Skip navigation

DSpace

機構典藏 DSpace 系統致力於保存各式數位資料(如:文字、圖片、PDF)並使其易於取用。

點此認識 DSpace
DSpace logo
English
中文
  • 瀏覽論文
    • 校院系所
    • 出版年
    • 作者
    • 標題
    • 關鍵字
    • 指導教授
  • 搜尋 TDR
  • 授權 Q&A
    • 我的頁面
    • 接受 E-mail 通知
    • 編輯個人資料
  1. NTU Theses and Dissertations Repository
  2. 理學院
  3. 數學系
請用此 Handle URI 來引用此文件: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/3956
標題: 包圍重構法在非等向性介質下的發展與殘留應力的彈性系統之強唯一連續性
The development of the Enclosure Method in an Anisotropic Background and the Strong Unique Continuation for the Elasticity with Residual Stress
作者: Yi-Hsuan Lin
林奕亘
指導教授: 王振男(Jenn-Nan Wang)
關鍵字: 包圍重構法,非等向性,殘留應力,強唯一連續性,
Enclosure method,anisotorpic,residual stress,strong unique continuation property,
出版年 : 2016
學位: 博士
摘要: 這篇論文的目的是在三維中非等向性介質下重構可穿透與不可穿透障礙物。我們將會示範如何利用包圍法重構對於以下兩種數學模型:非等向性的橢圓方程以及非等向性的馬克士威方程。到目前為止,對於非等向性的數學模型,沒有可以利用的複幾何光學解用來重構未知障礙物。因此我們將會使用另一種特別解:震盪遞減解使用在我們的逆問題之中。
特別的,在這篇文章中,我們會介紹一種新的轉換法,把非等向性的馬克士威方程轉變成一個二階線性強橢圓系統。這個方法是用來建構非等向性的馬克士威方程的震盪遞減解。而在此篇文章的最後,我們將會討論強唯一連續性質對於Gevrey係數的殘留應力系統。
The goal of this dissertation is to develop reconstruction schemes to determine penetrable and impenetrable obstacles in a region in 3-dimensional in an anisotropic background. We demonstrate the enclosure-type method for two different mathematical models: The anisotropic elliptic equation and the anisotropic Maxwell system. So far, in the anisotropic case, there are no complex geometrical optics solutions which we can use to reconstruct the unknown obstacles in a given medium. Therefore, we use another special type solution: the oscillating decaying solutions, which are useful in our inverse problems.
In particular, for the anisotropic Maxwell system model, we also introduce a new reduction method to transform the Maxwell system into a second order strongly elliptic system. This reduction method is the main tool to construct the oscillating decaying solutions for the anisotropic Maxwell system. In addition, we prove the strong unique continuation for a residual stress system with Gevrey coefficients.
URI: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/3956
DOI: 10.6342/NTU201600158
全文授權: 同意授權(全球公開)
顯示於系所單位:數學系

文件中的檔案:
檔案 大小格式 
ntu-105-1.pdf1.17 MBAdobe PDF檢視/開啟
顯示文件完整紀錄


系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved