Skip navigation

DSpace

機構典藏 DSpace 系統致力於保存各式數位資料(如:文字、圖片、PDF)並使其易於取用。

點此認識 DSpace
DSpace logo
English
中文
  • 瀏覽論文
    • 校院系所
    • 出版年
    • 作者
    • 標題
    • 關鍵字
    • 指導教授
  • 搜尋 TDR
  • 授權 Q&A
    • 我的頁面
    • 接受 E-mail 通知
    • 編輯個人資料
  1. NTU Theses and Dissertations Repository
  2. 生命科學院
  3. 漁業科學研究所
請用此 Handle URI 來引用此文件: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/3961
完整後設資料紀錄
DC 欄位值語言
dc.contributor.advisor蕭仁傑
dc.contributor.authorChun Liaoen
dc.contributor.author廖竣zh_TW
dc.date.accessioned2021-05-13T08:39:18Z-
dc.date.available2020-03-09
dc.date.available2021-05-13T08:39:18Z-
dc.date.copyright2016-03-09
dc.date.issued2016
dc.date.submitted2016-03-03
dc.identifier.citationBaker KD, Haedrich RL, Snelgrove PV, Wareham VE, Edinger EN, Gilkinson KD (2012) Small-scale patterns of deep-sea fish distributions and assemblages of the Grand Banks, Newfoundland continental slope. Deep Sea Research Part I: Oceanographic Research Papers 65: 171-188.
Bjordal Å, L?kkeborg S (1996) Longlining. Fishing News Books, Oxford, 156 pp.
Buesseler KO, Lamborg CH, Boyd PW, Lam PJ, Trull TW, Bidigare RR, Bishop JKB, Casciotti KL, Dehairs F, Elskens M, Honda M, Karl DM, Siegel DA, Silver MW, Steinberg DK, Valdes J, Mooy BV, Wilson S (2007) Revisiting carbon flux through the ocean's twilight zone. Science 316: 567-570.
Carney RS (2005) Zonation of deep biota on continental margins. Oceanography and Marine Biology: An Annual Review 43: 211-278.
Chang NN, Shiao JC, Gong GC, Kao SJ, Hsieh CH (2014) Stable isotope ratios reveal food source of benthic fish and crustaceans along a gradient of trophic status in the East China Sea. Continental Shelf Research 84: 23-34.
Chern CS, Wang J (1992a) The influence of Taiwan Strait waters on the circulation of the southern East China Sea. La mer 30: 223-228.
Chern CS, Wang J, Wang DP (1990) The exchange of Kuroshio and East China Sea shelf water. Journal of Geophysical Research 95(C9): 16017-16023
Chiao LY, Kao H, Lallemand S, Liu CS. (2001) An alternative interpretation for slip vector residuals of subduction interface earthquakes: a case study in the westernmost Ryukyu slab. Tectonophysics 333(1): 123-134.
Childress JJ, Price MH, Favuzzi J, Cowles D (1990) Chemical composition of midwater fishes as a function of depth of occurrence off the Hawaiian Islands: food availability as a selective factor? Marine Biology 105(2): 235-246.
Chiou ML, Shao KT, Iwamoto T (2004) A New Species, Caelorinchus sheni, and 19 New Records of Grenadiers (Pisces, Gadiformes, Macrouridae) from Taiwan. Zoological studies 43(1): 35-50.
Clarke KR (1993) Non-parametric multivariate analyses of changes in community structure. Australian journal of ecology 18: 117-117.
Dietz RS, Menard HW (1951) Origin of abrupt change in slope at continental shelf margin. American Association of Petroleum Geologists Bulletin 35(9): 1994-2016.
Edgar GJ, Shaw C (1995) The production and trophic ecology of shallow-water fish assemblages in southern Australia III. General relationships between sediments, seagrasses, invertebrates and fishes. Journal of Experimental Marine Biology and Ecology 194(1): 107-131.
Etter RJ, Mullineaux LS (2001) Deep-sea communities. In: Bertness MD, Gaines SD, Hay ME (Eds.). Marine community ecology. Sinauer Associates, Inc. Massachusetts. pp. 367-393.
Font Y, Lallemand S. (2009) Subducting oceanic high causes compressional faulting in southernmost Ryukyu forearc as revealed by hypocentral determinations of earthquakes and reflection/refraction seismic data. Tectonophysics 466(3): 255-267.
Font Y, Liu CS, Schnurle P, Lallemand S. (2001) Constraints on backstop geometry of the southwest Ryukyu subduction based on reflection seismic data. Tectonophysics 333(1): 135-158.
Fujita T, Inada T, Ishito Y (1995) Depth-gradient structure of the demersal fish community on the continental shelf and upper slope off Sendai Bay, Japan. Oceanographic Literature Review 10(42): 877.
Haedrich RL, Rowe GT (1977) Megafaunal biomass in the deep sea.
Haedrich RL, Rowe GT, Polloni PT (1980) The megabenthic fauna in the deep sea south of New England, USA. Marine Biology 57(3): 165-179.
Herring P (2002) The biology of the deep ocean. Oxford University Press.
Herring P (2002) The biology of the deep ocean. Oxford University Press.
Hessler RR, Sanders HL (1967) Faunal diversity in the deep-sea. Deep Sea Research 14: 65-78.
Hsieh HY, Lo WT, Liu DC, Hsu PK, Su WC (2007) Winter spatial distribution of fish larvae assemblages relative to the hydrography of the waters surrounding Taiwan. Environmental biology of fishes 78(4): 333-346.
Hu J, Kawamura H, Li C, Hong H, Jiang Y (2010) Review on current and seawater volume transport through the Taiwan Strait. Journal of oceanography 66(5): 591-610.
Izsak C, Price ARG (2001) Measuring ß-diversity using a taxonomic similarity index, and its relation to spatial scale. Marine Ecology Progress Series 215: 69-77.
Jan S, Chen CC, Tsai YL, Yang YJ, Wang J, Chern CS, Gawarkiewicz G, Lien RC, Centurioni L, Kuo JY (2011) Mean structure and variability of the cold dome northeast of Taiwan. Oceanography 24(4): 100-109.
Jan S, Wang J, Chern CS, Chao SY (2002) Seasonal variation of the circulation in the Taiwan Strait. Journal of Marine Systems 35(3): 249-268.
Jones JB (1992) Environmental impact of trawling on the seabed: a review. New Zealand Journal of Marine and Freshwater Research 26(1): 59-67.
Koslow JA (2007) The silent deep: the discovery, ecology and conservation of the deep sea (p. 270). Chicago: University of Chicago Press.
Koslow JA, Bulman CM, Lyle JM (1994) The mid-slope demersal fish community off southeastern Australia. Deep Sea Research Part I: Oceanographic Research Papers 41(1): 113-141.
Lallemand S, Font Y, Bijwaard H, Kao H. (2001) New insights on 3-D plates interaction near Taiwan from tomography and tectonic implications. Tectonophysics 335(3): 229-253.
Larsen RB, Isaksen B (1993) Size selectivity of rigid sorting grids in bottom trawls for Atlantic cod (Gadus morhua) and haddock (Melanogrammus aeglefinus). In ICES Marine Science Symposia 196: 178-182.
Liu CS, Liu SY, Lallemand SE, Lundberg N, Reed DL (1998) Digital elevation model offshore Taiwan and its tectonic implications. Terrestrial, Atmospheric and Oceanic Sciences 9(4): 705-738.
Liu JP, Li AC, Xu KH, Velozzi DM, Yang ZS, Milliman JD, DeMaster DJ (2006) Sedimentary features of the Yangtze River-derived along-shelf clinoform deposit in the East China Sea. Continental Shelf Research 26(17): 2141-2156.
Liu KK, Chao SY, Shaw PT, Gong GC, Chen CC, Tang TY (2002) Monsoon-forced chlorophyll distribution and primary production in the South China Sea: observations and a numerical study. Deep Sea Research Part I: Oceanographic Research Papers 49(8): 1387-1412.
Longhurst AR, Pauly D (1987) Ecology of tropical oceans. Academic Press, San Diego: 407.
Lutz MJ, Caldeira K, Dunbar RB, Behrenfeld MJ (2007) Seasonal rhythms of net primary production and particulate organic carbon flux to depth describe the efficiency of biological pump in the global ocean. Journal of Geophysical Research: Oceans (1978–2012), 112(C10).
Matsumoto T, Shinjo R, Nakamura M, Kimura M, Ono T. (2009) Submarine active normal faults completely crossing the southwest Ryukyu Arc. Tectonophysics 466(3): 289-299.
Menezes GM, Sigler MF, Silva HM, Pinho MR (2006) Structure and zonation of demersal fish assemblages off the Azores Archipelago (mid-Atlantic). Marine Ecology Progress Series 324: 241-260.
Menezes GM, Tariche O, Pinho MR, Sigler MF, Silva HM (2015) Structure and zonation of demersal and deep-water fish assemblages off the cape Verde archipelago (northeast-Atlantic) as sampled by baited longlines. Deep Sea Research Part I: Oceanographic Research Papers 102: 118-134.
Merrett NR, Gordon JDM, Stehmann M, Haedrich RL (1991) Deep demersal fish assemblage structure in the Porcupine Seabight (eastern North Atlantic): slope sampling by three different trawls compared. Journal of the Marine Biological Association of the United Kingdom 71(02): 329-358.
Merrett NR, Haedrich RL (1997) Deep-sea demersal fish and fisheries (Vol. 23). Springer Science & Business Media.
Merrett NR, Marshall NB (1980) Observations on the ecology of deep-sea bottom-living fishes collected off northwest Africa (08–27 N). Progress in Oceanography 9(4): 185-244.
Nakabō T(Ed.) (2002) Fishes of Japan: with pictorial keys to the species (Vol. 1). Tokai University Press.
Nelson JS (2006) Fishes of the World. 4th. New York: John Wiley & Sons, Inc.
Nielsen JG, Bertelsen E, Jespersen Å (1989) The biology of Eurypharynx pelecanoides (Pisces, Eurypharyngidae). Acta Zoologica 70(3): 187-197.
Niino H, Emery KO (1961) Sediments of shallow portions of East China Sea and South China Sea. Geological Society of America Bulletin 72(5): 731-762.
Pearcy WG, Stein DL, Carney RS (1982) The deep-sea benthic fish fauna of the northeastern Pacific Ocean on Cascadia and Tufts Abyssal Plains and adjoining continental slopes. Biological Oceanography 1(4): 375-428.
Porteiro FM, Gomes-Pereira JN, Pham CK, Tempera F, Santos RS (2013) Distribution and habitat association of benthic fish on the Condor seamount (NE Atlantic, Azores) from in situ observations. Deep Sea Research Part II: Topical Studies in Oceanography 98: 114-128.
Ragonese S, Zagra M, Di Stefano L, Bianchini ML (2001) Effect of codend mesh size on the performance of the deep-water bottom trawl used in the red shrimp fishery in the Strait of Sicily (Mediterranean Sea). Advances in Decapod Crustacean Research 154: 279-291.
Rex MA (1981) Community structure in the deep-sea benthos. Annual Review of Ecology and Systematics 12: 331-353.
Rex MA, Etter RJ (1998) Bathymetric patterns of body size: implications for deep-sea biodiversity. Deep Sea Research Part II: Topical Studies in Oceanography 45(1): 103-127.
Robison BH (2004) Deep pelagic biology. Journal of Experimental Marine Biology and Ecology 300(1): 253-272.
Sabrah MM, El-Ganainy AA (2009) Observation on biological traits of striped goatfish (Upeneus vittatus) and freckled goatfish (Upeneus tragula) from the Gulf of Suez, Egypt. World Journal of Fish and Marine Sciences 1: 121-128.
Sell AF, Kröncke I (2013) Correlations between benthic habitats and demersal fish assemblages—a case study on the Dogger Bank (North Sea). Journal of Sea Research 80: 12-24.
Shao KT, Hsieh LY, Wu YY, Wu CY (2002) Taxonomic and distributional databases of fishes in Taiwan. Environmental biology of fishes 65(2): 235-240.
Shao KT, Lin JYC, Lin HH (2007) Linking the Taiwan fish database to the global database. Data Science Journal 6: S164-S171.
Smith WH, Sandwell DT (1997) Global sea floor topography from satellite altimetry and ship depth soundings. Science 277(5334): 1956-1962.
Snelgrove PVR, Smith CR (2003) A riot of species in an environmental calm: the paradox of the species-rich deep-sea floor. Oceanography and Marine Biology: An Annual Review 40: 311-342.
Somero GN (1992) Biochemical ecology of deep-sea animals. Experientia 48(6): 537-543.
Somero GN, Siebenaller JF, Hochachka PW (1983) Biochemical and physiological adaptations of deep-sea animals. The sea 8: 261-330.
Sverdrup HU, Johnson MW, Fleming RH (1942) The Oceans. Prentice Hall, New York, p.1087.
Wang JTM, Chen CT (2001) A review of lanternfishes (families: Myctophidae and Neoscopelidae) and their distributions around Taiwan and the Tungsha Islands with notes on seventeen new records. Zoological studies 40(2): 103-126.
Wang MC, Walker WA, Shao KT, Chou LS (2003) Feeding habits of the pantropical spotted dolphin, Stenella attenuata, off the eastern coast of Taiwan. Zoological Studies 42(2): 368-378.
Williams A, Koslow JA, Last PR (2001) Diversity, density and community structure of the demersal fish fauna of the continental slope off western Australia (20 to 35 S). Marine ecology. Progress series 212: 247-263.
Wu YM, Shyu JBH, Chang CH, Zhao L, Nakamura M, Hsu SK. (2009) Improved seismic tomography offshore northeastern Taiwan: implications for subduction and collision processes between Taiwan and the southernmost Ryukyu. Geophysical Journal International 178(2): 1042-1054.
Yancey PH, Gerringer ME, Drazen JC, Rowden AA, Jamieson A (2014) Marine fish may be biochemically constrained from inhabiting the deepest ocean depths. Proceedings of the National Academy of Sciences 111(12): 4461-4465.
Yool A, Martin A P, Fernández C, Clark DR (2007) The significance of nitrification for oceanic new production. Nature 447: 999-1002.
National Oceanic and Atmospheric Administration (1970) World Ocean Atlas [Data file] Available from National Oceanographic Data Center Web site, https://www.nodc.noaa.gov/
方品仁 (2015) 東海底棲性魚類群聚之時空變化。國立臺灣大學生命科學院漁業科學研究所碩士論文,共112頁。
王冑、陳慶生 (1989) 臺灣海峽東側冷季之浙閩沿岸水入侵事件。臺灣大學海洋學刊22:43-67。
王冑、陳慶生、陳俊賢、黃耀瑩 (1988) 國光平台及附近海域氣象海象觀測報告。國立臺灣大學海洋研究所專刊第57號,279頁。
吳全橙、莊世昌、賴竹蘭、康偉福、陳玉姬 (2008) 臺灣北部海域中小型拖網漁業資源現況調查。水產試驗所2008年報,行政院農委會水產試驗所,3頁。
吳全橙、陳威克、莊世昌、吳繼倫、陳玉姬、陳悅祥 (2010) 臺灣北部底棲魚類資源之調查與管理-7.5 cm 底拖網網目選擇性試驗。水產試驗所2010年報,行政院農委會水產試驗所,7頁。
吳宗翰 (2002) 臺灣北部及東北海域底拖魚類群聚結構之研究。國立臺灣海洋大學海洋生物研究所碩士論文,共111頁。
吳春基、黃建智、翁進興、吳龍靜 (2014) 臺灣西南海域花斑蛇鯔之生殖生物學研究。水產研究 22 (1):23-41。
吳春基、賴繼昌、陳玟妤、黃星翰、黃建智、陳羿惠、何珈欣、陳秋月、張麗美、翁進興、楊清閔、吳龍靜 (2013) 臺灣西南海域拖網漁業資源時空變動與永續利用之研究(II)魚類生物研究、浮游生物調查、科學魚探聲學反射特性解析。水產試驗所2013年報,行政院農委會水產試驗所,7頁。
吳春基、賴繼昌、黃建智、陳羿惠、陳玟妤、陳秋月、翁進興、張麗美、吳龍靜 (2012) 臺灣西南海域拖網漁業資源時空變動與永續利用之研究-大眼鯛之漁況及生物特性研究。水產試驗所2012年報,行政院農委會水產試驗所,5頁。
吳春基、賴繼昌、謝泓諺、黃建智、陳羿惠、陳秋月、翁進興、程嘉彥、張麗美、潘惠婉、吳龍靜 (2011) 臺灣西南海域底棲魚類群聚生態調查及其在漁業管理之應用研究-台灣西南海域拖網漁獲大眼鯛、白帶魚、刺鯧之生殖生態調查研究。水產試驗所2011年報,行政院農委會水產試驗所,8頁。
吳龍靜、賴繼昌、翁進興、楊清閔、陳玟妤、黃星翰、黃建智、何珈欣 (2014) 氣候變遷對臺灣西南海域帶魚資源與漁場影響之研究。水產試驗所2014年報,行政院農委會水產試驗所,12頁。
李建生、李經法、程家驥 (2006) 長江口漁場魚類組成和多樣性。海洋漁業28:37-41。
李境超 (2007) 臺灣東北部海域三種腔吻鳕屬鼠尾鳕的食性及棲所資源分配之研究。國立臺灣大學海洋研究所碩士論文,共28頁。
沈世傑 (1993) 台灣魚類誌。Fishes of Taiwan。
林先詠 (2011) 以耳石微細結構與穩定性同位素組成探討深海底棲魚類之生活史。國立臺灣大學海洋研究所碩士論文,共104頁。
林佩諭 (2011) 南中國海及臺灣東北海域深海底棲性生物的多樣性及食物網分析。國立臺灣大學海洋研究所碩士論文,共85頁。
林龍山、鄭元甲、劉勇、張寒野 (2006) 東海區小型魚類生態研究 – 小型魚類的種類組成及季節變化。海洋科學30:58-62。
邱鈺婷 (2013) 2009年至2011年間夏季東海底棲性魚類群聚組成。國立臺灣大學海洋研究所碩士論文,共70頁。
秦韶生、黃士宗、黃四宇、康偉服、李嘉林、陳慶聲、陳玉姬 (2005) 臺灣北部海域中小型拖網單位努力漁獲量之調查研究。水產試驗所2005年報,行政院農委會水產試驗所,3頁。
秦韶生、黃士宗、黃四宇、康偉服、陳慶聲、陳玉姬 (2006) 臺灣北部海域中小型拖網單位努力漁獲量之調查研究。水產試驗所2006年報,行政院農委會水產試驗所,5頁。
秦韶生、賴竹蘭、康偉福、莊世昌、陳玉姬 (2007) 臺灣北部海域中小型拖網漁業資源調查研究。水產試驗所2007年報,行政院農委會水產試驗所,7頁。
張可揚、陳威克、莊世昌、吳全橙、王敏昌、吳繼倫 (2013) 臺灣東北海域底棲漁業資源之監測(I)-宜蘭灣底拖漁獲種類組成變動。水產試驗所2013年報,行政院農委會水產試驗所,3頁。
張其永、楊甘霖 (1986) 閩南-臺灣淺灘漁場狗母魚類食性的研究。水產學報 10 (2):213-222。
張妮娜 (2009) 2008年夏季東海底棲性魚類多樣性及海洋生物與環境之相關性。國立臺灣大學海洋研究所碩士論文,共71頁。
張妮娜 (2013) 東海底棲性魚類群聚與環境因子之關聯:論優養化之影響。國立臺灣大學海洋研究所博士論文,共133頁。
陳正平 (1996) 利用型態及粒線體去氧核醣核酸的12S rRNA序列探討天竺鯛科魚類分類與類緣關係。國立臺灣大學海洋研究所博士論文,共192頁。
陳威克、莊世昌、吳全橙、蕭聖代、吳繼倫 (2012) 臺灣北部海域底棲魚類資源之調查與管理-台灣產大眼鯛之系群遺傳結構。水產試驗所2012年報,行政院農委會水產試驗所,6頁。
葉信明、吳春基、陳羿惠、吳龍靜、謝泓諺 (2010) 臺灣西南海域蛇鯔屬魚類的產卵洄游。水產試驗所2010年報,行政院農委會水產試驗所,8頁。
葉信明、吳春基、賴繼昌、陳守仁、陳羿惠、吳龍靜、黃建智、翁進興、張麗美、陳秋月、潘惠婉、邵琬絜、蔡家聖、黃盟巽 (2008) 台灣西南海域底棲魚類群聚生態調查及其在漁業管理之應用研究-經濟魚類產卵場及漁場動態。水產試驗所2008年報,行政院農委會水產試驗所,7頁。
葉信明、吳春基、賴繼昌、黃建智、陳守仁、陳羿惠、吳龍靜、柯慧玲、翁進興、張麗美、陳秋月、潘惠婉、邵琬絜、蔡家聖、蔣依依、黃盟巽 (2009) 臺灣西南海域底棲魚類群聚生態調查及其在漁業管理之應用研究-台灣西南海域刺鯧生殖洄游海域、漁業參數及網目選擇性。水產試驗所2009年報,行政院農委會水產試驗所,8頁。
劉恩諭 (2013) 以耳石微細結構與穩定性同位素組成探討深海底棲魚類之發育垂直遷徙。國立臺灣大學海洋研究所碩士論文,共101頁。
賴繼昌、黃建智、洪銘昆、黃星翰、吳春基、翁進興、葉信明、吳龍靜 (2012) 臺灣西南海域海洋水文環境與漁業資源漁場變動監測研究。水產試驗所2012年報,行政院農委會水產試驗所,15頁。
賴繼昌、黃建智、洪銘昆、黃星翰、吳春基、翁進興、葉信明、吳龍靜 (2013) 臺灣西南海域海洋水文環境與漁業資源漁場變動監測研究。水產試驗所2013年報,行政院農委會水產試驗所,13頁。
隋宗達 (2015) 以耳石微細結構與穩定性碳氧同位素組成探討深海底棲性魚類之發育垂直遷徙。國立臺灣大學海洋研究所碩士論文,共152頁。
戴昌鳳等 (2014) 臺灣區域海洋學。臺北:國立臺灣大學出版中心。
臺灣底拖漁業資源資料庫 - http://coatbp.sinica.edu.tw/2010/home.php
臺灣深海生物相及其分布資料庫 - http://deepsea.biodiv.tw/
臺灣魚類資料庫 - http://fishdb.sinica.edu.tw/
世界海洋物種目錄 - http://www.marinespecies.org/
dc.identifier.urihttp://tdr.lib.ntu.edu.tw/jspui/handle/123456789/3961-
dc.description.abstract此論文以 PRIMER6 & PERMANOVA+所提供的群聚分析法,研究臺灣周遭海域的底棲魚類群聚特性,使用的資料為2000年至2014年間於深度10 m至3580 m的底拖調查數據─共888種魚種於196個測站。群集分析 (cluster)與多元尺度分析 (MDS)結果顯示整體魚類群聚隨深度逐漸改變,深度200 m以淺群聚主要分為西部與東北–西南兩群,而西部海域又可分為數群 (SIMPROF test; p < 0.05),並隨深度越深不同海域間 (東北及西南海域)魚類群聚的差異雖然顯著 (p < 0.01)但隨深度越深而越小,RELATE結果顯示魚類群聚與深度呈顯著中度相關 (Rho = 0.513; p < 0.01)。DISTLM分析結果顯示,200 m以淺的群聚與深度、溫度、地形崎嶇度度、表層平均初級生產力,以及顆粒有機碳通量呈顯著相關,而出現次數較高的魚類 (日本緋鯉、鱷蛇鯔、扁 )呈現類似南北分群的現象,分界位置大約位於澎湖群島地區;深度201 – 1000 m的群聚與深度、地形崎嶇度、表層平均初級生產力、表層平均初級生產力季節性變化,以及顆粒有機碳通量呈顯著相關,而出現次數較高的魚類 (小鰭新燈魚、多斑新鼬魚與合鰓鰻)在西南海域以底棲性魚類 (鼠尾鱈科:Macrouridae)為主,東北海域除了底棲性魚類外,也有大洋垂直洄游性魚類 (燈籠魚科:Myctophidae)的出現,推測可能與長年存在的湧升流,使得浮游動物量增加,最終反映在東北海域魚類群聚組成上;深度超過1000 m的群聚與深度、溫度、地形崎嶇度、表層平均初級生產力、表層平均初級生產力季節性變化,以及顆粒有機碳通量呈顯著,但是主要以顆粒有機碳與地形的解釋力較高,出現次數較高的魚類以鑽光魚科 (Gonostomatidae)魚類為主。整體臺灣周遭的底棲魚類群聚主要受深度所影響外,還會受到其他環境因子 (水團、溫度、初級生產力)影響,甚至是小尺度的環境因子也可能會對魚類群聚造成影響 (底質、地形)。zh_TW
dc.description.abstractCommunity structure of demersal fish around Taiwan were examined from bottom trawl surveys between 2000 and 2014. A total of 888 fish species were recorded from 196 sampling sites extending from 10 to 2580-m depth and spanning the northeast (NE) and southwest (SW) shelves and slopes, as well as the western (W) shelf off the island of Taiwan. Cluster analysis and multi-dimensional scaling (MDS) show that the fish fauna changes were gradual and continum along the depth gradient. On the continental shelf, the demersal fish can be separated into W and NE-SW assemblages, with the W assemblage being further divided into several significant subgroups. Along the shelves and slopes, the fish assemblage compositions were significantly different between the NE and SW regions, but the difference became smaller with depths.The assemblage composition was significantly correlated with depth, temperature, roughness, mean primary production and particlulate organic carbon flux (POC flux) on the shelves, where the Lizardfish (Saurida wanieso) most frequently occurred on the shelf north of the Penghu island and Dragonet (Callionymus planus) characterized (by occurrence) the shelf south of the Penghu island. At upper bathyal depths (201 – 1000 m), the assemblage composition was significantly correlated with depth, roughness, mean primary production, seasonal variation of mean primary production and POC flux. The SW upper bathyal zone was characterized by demersal rattail fish (macrouridae) but the NE characterized by mesoplagic lantem fish (myctophidae). The frequent occurrence of lantemfish fish in the NE upper bathyal zone is presumably related to upwelling and abundant zooplankton in the region, in which the environmental conditions may favor the lantemfish with strong vertical-migration ability to optimize their foraging strategy. At the lower bathyal depths (>1000 m), the assemblage composition was siginificantly correlated with depth, temperature, roughness, mean primary production, seasonal variation of primary production and POC flux; however, delining food supplies and the bottom terrain characteristic appears to be the main controls of the assemblage composition. The brislemouths (gonostomatidae) were the most frequently occurred fish species, suggesting that the habitats lokely become more similar between the NE and SW lower bathyal zones. In conclusion, the delineation of demersal fish assemblages off Taiwan were influenced by large-scale environmental forcing (e.g. depth and water masses) but the small-scale habitat heterogeneity may also contribute to small-scale regional variations (e.g. bottom type and terrain roughness).en
