2007. The case of the empty hives. Science 316: 970-972. Thany SH, Gauthier M. 2005. Nicotine injected into the antennal lobes induces a rapid modulation of sucrose threshold and improves short-term memory in the honeybee Apis mellifera. Brain Res 1039: 216-219. Thompson HM. 2003. Behavioural effects of pesticides in bees - Their potential for use in risk assessment. Ecotoxicology 12: 317-330. Thorne BL, Breisch NL. 2001. Effects of sublethal exposure to imidacloprid on subsequent behavior of subterranean termite Reticulitermes virginicus (Isoptera: Rhinotermitidae). J Econ Entomol 94: 492-498. Tome HVV, Martins GF, Lima MAP, Campos LAO, Guedes RNC. 2012. Imidacloprid-induced impairment of mushroom bodies and behavior of the native stingless bee Melipona quadrifasciata anthidioides. PLoS One 7(6): e38406. doi:10.1371/journal.pone.0038406. Tomizawa M, Yamamoto I. 1992. Binding of nicotinoids and the related compounds to the insect nicotinic acetylcholine receptor. J Pestic Sci 17: 231-236. Tomizawa M, Yamamoto I. 1993. Structure-activity relationships of nicotinoids and imidacloprid analogs. J Pestic Sci 18: 91-98. Tomizawa M, Casida JE. 2003. Selective toxicity of neonicotinoids attributable to specificity of insect and mammalian nicotinic receptors. Annu Rev Entomol 48: 339-364. Tomizawa M, Casida JE. 2005. Neonicotinoid insecticide toxicology: Mechanisms of selective action. Annu Rev Pharmacol 45: 247-268. Tomizawa M, Lee DL, Casida JE. 2000. Neonicotinoid insecticides: Molecular features conferring selectivity for insect versus mammalian nicotinic receptors. J Agr Food Chem 48: 6016-6024. Tsai YH, Yang CC, Lin CC, Shih CJ. 2009. The impact of the red imported fire ant, Solenopsis invicta, and bait treatment on the diversity of native ants-a case study at National Taipei University, Sanshia Campus. Formosan Entomol 29: 263-277. Ugine TA, Gardescu S, Hajek AE. 2011. The effect of exposure to imidacloprid on asian longhorned beetle (Coleoptera: Cerambycidae) survival and reproduction. J Econ Entomol 104: 1942-1949. Wang AH, Wu JC, Yu YS, Liu JL, Yue JF, Wang MY. 2005. Selective insecticide-induced stimulation on fecundity and biochemical changes in Tryporyza incertulas (Lepidoptera : Pyralidae). J Econ Entomol 98: 1144-1149. Wang L, Zeng L, Chen J. 2015b. Impact of imidacloprid on new queens of imported fire ants, Solenopsis invicta (Hymenoptera: Formicidae). Sci Rep 5. Wang L, Zeng L, Chen J. 2015a. Sublethal effect of imidacloprid on Solenopsis invicta (Hymenoptera: Formicidae) feeding, digging, and foraging behavior. Environ Entomol 44: 1544-1552. Widiarta IN, Matsumura M, Suzuki Y, Nakasuji F. 2001. Effects of sublethal doses of imidacloprid on the fecundity of green leafhoppers, Nephotettix spp. (Hemiptera : Cicadellidae) and their natural enemies. Appl Entomol Zool 36: 501-507. Wolf M, Weissing FJ. 2012. Animal personalities: consequences for ecology and evolution. Trends Ecol Evol 27: 452-461. Woyciechowski M, Moron D. 2009. Life expectancy and onset of foraging in the honeybee (Apis mellifera). Insect Soc 56: 193-201. Wu JY, Anelli CM, Sheppard WS. 2011. Sub-lethal effects of pesticide residues in brood comb on worker honey bee (Apis mellifera) development and longevity. PLoS One 6(2): e14720. doi:10.1371/journal.pone.0014720. Wu YH, Hsu HW, Shih CJ, Yang CC. 2013. Interspecific competition between gray black spiny ant (Polyrhachis dives) and red imported fire ant (Solenopsis invicta): evaluation of ant species with biotic resistance potential. Formosan Entomol 33: 107-120. Yamamoto I. 1965. Nicotinoids as insecticide. pp 231-260. In: Metcalf RL, (ed). Advances in pest control research. Vol 6. New York: Wiley. Yamamoto I, Yabuta G, Tomizawa M, Saito T, Miyamoto T, Kagabu S. 1995. Molecular mechanism for selective toxicity of nicotinoids and neonicotinoids. J Pestic Sci 20: 33-40. Yang CC, Shoemaker DD, Wu JC, Lin YK, Lin CC, Wu WJ, Shih CJ. 2009. Successful establishment of the invasive fire ant Solenopsis invicta in Taiwan: insights into interactions of alternate social forms. Divers and Distrib 15: 709-719. Yang EC, Chang HC, Wu WY, Chen YW. 2012. Impaired olfactory associative behavior of honeybee workers due to contamination of imidacloprid in the larval stage. PLoS One 7(11): e49472. doi:10.1371/journal.pone.0049472. Yang EC, Chuang YC, Chen YL, Chang LH. 2008. Abnormal foraging behavior induced by sublethal dosage of imidacloprid in the honey bee (Hymenoptera: Apidae). J Econ Entomol 101: 1743-1748. | |
| dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/3974 | - |
| dc.description.abstract | 使用殺蟲劑的主要目的為消滅害蟲,但可能會造成其他非標的生物的影響,如授粉者 (蜜蜂) 或其他捕食性昆蟲。益達胺為目前廣泛使用之系統性殺蟲劑,作用於昆蟲的尼古丁型之乙醯膽鹼受器 (nicotinic acetylcholine receptor, nAChR),導致神經興奮過度 (hyperpolarization) 而麻痺死亡。研究顯示益達胺的亞致死效應對昆蟲生理與行為會造成影響,其中以造成外勤蜂不正常的覓食行為最為顯著。但同為社會性昆蟲之螞蟻卻幾乎無此類研究。螞蟻於覓食過程中,可能會直接接觸環境中殘留之藥劑或取食遭受藥劑污染的昆蟲或物質,使毒性累積於螞蟻體內;並可能藉由交哺作用 (trophallaxis) 傳遞給幼蟲,進而導致蟻巢衰弱。本研究選用黑棘蟻 (Polyrhachis dives) 作為研究材料,首先建立黑棘蟻的毒性資料,藉給予黑棘蟻亞致死濃度 LC1 及 致死濃度 LC15 及 LC50 的益達胺,檢測覓食行為、行為反應及個體與群體種間競爭的結果是否受到影響。結果顯示益達胺降低黑棘蟻對食物分子的反應並影響覓食趨勢。覓食時間 (foraging time) 皆無顯著差異,但在致死濃度 (LC15 及 LC50) 下標準差幅度變大,推測益達胺影響黑棘蟻腦中的感知系統,導致對外界刺激反應降低。在個體種間競爭部分,無論遭遇 major 或 minor 火蟻,致死濃度(LC15 及 LC50) 的接觸使黑棘蟻侵略行為明顯下降,亞致死劑量則無顯著差異,個體競爭死亡率亦無顯著差異。在群體種間競爭部分,致死濃度的施用造成火蟻存活率上升,亞致死濃度則無顯著差異。此結果支持益達胺的施用會改變螞蟻的行為及改變種間競爭的結果,推測益達胺可能影響螞蟻的感知系統或腦中處理行為的區域,進而造成黑棘蟻行為改變。 | zh_TW |
| dc.description.abstract | The purpose of applying insecticide is to control pest, but it may affect other non-target individual, like pollinators or predators. Neonicotinoids, such as imidacloprid, is a systematic insecticide widely used around the world. It acts on nicotinic acetycholine receptor (nAChR) inducing hyperpolarization and death. Previous studies indicated sublethal effect of imidacloprid could affect behavior of insects. Only few concerned about ant, as one of the important social insects. Ant may contact the residue of insecticide or intake prey killed by insecticide to aggregate insecticide inside the body and pass to the larva through trophallaxis, thus inducing colony collapse eventually. We built oral toxicity data of imidacloprid and tested whether imidacloprid contamination could affect foraging, behavioral reactions and interactions between a native ant Polyrhachis dives and an invasive ant Solenopsis invicta with sublethal (LC1) and lethal concentrations (LC15 and LC50). The results showed that imidacloprid contamination reduces the reactions of P. dives to food signal and affects foraging patterns. The food discovery time was not affected, but dynamic in the lethal concentrations, suggesting that imidacloprid might affect cognitive system in brain and consequently hampers the reactions to stimulus. During interspecific competition at individual level, exposed individuals displayed reduced aggression at lethal concentrations, but not at sublethal concentrations. The mortality of interspecific competition was not affected. During interspecific competition at small colony fragment level, survivorship of fire ants increase in lethal concentrations, but was no significantly affected at sublethal ones. These results suggest that that the exposure of neonicotinoid could affect behaviors of ants and the interspecific interaction outcomes among different species. | en |
| dc.description.provenance | Made available in DSpace on 2021-05-13T08:39:32Z (GMT). No. of bitstreams: 1 ntu-105-R02632010-1.pdf: 4534481 bytes, checksum: 9ed7b1f087b8ab333ec365f5c14c3b72 (MD5) Previous issue date: 2016 | en |
| dc.description.tableofcontents | 目錄………………………………………………………………………………….....i
表次………………………………………………………………………………...….ii 圖次………………………………………………………………………………..….iii 致謝…………………………………………………………………………………...iv 摘要…………………………………………………………………………………....v Abstract……………………………………………………………………………….vi 壹、前言………………………………………………………………………………1 貳、往昔研究…………………………………………………………………………3 一、類尼古丁殺蟲劑的特性………………………………………...………….3 二、益達胺對昆蟲的毒性評估…………………………………………………4 三、益達胺對昆蟲的影響………………………………………………………4 1.蜜蜂 (Apis mellifera)……………………………………….…………...5 2.其他昆蟲………………………………………….……………………..6 四、黑棘蟻的生物學及重要性…………………………………………………8 五、化學藥劑對種間競爭的影響………………………………………………9 參、材料與方法……………………………………………………………………..10 一、試驗昆蟲採集及飼養……………………………………………………..10 二、口服毒性資料建立………………………………………………………..10 (一) 藥劑配置…………..………………………………………………...10 (二) 口服毒性試驗…...…………………………………………………..11 (三) 濃度挑擇…...………………………………………………………..11 三、覓食活動檢定……………………………………………………………..12 四、不同藥劑對黑棘蟻與入侵外來種螞蟻間個體種間競爭………………..12 五、不同藥劑對黑棘蟻與入侵外來種螞蟻間群組種間競爭………………..13 六、統計分析…………………………………………………………………..13 肆、結果……………………………………………………………………………..15 益達胺對黑棘蟻的口服毒性…………………………………………………..15 覓食活動檢定…………………………………………………………………..15 不同藥劑對黑棘蟻與入侵外來種螞蟻間個體種間競爭……………………..16 不同藥劑對黑棘蟻與入侵外來種螞蟻間群組種間競爭……………………..17 伍、討論……………………………………………………………………………..19 覓食活動………………………………………………………………………..19 新類尼古丁對種間交互作用的影響………………….…………………….…20 陸、參考文獻………………………………………………………………………..23 柒、附錄……………………………………………………………………………..54 | |
| dc.language.iso | zh-TW | |
| dc.subject | 入侵紅火蟻 | zh_TW |
| dc.subject | 覓食活動 | zh_TW |
| dc.subject | 種間競爭 | zh_TW |
| dc.subject | 新類尼古丁藥劑 | zh_TW |
| dc.subject | 黑棘蟻 | zh_TW |
| dc.subject | 亞致死效應 | zh_TW |
| dc.subject | foraging behavior | en |
| dc.subject | Polyrhachis dives | en |
| dc.subject | neonicotinoid | en |
| dc.subject | interspecific competition | en |
| dc.subject | sublethal effect | en |
| dc.subject | Solenopsis invicta | en |
| dc.title | 益達胺對黑棘蟻的亞致死效應 | zh_TW |
| dc.title | Sublethal effects of imidacloprid on the gray-black spiny ant, Polyrhachis dives | en |
| dc.type | Thesis | |
| dc.date.schoolyear | 104-1 | |
| dc.description.degree | 碩士 | |
| dc.contributor.coadvisor | 楊景程(Chin-Chen Yang) | |
| dc.contributor.oralexamcommittee | 林宗岐(Chung-Chi Lin) | |
| dc.subject.keyword | 覓食活動,種間競爭,新類尼古丁藥劑,黑棘蟻,亞致死效應,入侵紅火蟻, | zh_TW |
| dc.subject.keyword | foraging behavior,interspecific competition,neonicotinoid,Polyrhachis dives,Solenopsis invicta,sublethal effect, | en |
| dc.relation.page | 56 | |
| dc.rights.note | 同意授權(全球公開) | |
| dc.date.accepted | 2016-02-15 | |
| dc.contributor.author-college | 生物資源暨農學院 | zh_TW |
| dc.contributor.author-dept | 昆蟲學研究所 | zh_TW |
| 顯示於系所單位: | 昆蟲學系 | |
文件中的檔案:
| 檔案 | 大小 | 格式 | |
|---|---|---|---|
| ntu-105-1.pdf | 4.43 MB | Adobe PDF | 檢視/開啟 |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。
