Skip navigation

DSpace

機構典藏 DSpace 系統致力於保存各式數位資料(如:文字、圖片、PDF)並使其易於取用。

點此認識 DSpace
DSpace logo
English
中文
  • 瀏覽論文
    • 校院系所
    • 出版年
    • 作者
    • 標題
    • 關鍵字
    • 指導教授
  • 搜尋 TDR
  • 授權 Q&A
    • 我的頁面
    • 接受 E-mail 通知
    • 編輯個人資料
  1. NTU Theses and Dissertations Repository
  2. 電機資訊學院
  3. 電信工程學研究所
請用此 Handle URI 來引用此文件: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/39542
完整後設資料紀錄
DC 欄位值語言
dc.contributor.advisor吳瑞北(Reuy-Beei Wu)
dc.contributor.authorHsiang-Yuan Chengen
dc.contributor.author鄭翔元zh_TW
dc.date.accessioned2021-06-13T17:31:18Z-
dc.date.available2011-08-23
dc.date.copyright2011-08-23
dc.date.issued2011
dc.date.submitted2011-08-19
dc.identifier.citation[1] M. Swaminathan and A. E. Engin, Power Integrity Modeling and Design for Semiconductors and Systems. Upper Saddle River, New Jerrsey, USA: Pearson Education, 2008, Chapter 3.
[2] L. Smith, “Simultaneous switch noise and power plane bounce for CMOS technology,” in IEEE 8th Electrical Performance Electron. Packag., San Diego, California, USA, Oct. 25-27, 1999, pp. 163–166.
[3] M. Motoyoshi, “Through-silicon via (TSV),” Proc. IEEE, vol. 97, no. 1, pp. 43–48, Jan. 2009.
[4] R.-B. Sun, C.-Y. Wen, and R.-B. Wu, “RC passive equalizer for through silicon via,” in IEEE 19th Electrical Performance Electron. Packag. Syst., Austin, Texas, USA, Oct. 25-27, 2010, pp. 45–48.
[5] J. S. Pak, J. Cho, J. Kim, J. Lee, H. Lee, K. Park, and J. Kim, “Slow wave and dielectric quasi-TEM modes of metal-insulator-semiconductor (MIS) structure through silicon via (TSV) in signal propagation and power delivery in 3D chip package,” in IEEE 60th Electron. Comp. Tech. Conf., Las Vegas, Nevada, USA, June 1-4, 2010, pp. 667–672.
[6] E.-X. Liu, E.-P. Li, W.-B. Ewe, and H. M. Lee, “Multi-physics modeling of through-silicon vias with equivalent-circuit approach,” in IEEE 19th Electrical Performance Electron. Packag. Syst., Austin, Texas, USA, Oct. 25-27, 2010, pp.33–36.
[7] R.Weerasekera, M. Grange, D. Pamunuwa, H. Tenhunen, and L.-R. Zheng, “Compact modelling of through-silicon vias (TSVs) in three-dimensional (3-D) integrated circuits’’ in IEEE 2nd International 3D System Integration Conf., San Francisco, California, USA, Sept. 28-30, 2009.
[8] S. Lin and N. Chang, “Challenges in Power-Ground Integrity,” in IEEE/ACM Int’l Conf. Computer Aided Design, San Jose, California, USA, Nov. 4-8, 2001, pp. 644–651.
[9] J. M. Williamson, M. S. Nakhla, Q.-J. Zhang, and P. D. van der Puije, “Ground noise minimization in integrated circuit packages through pin assignment optimization,” IEEE Trans. Comp., Packag., Manufact. Technol. B, vol. 19, no. 2, pp. 361–371, May 1996.
[10] C. Huang, Y. Yang, and J. L. Prince, “A simultaneous switching noise design algorithm for leadframe packages with or without ground plane,” IEEE Trans. Comp., Packag., Manufact. Technol. B, vol. 19, no. 1, pp. 15–22, Feb. 1996.
[11] R. Sentinathan and J. L. Prince, “Simultaneous switching ground noise calculation for packaged CMOS devices,” IEEE J. Solid-State Circuits, vol. 26, no. 11, pp. 1724–1728, Nov. 1991.