dc.description.provenanceMade available in DSpace on 2021-05-13T08:39:18Z (GMT). No. of bitstreams: 1
ntu-105-R02b45004-1.pdf: 6758421 bytes, checksum: f85fd37a8d9819f01d8cd14e776ba610 (MD5)
Previous issue date: 2016
en
dc.description.tableofcontents中文摘要 i
英文摘要 ii
目錄 iv
圖目錄 vi
表目錄 viii
附錄 x
第一章、 前言 1
1.1 臺灣周遭的海底地形 1
1.2 島嶼四周的水文與洋流系統 1
1.3 底棲魚類食性 2
1.3.1 深度對於底棲魚類之影響 3
1.3.2 底棲魚類群聚 4
1.3.3 底棲魚類資源研究 6
1.4 研究目的 7
第二章、 材料與方法 9
2.1 魚類資料來源與詳細資訊 9
2.2 魚類樣本處理 10
2.3 統計分析 11
2.4 環境資料來源與分析 16
第三章、 結果 18
3.1 群聚結構分析 18
3.2 物種出現率統計 20
3.3 表層帶各海域群聚組成 (0 – 200 m) 20
3.4 中層帶群聚組成 (201 – 1000 m) 22
3.5 深層帶群聚組成 (> 1000 m) 23
3.6 廣深度分布魚類科別與體型隨深度之變化 24
3.7 生物多樣性指數 24
3.8 環境與生物間之交互關係 26
第四章、 討論 29
4.1 魚類多樣性與組成 29
4.2 魚類群聚與環境之關係 31
4.2.1 表層帶 (0 – 200 m)群聚 31
4.2.2 中層帶 (201 – 600 m)群聚 32
4.2.3 深層帶 (> 1000 m)群聚 33
4.2.4 臺灣周遭海域測站整體群聚 33
第五章、 總結 37
第六章、 參考文獻 39
dc.language.isozh-TW
dc.subject魚類分布zh_TW
dc.subject魚類組成zh_TW
dc.subject底棲魚類群聚zh_TW
dc.subject帶狀分布zh_TW
dc.subject臺灣周遭海域zh_TW
dc.subjectfaunal zonation patternsen
dc.subjectNorthwest Pacificen
dc.subjectTaiwanen
dc.subjectdeep seaen
dc.subjectcontinental shelf and slopeen
dc.subjectdemersal fish community structureen
dc.subjectassemblage compositionen
dc.title臺灣周遭淺海至深海底棲魚類群聚組成特性zh_TW
dc.titleCommunity structure of demersal fishes from continental shelf to lower continental slope around Taiwanen
dc.typeThesis
dc.date.schoolyear104-2
dc.description.degree碩士
dc.contributor.coadvisor魏志潾
dc.contributor.oralexamcommittee邵廣昭,葉信明,李英周,廖運志
dc.subject.keyword臺灣周遭海域,底棲魚類群聚,魚類分布,魚類組成,帶狀分布,zh_TW
dc.subject.keywordNorthwest Pacific,Taiwan,deep sea,continental shelf and slope,demersal fish community structure,assemblage composition,faunal zonation patterns,en
dc.relation.page145
dc.rights.note同意授權(全球公開)
dc.date.accepted2016-03-04
dc.contributor.author-college生命科學院zh_TW
dc.contributor.author-dept漁業科學研究所zh_TW
顯示於系所單位:漁業科學研究所

文件中的檔案:
檔案 大小格式 
ntu-105-1.pdf6.6 MBAdobe PDF檢視/開啟
顯示文件簡單紀錄


系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved