請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/39549完整後設資料紀錄
| DC 欄位 | 值 | 語言 |
|---|---|---|
| dc.contributor.advisor | 王倫(Lon A. Wang) | |
| dc.contributor.author | Ching-Tung Tseng | en |
| dc.contributor.author | 曾慶東 | zh_TW |
| dc.date.accessioned | 2021-06-13T17:31:34Z | - |
| dc.date.available | 2013-07-18 | |
| dc.date.copyright | 2011-07-18 | |
| dc.date.issued | 2011 | |
| dc.date.submitted | 2011-07-08 | |
| dc.identifier.citation | [1] W. Shin, I. B. Sohn, B. A. Yu, Y. L. Lee, S. C. Choi, Y. C. Noh, J. Lee, and D. K. Ko, 'Microstructured Fiber End Surface Grating for Coarse WDM Signal Monitoring,' Photonics Technology Letters, IEEE, vol. 19, pp. 550-552, 2007.
[2] S. W. Kim, 'High-temperature fiber optic sensor using a grating on an angled fiber tip,' Japanese Journal of Applied Physics Part 1-Regular Papers Short Notes & Review Papers, vol. 41, pp. 1431-1435, Mar 2002. [3] S. Scheerlinck, P. Dubruel, P. Bienstman, E. Schacht, D. Van Thourhout, and R. Baets, 'Metal Grating Patterning on Fiber Facets by UV-Based Nano Imprint and Transfer Lithography Using Optical Alignment,' Lightwave Technology, Journal of, vol. 27, pp. 1415-1420, 2009. [4] Shengfei Feng, Xinping Zhang, Hao Wang, Mudi Xin, and Zhenzhen Lu, 'Fiber coupled waveguide grating structures,' Applied Physics Letters, vol. 96, pp. 133101-3, 2010. [5] Jun Ki Kim, Yongmin Jung, Byeong Ha Lee, Kyunghwan Oh, Chaemin Chun, and Dongyu Kim, 'Optical phase-front inscription over optical fiber end for flexible control of beam propagation and beam pattern in free space,' Optical Fiber Technology, vol. 13, pp. 240-245, 2007. [6] G. Cojoc, C. Liberale, P. Candeloro, F. Gentile, G. Das, F. De Angelis, and E. Di Fabrizio, 'Optical micro-structures fabricated on top of optical fibers by means of two-photon photopolymerization,' Microelectronic Engineering, vol. 87, pp. 876-879. [7] Yongbin Lin, Junpeng Guo, and Robert G. Lindquist, 'Demonstration of an ultra-wideband optical fiber inline polarizer with metal nano-grid on the fiber tip,' Opt. Express, vol. 17, pp. 17849-17854, 2009. [8] G. Kostovski, D. J. White, A. Mitchell, M. W. Austin, and P. R. Stoddart, 'Nanoimprinted optical fibres: Biotemplated nanostructures for SERS sensing,' Biosensors and Bioelectronics, vol. 24, pp. 1531-1535, 2009. [9] Elizabeth J. Smythe, Michael D. Dickey, Jiming Bao, George M. Whitesides, and Federico Capasso, 'Optical Antenna Arrays on a Fiber Facet for in Situ Surface-Enhanced Raman Scattering Detection,' Nano Letters, vol. 9, pp. 1132-1138, 2009. [10] A. Petrusis, J. H. Rector, K. Smith, S. de Man, and D. Iannuzzi, 'The align-and-shine technique for series production of photolithography patterns on optical fibres,' Journal of Micromechanics and Microengineering, vol. 19, Apr 2009. [11] K. M. Tan, M. Mazilu, T. H. Chow, W. M. Lee, K. Taguchi, B. K. Ng, W. Sibbett, C. S. Herrington, C. T. A. Brown, and K. Dholakia, 'In-fiber common-path optical coherence tomography using a conical-tip fiber,' Opt. Express, vol. 17, pp. 2375-2384, 2009. [12] Young-Jun Yu, Haneol Noh, Mun-Heon Hong, Heung-Ryoul Noh, Yasuhiko Arakawa, and Wonho Jhe, 'Focusing characteristics of optical fiber axicon microlens for near-field spectroscopy: Dependence of tip apex angle,' Optics Communications, vol. 267, pp. 264-270, 2006. [13] Kim Kyung-Rok, Chang Selee, and K. Oh, 'Refractive microlens on fiber using UV-curable fluorinated acrylate polymer by surface-tension,' Photonics Technology Letters, IEEE, vol. 15, pp. 1100-1102, 2003. [14] M. Sasaki, T. Ando, S. Nogawa, and K. Hane, 'Direct photolithography on optical fiber end,' Japanese Journal of Applied Physics Part 1-Regular Papers Short Notes & Review Papers, vol. 41, pp. 4350-4355, Jun 2002. [15] S. Choi, K. R. Kim, K. Oh, C. M. Chun, M. J. Kim, S. J. Yoo, and D. Y. Kim, 'Interferometric inscription of surface relief gratings on optical fiber using azo polymer film,' Applied Physics Letters, vol. 83, pp. 1080-1082, 2003. [16] Shuichi Makita, Yoshiaki Yasuno, Takashi Endo, Masahide Itoh, and Toyohiko Yatagai, 'Polarization contrast imaging of biological tissues by polarization-sensitive Fourier-domain optical coherence tomography,' Appl. Opt., vol. 45, pp. 1142-1147, 2006. [17] James E. Millerd, Neal J. Brock, John B. Hayes, Michael B. North-Morris, Matt Novak, and James C. Wyant, 'Pixelated phase-mask dynamic interferometer,' Denver, CO, USA, 2004, pp. 304-314. [18] Y. Zhou, H. Tan, and D. J. Klotzkin, 'Small area right angle bends fabricated with hybrid conventional and interference lithography,' Microwave and Optical Technology Letters, vol. 49, pp. 1300-1303, 2007. [19] Gregory P. Nordin, Jeffrey T. Meier, Panfilo C. Deguzman, and Michael W. Jones, 'Micropolarizer array for infrared imaging polarimetry,' J. Opt. Soc. Am. A, vol. 16, pp. 1168-1174, 1999. [20] Yaling Zhou and David J. Klotzkin, 'Design and parallel fabrication of wire-grid polarization arrays for polarization-resolved imaging at 1.55 μm,' Appl. Opt., vol. 47, pp. 3555-3560, 2008. [21] Ohmiya; Shigeo Kuwayama Yuho Harada, Odawara, 'Acid-soluble glass for making flexible optical fiber bundle,' U.S. Patent 4 460 696, July 17,1984. | |
| dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/39549 | - |
| dc.description.abstract | 近來,在光纖端面製作微奈米結構十分受矚目,因為光纖細小,成本低及易於量產的特性,適合應用在感測器、通訊和導光方面。除了文獻中已有的應用報導外,我們提出在光纖端面製作相位光柵,並使用此種端面具有相位光柵的光纖,可輕易地將雷射光導至任意形狀的試片上面,直寫干涉條紋。
在此論文中,我們將會利用商用軟體R-soft來模擬不同結構形狀的相位光柵的繞射效率,以及利用雙光干涉微影術來製作相位光柵。並且利用在離子蝕刻機(RIE)中蝕刻擋罩縮小的機制,簡單地將梯形相位光柵製作在玻璃基板及光纖端面上。而後,我們會針對這些不同高度及填滿率(duty cycle)的結構,對壓抑0階繞射光的影響進行量測以及討論。 在製作梯形相位光柵在光纖束(fiber bundle)的端面方面,我們設計並製作了光纖束。製作光纖束的過程中,較大的石英柱半徑可在旋轉塗佈阻劑時,擁有較均勻的膜厚。而我們設計製作光纖束的直徑為15公厘,可以提供足夠大的面積做旋轉塗佈阻劑,並有效降低邊緣不均勻的現象。在經過干涉微影及半導體製程後,完整無破損的相位光柵可製作在光纖束的端面上。再使用端面具有相位光柵的光纖,將一維光柵製作在一微米尺寸的區域。除此之外,在曲面上直寫週期性結構預期也是可行的。 | zh_TW |
| dc.description.abstract | Recently the fabrication of micro and nano structures on optical fiber ends has attracted attention. Because of low cost, mass production, and small size, optical fibers are appropriate medium for sensing, communication, and light guiding applications. Besides the reported applications, we also proposed an idea that fabrication of a binary phase grating (BPG) on the facet of an optical fiber. By using such a BPG-equipped fiber, a laser beam could be guided to any exposure plane to directly write interference fringes on a substrate of any shape.
In this thesis, we will simulate the diffraction efficiencies of BPGs with various shapes by using the commercial software, R-soft, and fabricate BPGs on quartz substrates and fiber bundle by utilizing two-beam interference lithography and semiconductor processing. Moreover, by using the ARC layer as the etching mask, the trapezoid-shape of gratings would be fabricated naturally. Subsequently, the suppression of 0th order beam diffraction efficiency of different samples influenced by the height and duty cycle is studied. For fabricating trapezoid BPG on the end of fiber bundle, the fiber bundle was designed and fabricated by ourselves. The radius of fiber bundle cylinder needed to be large enough to have good uniformity for spin coating. Ours was 15 mm, and it could provide enough large area for spin coating, the effect of edge bead could be reduced. After semiconductor processing, the non-fragmented BPG on the top of fiber bundle would be obtained. By utilizing the fiber equipped BPG, we could fabricate one dimension grating with micro-scale area. Furthermore, to directly write periodic structures on a curved surface would be possible. | en |
| dc.description.provenance | Made available in DSpace on 2021-06-13T17:31:34Z (GMT). No. of bitstreams: 1 ntu-100-R97941086-1.pdf: 10810153 bytes, checksum: cd9f9a6f362847bf37faf5d05beda75b (MD5) Previous issue date: 2011 | en |
| dc.description.tableofcontents | CONTENTS
誌謝 I 中文摘要 II ABSTRACT III Statement of Contributions V CONTENTS VI LIST OF FIGURES VIII LIST OF TABLES XIII Chapter 1 Introduction 1 1.1 Motivation 1 1.2 Micro-polarizer Array 4 1.3 Organization of the Thesis 9 Chapter 2 Simulation of Binary Phase Grating 10 2.1 Simulation of Rectangular Binary Phase Grating 10 2.2 Simulation of Trapezoid Binary Phase Grating 16 Chapter 3 Fabrication of Binary Phase Gratings on Fiber Ends 27 3.1 Fabrication of Binary Phase Gratings on Flat Quartz Substrates 27 3.1.1 ARC Thickness Design 28 3.1.2 Thin Film Thickness Control 33 3.1.3 Two Beam Interference Lithography System 35 3.1.4 Pattern Transfer by Using RIE 41 3.2 Fabrication of Binary Phase Grating on Fiber Ends 46 3.2.1 Design and Fabrication of Fiber Bundle and Spin Coating Holder 46 3.2.2 Fabrication of Binary Phase Grating on a Fiber Bundle End 55 Chapter 4 Measurement Results and Application of BPGs to Generate One-dimensional Gratings 65 4.1 Measurement Results and Application of the Trapezoid BPGs on Quartz Substrates 65 4.1.1 Measurement Results of the Trapezoid BPGs on Quartz Substrates 65 4.1.2 Application of Fabrication of One Dimension Grating by Using a BPG on a Planar Substrate 71 4.2 The Measurement Results and Application of the BPG on a Fiber End 73 4.2.1 The Measurement Results of the Diffraction Efficiencies from BPGs on the Fiber Ends 73 4.2.2 Application of Fabrication of One Dimension Grating in a Several-Micrometer Micro-Scale Area 77 Chapter 5 Conclusions and Future Work 85 5.1 Conclusions 85 5.2 Future Work 88 5.2.1 Yield Improvement 88 5.2.2 Transversal Multimodes Reduction In the Fiber 88 REFERENCES 90 | |
| dc.language.iso | en | |
| dc.subject | 干涉微影 | zh_TW |
| dc.subject | 繞射效率 | zh_TW |
| dc.subject | 相位光柵 | zh_TW |
| dc.subject | 光纖束 | zh_TW |
| dc.subject | 光纖端面 | zh_TW |
| dc.subject | interference lithography | en |
| dc.subject | diffraction efficiency | en |
| dc.subject | binary phase grating | en |
| dc.subject | fiber bundle | en |
| dc.subject | fiber end | en |
| dc.title | 以干涉微影在光纖端面製作相位光柵及其應用 | zh_TW |
| dc.title | Fabrication and Application of Binary Phase Grating on a Fiber End by Utilizing Interference Lithography | en |
| dc.type | Thesis | |
| dc.date.schoolyear | 99-2 | |
| dc.description.degree | 碩士 | |
| dc.contributor.oralexamcommittee | 黃升龍(Sheng-Lung Huang),陳學禮(Hsuen-Li Chen),徐世祥(Shih-Hsiang Hsu) | |
| dc.subject.keyword | 繞射效率,相位光柵,光纖束,光纖端面,干涉微影, | zh_TW |
| dc.subject.keyword | diffraction efficiency,binary phase grating,fiber bundle,fiber end,interference lithography, | en |
| dc.relation.page | 91 | |
| dc.rights.note | 有償授權 | |
| dc.date.accepted | 2011-07-08 | |
| dc.contributor.author-college | 電機資訊學院 | zh_TW |
| dc.contributor.author-dept | 光電工程學研究所 | zh_TW |
| 顯示於系所單位: | 光電工程學研究所 | |
文件中的檔案:
| 檔案 | 大小 | 格式 | |
|---|---|---|---|
| ntu-100-1.pdf 未授權公開取用 | 10.56 MB | Adobe PDF |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。
