請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/39550
完整後設資料紀錄
DC 欄位 | 值 | 語言 |
---|---|---|
dc.contributor.advisor | 徐源泰 | |
dc.contributor.author | Pei-Yin Lin | en |
dc.contributor.author | 林培茵 | zh_TW |
dc.date.accessioned | 2021-06-13T17:31:36Z | - |
dc.date.available | 2013-07-25 | |
dc.date.copyright | 2011-07-25 | |
dc.date.issued | 2011 | |
dc.date.submitted | 2011-07-08 | |
dc.identifier.citation | 方詡,秦玉琪,李雪芝,朱明田,曲音波,2010。纖維素酶與木質纖維素生物降解轉化的研究進展。中國 生物工程學報 第26卷 第7期。
李燕紅,趙輔昆,2005。纖維素酶的研究進展。中國 生命科學 第17卷 第5期。 徐源泰,2009。含鹽纖維素生質轉換生物能源之關鍵單元與技術開發。國家科學委員會子計畫內文。 謝易儒,2008。嗜鹽菌Vibrionaceae sp. NTU 05纖維素水解酶基因之選殖與表現。國立台灣大學園藝學研究所碩士論文。 簡廷因,2008。利用序列特徵探勘預測酵素催化部位。國立台灣大學資訊工程學系碩士論文。 A Oren, 2002. Diversity of halophilic microorganisms: Environments, phylogeny, physiology, and applications. Journal of Industrial Microbiology & Biotechnology 28, 56-63. A. Singh and K. Hayashi, 1995. Microbial cellulases: protein architecture, molecular properties, and biosynthesis. Advances in Applied Microbiology 40, 1-44. Buchanan, Gruissem, Jones, 2000. Biochemistry & molecular biology of plants (1st ed.) American society of plant physiology. C. Y. Wang, Y. R. Hsieh, C. C. Ng, H. Chan, H. T. Lin, W. S. Tzeng, Y. T. Shyu, 2009. Purification and characterization of a novel halostable cellulase from Salinivibrio sp. strain NTU-05. Enzyme and Microbial Technology 44, 373-379. D. Madern, C. Ebel, G. Zaccai, 2000. Halophilic adaptation of enzymes. Extremophiles 4, 91-98. D. Yang, H. Weng, M. Wang, W. Xu, Y. Li, H. Yang, 2010. Cloning and expression of a novel thermostable cellulase from newly isolated Bacillus subtilis strain I15. Molecular Biology Reports 37, 1923-1929. D. Zhang, A. R. Lax, A. K. Raina, J. M. Bland, 2009. Differential cellulolytic activity of native-form and C-terminal tagged-form cellulase derived from Coptotermes formosanus and expressed in E. coli. Insect Biochemistry and Molecular Biology 39, 516-522. Ghose, T.K. 1987. Measurement of Cellulase Activities. Pure and Applied Chemistry 59(2), 257-268. G. H. Snyder, 1987. Intramolecular Disulfide loop formation in a peptide containing two cysteines. Biochemistry 26, 688-694. G. L.Miller, 1959. Use of Dinitrosalicylic Acid Reagent for Determination of Reducing Sugar. Analytical Chemistry 31, 426-428. G. Rastogi, A. Bhalla, A.Adhikari, K. M. Bischoff, S. R. Hughes, L. P. Christopher, R. K. Sani, 2010. Characterization of thermostable cellulases produced by Bacillus and Geobacillus strains. Bioresource Technology 101, 8798-8806. I. S. Ng, C. W. Li, Y. F. Yeh, P. T. Chen, J.L. Chir, C. H. Ma, S. M. Yu, T. h. D. Ho, C. G. Tong, 2009. A novel endo-glucanase from the thermophilic bacterium Geobacillus sp. 70PC53 with high activity and stability over a broad range of temperatures. Extremophiles 13: 425-435. K. Guruprasad, B.V. Reddy and M. W. Pandit, 1990. Correlation between stability of a protein and its dipeptide composition: a novel approach for predicting in vivo stability of a protein from its primary sequence. Protein engineering 4(2), 155-161. K. M. Bischoff, A. P. Rooney, X.-L. Li, S. Liu, S. R. Hughes, 2006. Purification and characterization of a family 5 endoglucanase from a moderately thermophilic strain of Bacillus licheniformis. Biotechnology Letters 28, 1761-1765. K. M. Bischoff, S. Liu, S. R. Hughes, 2007. Cloning and characterization of a recombinant family 5 endoglucanase from Bacillus licheniformis strain B-41361. Process Biochemistry 42, 1150-1154. K. M. Cho, S. J. Hong, R. K. Math, S. M. Islam, J. O. Kim, Y. H. Lee, H. Kim and H. D. Yun, 2008. Cloning of two cellulase genes from endophytic Paenibacillus polymyxa GS01 and comparison with cel44C-man26A. Journal of Basic Microbiology 48, 464-472. M. Dashtban, M. Maki, K. T. Leung, C. Mao, and W. Qin, 2010. Cellulase activities in biomass conversion: measurement methods and comparison. Critical Reviews in Biotechnology, 1-8 M. K. Bhat, 2000. Cellulases and related enzymes in biotechnology. Biotechnology Advances 18(5), 355-383. M.M. Askarieh, A.V. Chambers, F.B.D. Daniel, P.L. FitzGerald, G.J. Holtom, N.J. Pilkington, J.H. Rees, 2000. The chemical and microbial degradation of cellulose in the near field of a repository for radioactive wastes. Waste Management 20, 93-106. M. Schülein, 2000. Protein engineering of cellulases. Biochimica et Biophysica Acta 1543, 239-252. M. W Rey, P. Ramaiya, B. A Nelson, S. D Brody-Karpin, E. J Zaretsky, M. Tang, A. Lopez de Leon, H. Xiang, V. Gusti, I. G. Clausen, P. B Olsen, M. D Rasmussen, J. T Andersen, P. L Jørgensen, T. S Larsen, A. Sorokin, A. Bolotin, A. Lapidus, N. Galleron, S D. Ehrlich and R. M Berka, 2004. Complete genome sequence of the industrial bacterium Bacillus licheniformis and comparisons with closely related Bacillus species. Genome Biology 5(10), r77 N.R. Gilkes, D.G. Kilburn, R.C. Miller, R.A.J. Warren, 1991. Bacterial cellulases. Bioresource Technology 36, 21-35. R. Daniel, 2005. The metagenomics of soil. Nature Reviews Microbiology 3, 470-478. W. Li, X. Huan, Y. Zhou, Q. Ma, Y. Chen, 2009.. Simultaneous cloning and expression of two cellulase genes from Bacillus subtilis newly isolated from Golden Takin (Budorcas taxicolor Bedfordi). Biochemical and Biophysical Research Communications 383, 397-400. X. Huang, Z. Shao, Y. Hong, L. Lin, C. Li, F. Huang, H. Wang, and Z. Liu, 2010. Cel8H, a novel endoglucanase from the halophilic bacterium Halomonas sp. S66-4: molecular cloning, heterogonous expression, and biochemical characterization. The Journal of Microbiology 8(3), 318-324. Y. Zheng, Z. Pan, R. Zhang, D. Wang, 2009. Enzymatic saccharification of dilute acid pretreated saline crops for fermentable sugar production. Applied Energy 86, 2459-2465. | |
dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/39550 | - |
dc.description.abstract | 內切型纖維素水解酶在纖維廢棄物之再利用上扮演重要角色,它可用以切除纖維素的β-1,4-糖苷鍵而釋放出葡萄糖,在生質能源之水解程序中扮演重要角色。本研究是從台灣南部鹽田分離出之嗜鹽菌株Bacillus licheniformis NTU-01中選殖出一個β-1,4-內切型纖維素水解酶(EC 3.2.1.4)基因,其隸屬於醣苷水解酶第五家族。此目標基因命名為bglC6B,包含一完整之開放式閱讀框架,由1,548個核苷酸所組成,可轉譯出515個胺基酸殘基,與Bacillus sp. NBL420 celA基因(AAK73277.1)有99 %同源性。將bglC6B基因次選殖到表現載體pET-28b vector,並轉形至Escherichia coli BL21 (DE3)進行異源表現。重組後的纖維素水解酶BglC6B以快速蛋白質層析系統進行純化,以SDS-PAGE分析後發現,其蛋白分子量約為50 kDa左右。純化後之重組酵素以CMC當基質,測得其活性高達14. 97 U/ml,而其催化之最適pH和溫度為pH 5和30℃,且溫度可作用範圍極廣,在20-60℃之間皆維持高活性,熱穩定性方面則於40℃下放置4小時,仍有高達72 %的相對活性。在0-15%氯化鈉濃度環境下,皆不至於使酵素失活,顯示酵素可耐高鹽份。上述結果凸顯此酵素表現系統的確可適用於高鹽份之農業纖維廢棄物,在轉化成纖維酒精過程中深具開發潛力。 | zh_TW |
dc.description.abstract | Endocellulase plays an important role in the degradation of fiber wastes, it can cleave the β-1,4-glycosidic bond of cellulose to release glucose, which has great potential in applications such as biomass energy. A β-1,4-endoglucanase (EC 3.2.1.4) gene belonging to the glycosyl hydrolase family 5 was cloned from the halophilic bacteria Bacillus licheniformis NTU-01, isolated from saline area in southern Taiwan. The target gene named bglC6B contains a complete ORF of 1,548 nucleotides that translates 515 amino acid residues, it showed 99% homology to Bacillus sp. NBL420 celA gene(AAK73277.1). The bglC6B gene was subcloned into pET-28b vector and heterogenously expressed by E. coli BL21 (DE3). Recombinant BglC6B, which was purified by fast protein liquid chromatography (FPLC) and based on SDS-PAGE analysis, the recombinant BglC6B showed a molecular mass of 50 kDa. The CMCase activity of purified, recombinant BglC6B is 14.97 U/ml. The enzyme showed an optimal pH and temperature of pH5 and 30℃, it was very stable at the broad temperature range from 20 to 60℃, and it retained 72% relative activity after 4 h incubation at 40℃. The effect of salinity was indicated that the enzyme was active over a range of 0-15% sodium chloride. These results indicate this recombinant BglC6B is active and stable in some extreme environment stress such as high salt concentration, which is maybe suitable for cellulose biodegration of saline agricultural wastes to cellulolytic ethanol. | en |
dc.description.provenance | Made available in DSpace on 2021-06-13T17:31:36Z (GMT). No. of bitstreams: 1 ntu-100-R98628215-1.pdf: 2404977 bytes, checksum: b2b204491884ed6eaf6c2fa25ee31ca5 (MD5) Previous issue date: 2011 | en |
dc.description.tableofcontents | 口試委員會審定書
致謝 中文摘要 ⅰ 英文摘要 ⅱ 第一章 前言 1 第二章 研究背景 2 第一節 纖維素與生質酒精工業 2 一、纖維素 2 二、生質酒精工業 4 第二節 纖維素水解酶 6 一、纖維素水解酶之酵素分類 6 二、纖維素水解酶之作用方式 7 三、自然界中微生物纖維素水解酶之來源 10 四、纖維素水解酶之應用 10 五、纖維素水解酶活性之測定方法 12 六、嗜鹽性酵素 16 第三節 Bacillus licheniformis NTU-01纖維素水解酶基因的選殖與表現 17 一、嗜鹽菌Bacillus licheniformis NTU-01之簡介 17 二、微生物纖維素水解酶基因的選殖、表現 19 第四節 實驗架構 21 第三章 實驗材料與方法 22 第一節 菌株之培養 22 第二節 纖維素水解酶基因之選殖 23 一、細菌染色體DNA之萃取 23 二、聚合酶連鎖反應 24 三、DNA之電泳分析 25 四、DNA定序與序列分析比對 26 五、選殖系統之構築 26 六、重組質體之檢視 28 第三節 纖維素水解酶基因之表現 29 一、質體DNA之抽取 29 二、質體DNA之限制酶分析 30 三、表現系統之建構 33 四、轉形株篩選、定序 34 第四節 重組纖維素水解酶之純化與分析 35 一、纖維素水解酶純化 35 二、蛋白質分析 37 三、西方轉漬免疫反應分析 40 第五節 纖維素水解酶活性分析 43 一、剛果紅活性染色 43 二、酵素活性測定 43 三、酵素一般生化特性分析 45 第四章 實驗結果與討論 47 第一節 Bacillus licheniformis NTU-01野生株鑑定及纖維素水解酶活性測試 47 一、菌株鑑定 47 二、活性測試 47 第二節 選殖Bacillus licheniformis NTU-01之纖維素水解酶基因 51 一、引子設計與選殖 51 二、基因比對分析 54 三、基因之蛋白質功能性區域預測 58 四、基因生物信息學分析 64 第三節 重組表現纖維素水解酶基因bglC6B 69 一、表現載體建構 69 二、重組蛋白之活性測試 69 三、IPTG誘導時間對重組纖維素水解酶表現量之測試 72 第四節 重組纖維素水解酶之純化 73 一、快速蛋白質液相層析 73 二、產物分子量大小、西方轉漬與活性確認 73 第五節 重組纖維素水解酶之特性分析 77 一、酵素活性分析 77 二、最適反應溫度與pH 79 三、溫度穩定度測試 81 四、鹽度測試 82 五、酵素動力學實驗 83 第五章 結論 84 參考文獻 86 | |
dc.language.iso | zh-TW | |
dc.title | 嗜鹽菌Bacillus licheniformis NTU-01纖維素水解酶基因之選殖與表現 | zh_TW |
dc.title | Molecular cloning and expression of the cellulase gene from halophiles Bacillus licheniformis NTU-01 | en |
dc.type | Thesis | |
dc.date.schoolyear | 99-2 | |
dc.description.degree | 碩士 | |
dc.contributor.oralexamcommittee | 陳昭瑩,曾文聖 | |
dc.subject.keyword | Bacillus licheniformis NTU-01,內切型纖維素水解酶,bglC6B基因,耐鹽性,異源表現, | zh_TW |
dc.subject.keyword | Bacillus licheniformis NTU-01,endoglucanase,bglC6B gene,halostable,heterologous expression, | en |
dc.relation.page | 93 | |
dc.rights.note | 有償授權 | |
dc.date.accepted | 2011-07-08 | |
dc.contributor.author-college | 生物資源暨農學院 | zh_TW |
dc.contributor.author-dept | 園藝學研究所 | zh_TW |
顯示於系所單位: | 園藝暨景觀學系 |
文件中的檔案:
檔案 | 大小 | 格式 | |
---|---|---|---|
ntu-100-1.pdf 目前未授權公開取用 | 2.35 MB | Adobe PDF |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。