請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/3966
完整後設資料紀錄
DC 欄位 | 值 | 語言 |
---|---|---|
dc.contributor.advisor | 丘臺生(Tai-Sheng Chiu) | |
dc.contributor.author | Ke-Yang Chang | en |
dc.contributor.author | 張可揚 | zh_TW |
dc.date.accessioned | 2021-05-13T08:39:24Z | - |
dc.date.available | 2016-03-08 | |
dc.date.available | 2021-05-13T08:39:24Z | - |
dc.date.copyright | 2016-03-08 | |
dc.date.issued | 2016 | |
dc.date.submitted | 2016-02-15 | |
dc.identifier.citation | 丘臺生、陳志炘、黃文彬 (2012) 遠洋魷魚及秋刀魚漁業之過去貢獻與未來策略。 臺灣遠洋漁業產業鏈之貢獻與發展策略研討會。 高雄,臺灣:59-74。
施教民 (2012) 遠洋魷魚及秋刀魚漁業對周邊產業鏈之影響及未來之展望。 臺灣遠洋漁業產業鏈之貢獻與發展策略研討會。 高雄,臺灣:73-81。 許添容 (2004) 臺灣地區鄉鎮市區生育率的空間與群集研究。 國立政治大學統計研究所碩士論文。 68 pp。 雷祖強、周天穎、鄭丁元 (2007) 應用半變異元模式於 QuickBird影像中植生類別分類特性之研究。航測及遙測學刊,12(1):1-16。 Agnew, D. J., S. Hill, and J. R. Beddington, (2000) Predicting the recruitment strength of an annual squid stock: Loligo gahi around the Falkland Islands. Can. J. Fish. Aquat. Sci., 57, 2479-2487. Agnew, D. J., J. R. Beddington and S. L. Hill, (2002) The potential use of environmental information to manage squid stocks. Can. J. Fish. Aquat. Sci., 59: 1851-1857. Agnew, D. J., S. L. Hill, F. R. Beddington, L. V. Purchase, and R. C. Wakeford. (2005) Sustainability and management of southwest Atlantic squid fisheries. Bull. Mar. Sci., 76(2): 579–594. Agostini, V. N., A. N. Hendrix, A. B. Hollowed, C. D. Wilson, S. D. Pierce and R. C. Francis, (2008) Climate–ocean variability and Pacific hake: A geostatistical modeling approach. J. Mar. Syst., 71: 237-248. Arkhipkin, A., (1993) Age, growth, stock structure and migratory rate of pre-spawning short-finned squid Illex argentinus based on statolith ageing investigations. Fish. Res., 16: 313-338. Arkhipkin, A. I., (2000) Intrapopulation structure of winter-spawned Argentine shortfin squid, Illex argentinus (Cephalopoda, Ommastrephidae), during its feeding period over the Patagonian Shelf. Fish. Bull., 98: 1-13. Arkhipkin, A. I. and D. A. J. Middleton, (2002) Inverse patterns in abundance of Illex argentinus and Loligo gahi in Falkland waters: possible interspecific competition between squid? Fish. Res., 59: 181-196. Barton, J., (2002) Fisheries and fisheries management in Falkland Islands Conservation Zones. Aquatic Conserv: Mar. Freshw. Ecosyst. 12: 127–135. Basson, M., J. R. Beddington, J. A. Crombie, S. J. Holden, L. V. Purchase and G. A. Tingley, (1996) Assessment and management techniques for migratory annual squid stocks: the Illex argentinus fishery in the Sounthwest Atlantic as an example. Fish. Res., 28: 3-27. Bazzino, G., R. A. Quiñones and W. Norbis, (2005) Environmental associations of shortfin squid Illex argentinus (Cephalopoda: Ommastrephidae) in the Northern Patagonian Shelf. Fish. Res., 76: 401-416. Beddington, J. R., A. A. Rosenberg, J. A. Crombie and G. P. Kirkwood, (1990) Stock assessment and the provision of management advice for the short fin squid fishery in Falkland islands waters. Fish. Res., 8: 351-365. Bellido, J. M., G. J. Pierce and J. Wang, (2001) Modelling intra-annual variation in abundance of squid Loligo forbesi in Scottish waters using generalized additive models. Fish. Res., 52: 23-39. Bostanci, A., (2002) No more surprises from evanescent squid. Science, 296: 1000-1001. Boyle, P., and P. Rodhouse, (2005) Cephalopods: ecology and fisheries, 1st ed., 452 p. Blackwell Science, London. Caballero-Alfonso, A. M., U. Ganzedo, A. Trujillo-Santana, J. Polanco, A. Santana del Pino, G. Ibarra-Berastegi and J. J. Castro-Hernández, (2010) The role of climatic variability on the short-term fluctuations of octopus captures at the Canary Islands. Fish. Res., 102: 258-265. Caddy, J. F. and P. G. Rodhouse, (1998) Cephalopod and groundfish landings: evidence for ecological change in global fisheries. Rev. Fish Biol. Fisher., 8: 431-444. Cao, J., X. Chen, and S. Tian, (2015) A Bayesian hierarchical DeLury model for stock assessment of the west winter-spring cohort of neon flying squid (Ommastrephes bartramii) in the northwest Pacific Ocean. Bull. Mar. Sci., 9(1): 1-13. Carton, J. A. and B. S. Giese, (2008) A Reanalysis of Ocean Climate Using Simple Ocean Data Assimilation (SODA). Mon. Weather Rev., 136: 2999-3017. Chen, C.-S. and T.-S. Chiu, (2009) Standardising the CPUE for the Illex argentinus fishery in the Southwest Atlantic. Fisheries Sci., 75: 265-272. Chen, C.-S., T.-S. Chiu and W.-B. Haung, (2007a) The spatial and temporal distribution patterns of the argentine short- finned squid, Illex argentinus, abundances in the Southwest Atlantic and the effects of environmental Influences. Zool. Stud., 46: 111-122. Chen, C.-S., W.-B. Haung and T.-S. Chiu, (2007b) Different spatiotemporal distribution of Argentine short-finned squid (Illex argentinus) In the southwest Atlantic during high-abundance year and its relationship to sea water temperature changes. Zool. Stud., 46: 362-374. Chen, X. J., B. L. Liu and Y. Z. Wang, (2005) Study on the distribution of production of Illex argentinus and its relationship with sea surface temperature in the southwest Atlantic Ocean in 2000. J. Zhanjiang Ocean Univ., 25: 29-34. Ciannelli, L., K.-S. Chan, K. M. Bailey and N. C. Stenseth, (2004) Nonadditive effects of the environment on the survival of a large marine fish population. Ecology, 85: 3418-3427. Ciannelli, L., P. Fauchald, K. S. Chan, V. N. Agostini and G. E. Dings?r, (2008) Spatial fisheries ecology: Recent progress and future prospects. J. Mar. Syst., 71: 223-236. Dawe, E. G., E. B. Colbourne and K. F. Drinkwater, (2000) Environmental effects on recruitment of short-finned squid (Illex illecebrosus). ICES J. Mar. Sci., 57: 1002-1013. Dawe, E. G., L. C. Hendrickson, E. B. Colbourne, K. F. Drinkwater and M. A. Showell, (2007) Ocean climate effects on the relative abundance of short-finned (Illex illecebrosus) and long-finned (Loligo pealeii) squid in the northwest Atlantic Ocean. Fish. Oceanogr., 16: 303-316. Falkland Islands Government, (2014) Fisheries Department Fisheries Statistics, volume 18, 2013: Stanley, Falklands Islands. Fang Z., X. J. Chen, J. H. Li, and H. J. Lu, (2013) Distribution of fishing ground of Illex argentinus and its relationship with sea surface temperature in the waters of Exclusive Economic Zone of Argentina. J. Shanghai Ocean Univ. 22:134-140. FAO, 2015. FAO Global Capture Production database updated to 2013 – Summary information. Faraj, A. and N. Bez, (2007) Spatial considerations for the Dakhla stock of Octopus vulgaris: indicators, patterns, and fisheries interactions. ICES J. Mar. Sci., 64: 1820-1828. Feng, Y. J, X. Y. Fang,X. J. Chen, and Z. Q. Wu, (2012) Spatial interpolation and uncertainty of neon flying squid (Ommastrephes bartramii)resources in the Northwest Pacific Ocean. Resour. Sci., 37:2299-2308. Forsythe, J. W., (1993) A working hypothesis on how seasonal temperature change may impact the field growth of young cephalopods. In Recent advances in cephalopod fisheries biology (T. Okutani, R. K. O’Dor, and T. Kubodera, eds.), p. 133–143. Tokai Univ. Press, Tokyo. Georgakarakos, S., J. Haralabous, V. Valavanis, C. Arvanitidis, D. Koutsoubas and A. Kapantagakis, (2002) Loliginid and ommastrephid stock prediction in Greek waters using time series analysis techniques. Bull. Mar. Sci., 71: 269-287. Gherardi, D. F. M., E. D. T. Paes, H. C. Sorares, L. P. Pezz and M. T. Kayano, (2010) Differences between spatial pattern of climate variability and large marine ecosystems in the western South Atlantic. Pan-Am. J. Aquat. Sci., 5: 3110-3319. Guisan, A., J. T. C. Edwards and T. Hastie, (2002) Generalized linear and generalized additive models in studies of species distributions: setting the scene. Ecol. Model., 157: 89-100. Haimovici, M., N. E. Brunetti, P. G. Rodhouse, J. Csirke and R. H. Leta, (1998) Illex argentinus. In Squid recruitment dynamics: the genus Illex as a model, the commerical Illex species and influences on variability (P. G. Rodhouse, E. G. Dawe, and R. K. O’Dor, eds.), p. 27–58. FAO Fish. Tech. Pap. 376. FAO, Rome. Hanlon, R. T., and J. B. Messenger, (1996) Cephalopod Behaviour, 1st ed., 232 p. Cambridge University Press, New York. Harrell, F. E., Jr., (2014) rms: regression modeling strategies. R package, vers. 4.2-0. [Available from website, accessed Septem¬ber 2014.] Hatanaka, H., (1986) Growth and lifespan of short-finned squid Illex argentinus in waters off Argentina. B. Jpn. Soc. Sci. Fish., 52, 11–17. Igarashi, H., T. Ichii, M. Sakai, Y. Ishikawa, T. Toyoda, S. Masuda, N. Sugiura, K. Mahapatra and T. Awaji, (2015) Possible link between interannual variation of neon flying squid (Ommastrephes bartramii) abundance in the North Pacific and the climate phase shift in 1998/1999. Prog. Oceanogr. In press. Isaaks, E. H. and R. M. Srivastava, (1989) Applied Geostatistics. Oxford Univ. Press, New York, 561 pp. Jereb, P., and C. F. E. Roper (eds.), (2005) Cephalopods of the world. An annotated and illus¬trated catalogue of cephalopod species known to date. Vol: 1. Chambered Nautiluses and Sepioids. FAO Species Cat¬alogue for Fishery Purposes no. 4, vol. 1, 262 p. FAO, Rome. Jereb, P., and C. F. E. Roper (eds.), (2010) Cephalopods of the world. An annotated and illus¬trated catalogue of cephalopod species known to date. Vol: 2. Myopsid and oegopsid squids. FAO Species Cat¬alogue for Fishery Purposes no. 4, vol. 2, 605 p. FAO, Rome. Laptikhovsky, V. V., A. V. Remeslo, C. M. Nigmatullin and I. A. Polishchuk, (2001) Recruitment strength forecasting of the shortfin squid Illex argentinus (Cephalopoda: Ommastrephidae) using satellite SST data, and some consideration of the species' population structure. ICES CM 2001, K:15: 9. Lloret, J., I. Palomera, J. Salat and I. Sole, (2004) Impact of freshwater input and wind on landings of anchovy (Engraulis encrasicolus) and sardine (Sardina pilchardus) in shelf waters surrounding the Ebre (Ebro) River delta (north-western Mediterranean). Fish. Oceanogr., 13: 102-110. Martinez, P., A. Sanjuan, and A. Guerra, (2002) Identification of Illex coindetii, I. illecebrous and I. argentinus (Cephalopoda: Ommastrephidae) throughout the Atlantic Ocean; by body and beak characters. Mar. Biol., 141, 131–143. Matheron, G., (1965) La Theorie des Variables Regionalisces et ses. Applications. Masson et. Cie, Editeurs, Paris. Mello, L. G. and G. A. Rose, (2005) Using geostatistics to quantify seasonal distribution and aggregation patterns of fishes: an example of Atlantic cod (Gadus morhua). Can. J. Fish. Aquat. Sci., 62: 659-670. Middleton, D. A. J. and A. I. Arkhipkin, (2001) Environmental effects on the distribution and migrations of the squid Illex argentinus (Ommasterphidae) in Falkland islands waters. ICES CM 2001/K:20: 30. Pannatier, Y., (1996) VARIOWIN - Software for Spatial Data Analysis in 2D. Springer Verlag, 91 pp. Parfeniuk, A. V., Y. M. Froerman, and A. N. Golub, (1992) Particularidades de la distribución de los juveniles del calamar (Illex argentinus) en el área de la depresión argentina. Frente Marít, 12, 105–111. Pauly, D., V. Christensen, J. Dalsgaard, R. Froese and F. T. Jr., (1998) Fishing down marine food webs. Science, 279: 860-863. Pecl, G. T. and G. D. Jackson, (2008) The potential impacts of climate change on inshore squid: biology, ecology and fisheries. Rev. Fish Biol. Fish., 18: 373-385. Petitgas, P., (1993) Geostatistics for fish stock assessment: a review and an acoustic application. ICES J. Mar. Sci., 50: 285-298. Petitgas, P., (2001) Geostatistics in fisheries survey design and stock assessment: models, variances and applications. FISH and FISHERIES, 2: 231-249. Piatkowski, U., G. J. Pierce and M. M. d. Cunha, (2001) Impact of cephalopods in the food chain and their interaction with the environment and fisheries: an overview. Fish. Res., 52: 5-10. Pierce, G. J. and P. R. Boyle, (2003) Empirical modeling of interannual trends in abundance of squid (Loligo forbesi) in Scottish waters. Fish. Res., 59: 305-326. Pierce, G. J. and A. Guerra, (1994) Stock assessment methods used for cephalopod fisheries. Fish. Res., 21: 255-285. Pierce, G. J., V. D. Valavanis, A. Guerra, P. Jereb, L. Orsi-Relini, J. M. Bellido, I. Katara, U. Piatkowski, J. Pereira, E. Balguerias, I. Sobrino, E. Lefkaditou, J. Wang, M. Santurtun, P. R. Boyle, L. C. Hastie, C. D. MacLeod, J. M. Smith, M. Viana, A. F. González and A. F. Zuur, (2008) A review of cephalopod–environment interactions in European Seas. Hydrobiologia, 612: 49-70. Polanco, J., U. Ganzedo, J. Sáenz, A. M. Caballero-Alfonso and J. J. Castro-Hernández, (2011) Wavelet analysis of correlation among Canary Islands octopus captures per unit effort, sea-surface temperatures and the North Atlantic Oscillation. Fish. Res., 107: 177-183. Portela, J., M. Sacau, J. Wang, G. J. Pierce, M. B. Santos and X. Cardoso, (2005) Analysis of the variability in the abundance of shortfin squid Illex agentinus in the southwest fisheries during the period 1999-2004. ICES CM 2005, O:16. R Core Team. (2014) R: a language and environment for statistical com¬puting. R Foundation for Statistical Computing, Vien¬na, Austria. [Available from website, accessed August 2014.] Robin, J. P. and V. Denis, (1999) Squid stock fluctuations and water temperature: temporal analysis of English Channel Loliginidae. J. Appl. Ecol., 36: 101-110. Rodhouse, P. G., (2001) Managing and forecasting squid fisheries in variable environments. Fish. Res., 54: 3-8. Rodhouse, P. G., J. Barton, E. M. C. Hatfield, and C. Symon, (1995) Illex argentinus: life cycle, population structure, and fishery. ICES Mar. Sci. Symp., 199, 425–432. Rodhouse, P. G. and E. M. C. Hatfield, (1990) Dynamics of growth and maturation in the cephalopod Illex argentinus de Castellanos, 1960 (Teuthoidea: Ommastrephidae). Phil. Trans. R. Soc. London Ser. B, 329, 229–241. Rodhouse, P. G. K., G. J. Pierce, O. C. Nichols, W. H. H. Sauer, A. I. Arkhipkin, V. V. Laptikhovsky, M. R. Lipinski, J. E. Ramos, M. Gras, H. Kidokoro, K. Sadayasu, J. Pereira, E. Lefkaditou, C. Pita, M. Gasalla, M. Haimovici, M. Sakai, and N. Downey, (2014) Environmental Effects on Cephalopod Population Dynamics: Implications for Management of Fisheries. Adv. Mar. Biol., 67, 99-233. Sacau, M., G. J. Pierce, J. Wang, A. I. Arkhipkin, J. Portela, P. Brickle, M. B. Santos, A. F. Zuur and X. Cardoso, (2005) The spatio-temporal pattern of Argentine shortfin squid Illex argentinus abundance in the southwest Atlantic. Aquat. Living Resour., 18: 361-372. Sanchez, P., M. Demestre, L. Recasens, F. Maynou and P. Martin, (2008) Combining GIS and GAMs to identify potential habitats of squid Loligo vulgaris in the Northwestern Mediterranean. Hydrobiologia, 612: 91-98. Silvestri, G. E. and C. S. Vera, (2003) Antarctic Oscillation signal on precipitation anomalies over southeastern South America. Geo. Res. Lett., 30. Vasconcellos, F. C. and I. F. A. Cavalcanti, (2010) Extreme precipitation over Southeastern Brazil in the austral summer and relations with the Southern Hemisphere annular mode. Atmos. Sci. Lett., 11: 21-26. Waluda, C. M., H. J. Griffiths, and P. G. Rodhouse, (2008) Remotely sensed spatial dynamics of the Illex argentinus fishery, Southwest Atlantic. Fish. Res., 91, 196–202. Waluda, C. M., P. G. Rodhouse, G. P. Podesta, P. N. Trathan and G. J. Pierce, (2001a) Surface oceanography of the inferred hatching grounds of Illex argentinus (Cephalopoda: Ommastrephidae) and influences on recruitment variability. Mar. Biol., 139: 671-679. Waluda, C. M., P. G. Rodhouse, P. N. Trathan and G. J. Pierce, (2001b) Remotely sensed mesoscale oceanography and the distribution of Illex argentinus in the South Atlantic. Fish. Oceanogr., 10: 207-216. Waluda, C. M., P. N. Trathan and P. G. Rodhouse, (1999) Influence of oceanographic variability on recruitment in the Illex argentinus (Cephalopoda: Ommastrephidae) fishery in the south Atlantic. Mar. Ecol-Prog. Ser., 183: 159-167. Waluda, C. M., P. N. Trathan and P. G. Rodhouse, (2004) Synchronicity in southern hemisphere squid stocks and the influence of the Southern Oscillation and Trans Polar Index. Fish. Oceanogr., 13: 255-266. Wu, Y. M., S. L. Yang, J. H. Shen, W. F. Zhou, J. Zhang, (2009) Fishing grounds characteristics of Illex argentinus in southwest Atlantic. Chin. J. Appl. Ecol., 20(6): 1445-1451. Young, I. A. G., G. J. Pierce, H. I. Daly, M. B. Santos, L. N. Key, N. Bailey, J. P. Robin, A. J. Bishop, G. Stowasser, M. Nyegaard, S. K. Cho, M. Rasero and J. M. F. Pereira, (2004) Application of depletion methods to estimate stock size in the squid Loligo forbesi in Scottish waters (UK). Fish. Res., 69: 211-227. | |
dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/3966 | - |
dc.description.abstract | 本研究以1986年至2013年間,臺灣魷釣漁船在西南大西洋進行阿根廷魷(Illex argentinus)漁業之經log轉換之單位努力漁獲量(logU)為指標,從時間與空間二個維度探討阿根廷魷資源量變化與環境因子間之關聯。 研究結果顯示, logU沒有年度間的相互作用,而與巴塔哥尼亞陸棚南方2月、3月及4月的近表層水溫(在5 m深度)呈負相關(r值依序為-0.573、-0.596及-0.573,P值均小於0.05),同時也與前一年巴塔哥尼亞陸棚3月的近表層水溫有負相關。 logU也與漁季二年前11月和12月的南極震盪(Antarctic oscillation, AAO)有負相關(r值依序為-0.478及-0.564,P值均小於0.05),並與漁季二年前3月和5月的AAO有正相關(r值依序為0.565及0.436,P值均小於0.05)。 以泛線性模式所構建的經驗模式將漁季二年前11月和3月的AAO,以及前一年與當年3月巴塔哥尼亞陸棚南方之近表層水溫被納入為預測因子,模式決定係數為0.83。 漁季前一年及漁季中阿根廷魷棲息環境的低水溫,為阿根廷魷高資源豐度的重要條件。 由於阿根廷魷無重疊年級群,AAO無法直接影響二年後的阿根廷魷資源量,因此某些生物或非生物的關聯可能存在於阿根廷魷資源量與大氣環流的變動之間。 在空間維度方面,半變異數分析顯示阿根廷魷在西南大西洋的分布,因豐度的不同,而存有不同的空間結構。 除了2010年外,球形模式可解釋大多數阿根廷魷魚度的年度空間分布樣態。 以克利金法(Kriging)估計阿根廷魷之資源分布顯示高豐度位置系沿南緯40度至50度間之200 m等深線分布。 在高資源豐度的年度,例如1999和2007年,豐度的橢圓等值線從200 m等深線向大陸斜坡延伸。 而低豐度的年度,例如2004年,阿根廷魷資源呈現散亂斑塊分布。 以克利金法估計之阿根廷魷總生物量顯示,在西南大西洋漁場中,阿根廷魷系群的開發率在2到34%之間,其系群仍屬於健康的狀況。 本研究表明經驗模式與地學統計方法可有效應用於阿根廷魷資源量之預測、年度空間分布之描述及總資源量之估算,而本研究發展之模式所產生的參數可估算阿根廷魷每年的總生物量與來年可能的資源趨勢。 | zh_TW |
dc.description.abstract | With data from Taiwanese jiggers that targeted the Argentine shortfin squid (Illex argentinus) in the southwest Atlantic between 1986 and 2013, the log-transformed catch per unit of effort (logU) was used as an index of the abundance of this squid to explore squid recruitment fluctuation in response to environmental conditions in temporal and spatial scales. The results indicated that the logU exhibited no inter-annual interaction. The logU were negatively correlated with subsurface seawater temperature (at 5-m depth) in the southern Patagonian Shelf in February, March and April (r = -0.573, -0.596 and -0.573, respectively; all P values were less than 0.05). The logU also negatively correlated with subsurface seawater temperature in the Patagonian Shelf in previous March. The logU was also correlated with the Antarctic Oscillation (AAO), negatively correlated in November and December of the previous 2 years (r = -0.478, and -0.564, respectively; all P values were less than 0.05), and positively correlated in March and May of the previous 2 years l(r = 0.565 and 0.436, respectively; all P values were less than 0.05). GLM analysis selected AAOs in November and March of the previous two years and subsurface seawater temperature in March of the current and previous year, in which coefficient of multiple determination was 0.83. A low seawater temperature in the Argentine shortfin squid habitat in previous 1 year and in fishing season was important conditions of high resource abundance. Because the Argentina shortfin squid was no overlapping groups, AAO can’t directly affect the amount of resources of the Argentine shortfin squid after two years, therefore associated with certain biological or non-biological variation may exist between the Argentina shortfin squid resources and atmospheric circulation. In terms of spatial dimensions, semi-variance analysis showed that the distribution of the Argentine shortfin squid in the Southwest Atlantic had different spatial structures, due to the different of abundance. In all years except 2010, spherical model for semi-variograms extracted the most spatial information from annual distribution maps of the squid abundance. The Kriging interpolation map exhibited a general pattern of aggregation of the squid along the 200-m depth from 40°S to as far as 50°S. The shape of abundance isopleth lines was elliptical, that extended its long axis further from the 200-m isobath toward shelf side in high abundance years, such as 1999 and 2007. Scattered patches of low values were observed in the very low-abundance year of 2004. In Kriging method to estimate the total biomass of the Argentine shortfin squid showed that the exploitation rate of the Argentine short squid in the Southwest Atlantic fishing ground was between 2-34%, which was still a healthy stock status. This study shows that empirical models and geostatistical procedures can be applied to predict the Argentine shortfin squid resource, describe the annual spatial distribution, and estimate the total biomass. The models and parameters can estimate the total biomass of the Argentine shortfin squid and possible annual resource trends in next year. | en |
dc.description.provenance | Made available in DSpace on 2021-05-13T08:39:24Z (GMT). No. of bitstreams: 1 ntu-105-D97b41006-1.pdf: 2217928 bytes, checksum: 73ea411695cfe6cd757a423b949bb8d8 (MD5) Previous issue date: 2016 | en |
dc.description.tableofcontents | 中文摘要 V
ABSTRACT VI 目錄 VIII LIST OF TABLES XII LIST OF FIGURES XIII Chapter 1 前言 1 1.1 頭足類 1 1.1.1 頭足類概論 1 1.1.2 頭足類漁業 1 1.2 阿根廷魷及其漁業 2 1.2.1 阿根廷魷 2 1.2.2 全球阿根廷魷漁業 4 1.2.3 臺灣的阿根廷魷漁業 5 1.3 阿根廷魷資源評估 5 1.3.1 與條鰭魚類在資源評估上的差異 5 1.3.2 環境狀態與資源補充 6 1.3.3 空間分布與資源補充 8 1.3.4 現行資源評估與管理方法 8 1.3.5 經驗模式 9 1.3.6 空間結構分析 10 1.4 研究目的 11 Chapter 2 材料與方法 13 2.1 漁獲資料 13 2.2 環境資料 14 2.3 生物及環境因子相關分析 15 2.4 時間經驗模式 15 2.4.1 泛線性模式 15 2.4.2 因子穩定度分析 16 2.4.3 模式預測模擬 16 2.5 空間結構分析 16 2.5.1 地學統計技術(geostatistical techniques) 17 2.5.2 克利金法(Kriging)與總生物量(total biomass)估算 18 2.5.3 系群豐度與水溫之交叉變異數(Cross-variogram) 18 Chapter 3 結果 20 3.1 系群豐度變化 20 3.2 環境因子 20 3.2.1 CPUE與環境因子相關分析 20 3.2.2 AAO與CPUE 21 3.3 時間維度之經驗模式 21 3.3.1 泛線性模式 21 3.3.2 因子穩定度分析 22 3.3.3 模式預測模擬 22 3.4 空間結構分析 22 3.4.1 CPUE 半變異數分析 22 3.4.2 海水溫度與資源量之交叉變異圖(cross-variogram) 23 3.4.3 克利金法與總生物量估算 23 Chapter 4 討論 25 4.1 前一年資源豐度之影響 25 4.2 環境因子 26 4.2.1 水溫因子 26 4.2.2 大氣驅動力之影響 27 4.3 時間維度的經驗模式 29 4.4 空間結構分析 30 4.5 總生物量的估計 31 4.6 臺灣阿根廷魷漁業管理模式之探討 33 Chapter 5 結論 34 Reference 35 | |
dc.language.iso | zh-TW | |
dc.title | 西南大西洋阿根廷魷(Illex argentinus)之資源評估 | zh_TW |
dc.title | Stock Assessment of the Argentine Shortfin Squid Illex argentinus (Cephalopoda: Ommastrephidae) in the Southwest Atlantic | en |
dc.type | Thesis | |
dc.date.schoolyear | 104-1 | |
dc.description.degree | 博士 | |
dc.contributor.oralexamcommittee | 廖正信(Cheng-Hsin Liao),楊樹森(Shuh-Sen Young),陳璋玲(Chung-Ling Che),陳志炘(Chih-Shin Chen),王慧瑜(Hui-Yu Wang) | |
dc.subject.keyword | 阿根廷魷,南極震盪指數,經驗模式,地學統計,半變異圖, | zh_TW |
dc.subject.keyword | Illex argentinus,Antarctic Oscillation index,empirical model,geostatistical,semi-variogram, | en |
dc.relation.page | 68 | |
dc.rights.note | 同意授權(全球公開) | |
dc.date.accepted | 2016-02-15 | |
dc.contributor.author-college | 生命科學院 | zh_TW |
dc.contributor.author-dept | 生命科學系 | zh_TW |
顯示於系所單位: | 生命科學系 |
文件中的檔案:
檔案 | 大小 | 格式 | |
---|---|---|---|
ntu-105-1.pdf | 2.17 MB | Adobe PDF | 檢視/開啟 |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。