[12] L. Ding and P. Mazumder, “Accurate estimating simultaneous switching noises by using application specific device modeling,” in Design, Automation Test Europe Conference Exhibition, Paris, France, March 3-4, 2002, pp. 1038–1043.
[13] R.-B. Sun, C.-M. Lin, and R.-B. Wu, “Designs of signal-ground bump-patterns for minimizing the simultaneous switching noise in a ball grid array,” in IEEE 17th Electrical Performance Electron. Packag., San Jose, California, USA, Oct. 27-29, 2008, pp. 15–18.
[14] J. U. Knickerbocker et al., “3-D silicon integration and silicon packaging technology using silicon through-vias,” IEEE J. Solid-State Circuits, vol. 41, no. 8, pp. 1718–1725, Aug. 2006.
[15] M. Popovich, A. V. Mezhiba, and E. G. Friedman, Power Distribution Networks with On-chip Decoupling Capacitors. New York, New York, USA: Springer, 2008, Chapter 1.
[16] Y. Xu, W. Liu, Y. Wang, J. Xu, X. Chen, and H. Yang, “On-line MPSoC scheduling considering power gating induced power/ground noise,” in IEEE Computer Society Annual Symposium VLSI, Tampa, Florida, USA, May 13-15, 2009, pp. 109–114.
[17] J. Kim, J. Shim, J. S. Pak, and J. Kim, “Modeling of chip-package-PCB hierarchical power distribution network based on segmentation method,” in IEEE Electrical Design Adv. Packag. Systems , Seoul, Korea, Dec, 10-12, 2008, pp.85–88.
[18] L.-R. Zheng and H. Tenhunen, “Fast modeling of core switching noise on distributed LRC power grid in ULSI circuits,” IEEE Trans. Adv. Packag., vol. 24, no. 8, pp. 245–254, Aug. 2001.
[19] W. Ahmad, Q. Chen, L.-R.Zheng, and H. Tenhunen, “Peak-to-peak switching noise and LC resonance on a power distribution TSV pair,” in IEEE 19th Electrical Performance Electron. Packag. Syst., Austin, Texas, USA, Oct. 25-27, 2010, pp.173–176.
[20] W. Ahmad, L.-R. Zheng, R. Weerasekera, Q. Chen, A. Y. Weldezion, and H. Tenhunen, “Power integrity optimization of 3D chips stacked through TSVs,” in IEEE 18th Electrical Performance Electron. Packag. Syst., Portland, Oregon, USA, Oct. 19-21, 2009, pp. 105–108.
[21] K. Kim, W. Lee, J. Kim, T. Song, J. Kim, J. S. Pak, J. Kim, H. Lee, Y. Kwon, and K. Park, “Analysis of power distribution network in TSV-based 3D-IC,” in IEEE 19th Electrical Performance Electron. Packag. Syst., Austin, Texas, USA, Oct. 25-27, 2010, pp.177–180.
[22] S. Tao, Y, Wang, J. Xu, Y. Ma, Y. Xie, and H. Yang, “Simulation and analysis of P/G noise in TSV based 3D MPSoC,” in First International Conference Green Circuits Systems, Shanghai, China, June 21-23, 2010, pp.573—577.
[23] F. H. Branin, Jr., “Transient analysis of lossless transmission lines,” IEEE Proc. Lett., vol. 55, no. 11, pp. 2012–2013, Nov. 1967.
[24] R.-B. Wu, C.-N. Kuo, and K. K. Chang, “Inductance and resistance computations for three-dimensional multiconductor interconnection structures,” IEEE Trans. Microwave Theory Tech., vol. 40, no. 2, pp. 263–271, Feb. 1992.
[25] MATLAB, The MathWorks, Inc. [Online]. Available: http://www.mathworks.com
[26] E. B. Rosa, “The self and mutual inductance of linear conductors,” Bulletin of the National Bureau of Standards, vol. 4, no. 2, pp. 301–344, 1908.
[27] A. E. Ruehli, “Inductance calculations in a complex integrated circuit environment,” IBM J. Res. Dev., vol. 16, no. 5, pp.470–481, Sept. 1972.
[28] U. Kang et al., “8 Gb 3-D DDR3 DRAM using through-silicon-via technology,” IEEE J. Solid-State Circuits, vol. 45, no. 1, pp. 111–119, Jan. 2010.
[29] Advanced Design System (ADS), Agilent Technologies, Inc. [Online]. Available: http://www.agilent.com
[30] HSPICE, Synopsys, Inc. [Online]. Available: http://www.synopsys.com
[31] F. W. Grover, Inductance Calculations: Working Formulas and Tables. Mineola, New York, USA: Dover Publications, 2009.
[32] A. J. Rainal, “Computing inductive noise of chip packages,” AT&T Bell Lab. Tech. J., vol. 63, no. 1, pp.177–195, Jan. 1984.
[33] J. H. Holland, Adaptation in Natural and Artificial Systems: An Introductory Analysis with Applications to Biology, Control, and Artificial Intelligence. The University of Michigan Press, Ann Arbor, 1975.
[34] Y.-H. Liu, A.-S. Liu, Y.-H. Pang and R.-B. Wu, “Modeling antenna array elements and bandwidth enhanced by genetic algorithm,” in IEEE Antennas Propag. Symp., June 22-27, 2003, Columbus, Ohio, USA, vol. 2, pp. 884–887.
[35] A.-S. Liu, R.-B. Wu, Y.-C. Lin, and H.-J. Li, “Synthesis of nonuniformly spaced linear array for GSM/DCS/WCDMA base atation application using genetic algorithm”, in IEEE Antennas Propag. Symp., June 20-25, 2004, Monterey, California, USA, vol. 1, pp. 137–140.
[36] A.-S. Liu, R.-B. Wu, and Y.-C. Yu, “A two-phase full-wave GA optimization for W-band image rejection waveguide filter design,” in IEEE Antennas Propag. Symp., June 22-27, 2003, Columbus, Ohio, USA, vol. 2, pp. 60–63.
[37] C.-H. Chien, A.-S. Liu, and R.-B. Wu, “A functional genome optimization method for CPW filters design,” in IEEE Antennas Propag. Symp., June 20-25, 2004, Monterey, California, USA, vol. 3, pp. 2743—2746.
dc.identifier.urihttp://tdr.lib.ntu.edu.tw/jspui/handle/123456789/39542-
dc.description.abstract隨著高速數位電路的設計趨勢朝向高操作頻率、高功率密度、低電壓位準和更微小的尺寸,維持電路系統的訊號完整度和電源完整度成為設計上的一大挑戰,而同時切換雜訊或稱為接地反彈雜訊的產生造成電源品質的不穩定,影響了電路運作的可靠性。
本論文使用基因演算法獲得在三維晶片中最佳的直通矽晶連通柱陣列擺置方式,以降低同時切換雜訊的影響。使用等效阻抗矩陣法求得晶片內部複雜構裝的等效電感矩陣,並使用等效電流源取代完整輸入輸出緩衝器模型,以建立一套快速計算接地反彈雜訊峰值的程式。利用基因演算法的尋優機制,將訊號/接地或訊號/接地/電源的直通矽晶連通柱陣列擺置方式最佳化。再者,可以在各種尺寸或訊號/接地/電源的比例下,得到適當的擺置方式將同時切換雜訊最小化。
zh_TW
dc.description.abstractToward the design trends of high clock frequencies, high power density, low voltage levels, and small size for high-speed digital systems, the simultaneous switching noise (SSN) or ground bounce noise (GBN) in the circuits is becoming one of the major challenges for signal integrity (SI) and power integrity (PI).
This paper presents a design methodology to obtain the signal-ground or signal-ground-power through-silicon via (TSV) patterns in the on-chip power delivery network (PDN) with the minimized SSN using a genetic algorithm (GA). For the complex on-chip PDN, the equivalent impedance matrix method is used to calculate the equivalent inductance matrix for desired TSV patterns. The fast computational program to achieve the peak SSN analysis is developed with the simplified I/O buffer model. Based on the proposed methodology, the GA optimization for proper TSV pattern assignments with the various size and signal/ground/power ratios are shown and discussed.
en
dc.description.provenanceMade available in DSpace on 2021-06-13T17:31:18Z (GMT). No. of bitstreams: 1
ntu-100-R98942086-1.pdf: 2377512 bytes, checksum: 5b6f58d919cb7f6d92d701ca40467ccf (MD5)
Previous issue date: 2011
en
dc.description.tableofcontents摘 要… I
Abstract II
目 錄… III
圖 例… VI
表 格… IX
第一章 緒論 1
1-1 研究動機與目的 1
1-2 文獻回顧與探討 2
1-3 章節概要 5
1-4 貢獻 6
第二章 三維晶片電源網路的同時切換雜訊計算 8
2-1 同時切換雜訊的機制 8
2-2 電感基本理論 10
2-3 三維晶片電源傳輸網路介紹 12
2-4 輸入輸出緩衝器的等效模型建立 14
2-5 電源傳輸網格和直通矽晶連通柱的等效模型建立 22
2-5-1 電源傳輸網格的等效模型建立 23
2-5-2 直通矽晶連通柱陣列的等效模型建立 25
2-5-3 將電源傳輸網格與直通矽晶連通柱陣列的電感矩陣結合 25
2-6 輸入輸出緩衝器簡化模型的驗證 26
第三章 以等效阻抗矩陣法計算電感矩陣並估算雜訊峰值 29
3-1 等效阻抗矩陣法介紹 31
3-2 等效阻抗矩陣法計算訊號/接地擺置的同時切換雜訊 33
3-3 當電源網格尺寸改變的接地/訊號同時切換雜訊估算 37
3-4 訊號/電源/接地擺置的同時切換雜訊估算 42
第四章 使用基因演算法對直通矽晶連通柱陣列擺置方式最佳化 49
4-1 基因演算法簡介 49
4-2 基因演算法基本術語 50
4-3 以基因演算法對訊號/接地擺置方式最佳化 51
4-3-1 訊號/接地擺置方式最佳化流程說明 51
4-3-2 訊號/接地擺置方式最佳化結果 57
4-4 以基因演算法對訊號/接地/電源擺置方式最佳化 62
4-4-1 訊號/接地/電源擺置方式之最佳化流程說明 62
4-4-2 訊號/接地/電源擺置方式最佳化結果 63
第五章 結論與未來工作 69
5-1 結論 69
5-2 未來工作 70
參考文獻 71
dc.language.isozh-TW
dc.subject直通矽晶連通柱zh_TW
dc.subject同時切換雜訊zh_TW
dc.subject基因演算法zh_TW
dc.subjectGenetic algorithm (GA)en
dc.subjectsimultaneous switching noise (SSN)en
dc.subjectthrough-silicon via (TSV)en
dc.title三維晶片中同時切換雜訊最小化的直通矽晶連通柱擺置設計zh_TW
dc.titleDesign of Through Silicon Via Assignments for Minimizing Simultaneous Switching Noise in 3D ICen
dc.typeThesis
dc.date.schoolyear99-2
dc.description.degree碩士
dc.contributor.oralexamcommittee吳宗霖(Tzong-Lin Wu),林建民(Chien-Min Lin),駱韋仲(Wei-Chung Luo)
dc.subject.keyword直通矽晶連通柱,同時切換雜訊,基因演算法,zh_TW
dc.subject.keywordGenetic algorithm (GA),simultaneous switching noise (SSN),through-silicon via (TSV),en
dc.relation.page72
dc.rights.note有償授權
dc.date.accepted2011-08-20
dc.contributor.author-college電機資訊學院zh_TW
dc.contributor.author-dept電信工程學研究所zh_TW
顯示於系所單位:電信工程學研究所

文件中的檔案:
檔案 大小格式 
ntu-100-1.pdf
  未授權公開取用
2.32 MBAdobe PDF
顯示文件簡單紀錄


系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved