請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/39507完整後設資料紀錄
| DC 欄位 | 值 | 語言 |
|---|---|---|
| dc.contributor.advisor | 王明光(Ming-Kuang Wang) | |
| dc.contributor.author | Pin-Hung Huang | en |
| dc.contributor.author | 黃彬泓 | zh_TW |
| dc.date.accessioned | 2021-06-13T17:30:18Z | - |
| dc.date.available | 2012-07-25 | |
| dc.date.copyright | 2011-07-25 | |
| dc.date.issued | 2011 | |
| dc.date.submitted | 2011-07-11 | |
| dc.identifier.citation | 1. 阮國棟,1986,砷之汙染特性及處理技術,工業污染防治,5:156-165。
2. 王尚禮,1993,過氯酸鋁水解反應與水鋁氧石之生成機制,國立台灣大學農業化學系碩士論文。 3. 劉鎮宗,1995,砷與生態環境的關係,科學月刊,26:134-140。 4. 賴進興,1995,氧化鐵覆膜濾砂吸附過濾水中銅離子之研究,國立台灣大學,環境工程研究所博士論文。 5. 官文惠,2000,金屬陽離子在二氧化矽�水溶液固液界面反應之研究,行政院國家科學委員會專題研究計畫成果報告。 6. 鄭仲凱,2003,氫氧化鐵吸附水中砷之動力與平衡研究,國立成功大學環境工程學系碩士論文。 7. 詹雅婷,2007,二元氧化物系統對於硒酸鹽與亞硒酸鹽之吸持作用,國立台灣大學農業化學系碩士論文。 8. Alloway, B.J. 1995. Heavy metals in soils. New York: Halsted Press, 106-121. 9. Aide, M.T., and M.F. Cummings. 1997 The influence of pH and phosphate on the adsorption of chromate (VI) on boehmite. Soil Sci. 162:599-603. 10. Alvarez-Ayuso, E., A. Garcia-Sanchez, and X. Querol. 2007. Adsorption of Cr(VI) from synthetic solutions and electroplating wastewaters on amorphous aluminium oxide. J. Hazard. Mater. 142:191-198. 11. Ajouyed, O., C. Hurel, M. Ammari, L.B. Allal, N. Marmier. 2010. Sorption of Cr(VI) onto natural iron and aluminum (oxy)hydroxides: Effects of pH, ionic strength and initial concentration. J. Hazard. Mater. 174:616-622. 12. Bartlett, M. J., and J. M. Kimble. 1976. Behavior of chromate in soils: II. Hexavalent forms. J. Environ. Qual. 5:383-386. 13. Blesa, M.A., and E. Matijevic. 1989. Phase transformation of iron oxide, oxyhydroxides, and hydrous oxide in aqueous media. Adv. Colloid Interface Sci. 29:173-221. 14. Bloomfied, C., and G. Pruden. 1980. The behavior of Cr(VI) in soil under aerobic and anaerobic conditions. Envir. Pollut. Ser. A. 23:103-114. 15. Chan, Y.T., W.H. Kuan, T.Y. Chen, and M.K.Wang. 2009. Adsorption mechanism of selenate and selenite on the binary oxide systems. Water Res. 43:4412-4420. 16. Chao, T.T., M.E. Harward, and S.C. Fang. 1962. Movement of S35 tagged sulfate tough soil columns. J. Soil Sci. Soc. Am. Proc. 26:27-32. 17. Chein, S.H., and W.R. Clayton. 1980. Application of Elovich equation to the kinetics of phosphate releaser and sorption in soils. Soil Sci. Soc. Am. J. 44: 265-268. 18. Cullen, W.R., and K.J. Reimer. 1989. Arsenic speciation in the environment. Chem. Rev. 89:713-764. 19. Chen. S.L., S.R. Dzeng, and M.H. Yang. 1994. Arsenic species in groundwater of the blackfoot diease area, Taiwan. Environ. Sci. Technol. 28: 877-881. 20. Cornell, R.M., and U. Schwertmann. 1996. The Iron Oxides: Structure, Properties, Reaction, Occurrence and Uses. Wiley-VCH, New York. 21. Chowdhury, S. R., and E.K. Yanful. 2010. Arsenic and chromium removal by mixed magnetiteemaghemite nanoparticlesand the effect of phosphate on removal. J. Environ. Manage. 91:2238-2247. 22. Dousma, J., and P.L. De Bruyu. 1976. Hydrolysis precipitation studies of iron solurion. I. Model for hydrolysis and precipitation from Fe (III) nitrate solution. J. Colloid Interface Sci. 56: 527-539. 23. Davis, J.A., and J.O. Leckie. 1980. Surface ionization and complexation at the oxide/water interface III adsorption of anion. J. Colloid Interface Sci.74:32-34. 24. Dong, D., Y.M. Nelson, L.W. Lion, M.L. Shuler, and W.C. Ghiorse. 2000. Adsorption of Pb and Cd onto metal oxides and organic material in natural surface coating as determined by selective extractions: new evidence for the importance of Mn and Fe oxides. Water Res. 34:427-436. 25. Elliott, H.A., M.R. Liberati, and C.P. Huang. 1986. Effect of iron oxide removal on heavy metal sorption by acid subsoils. Water Air Soil Pollut. 27:379-389. 26. Edwards, M. 1994. Chemistry of arsenic removal during coagulation and Fe-Mn oxidation. J.-Am. Water Works Assoc. 86:64-78. 27. Graeme, K.A., and C. V. Pollack. 1998. Heavy metal toxicity, Part I : Arsenic and mercury. J. Emerg. Med. 16:45-56. 28. Goldberg, S., and C.T. Johnson. 2001. Mechanisms of arsenic adsorption on amorphous oxides evaluated using macroscopic measurements, virbrational spectroscopy, and surface complexation modeling. J. Colloid Interface Sci.. 234:204-216. 29. Ghimirea, K.N., K. Inouea, H. Yamagychia, K. Makinob, and T. Miyajimaa. 2003. Adsorptive separation of arsenate and arsenite anions from aqueous medium by using orange waste. Water Res. 37:4945-4953. 30. Hatleild, B., C. Braiford, and D.E Carter. 1996. Reaction of arsine with hemoglobin. J. Toxicol. Environ. Health. 47:145-157. 31. Hayes, K.F. 1987. Equilibrium, Spectroscopic and Kinetic Studies of Iron Adsorption at the Oxide/ Aqueous Interface. Ph. D Dissertation, Stanford University. 32. Hayes, K.F., A.L. Roe, G.E. Brown, K.O. Hodgson, J.O. Leckie, and G.A. Parks. 1987. In situ X-ray adsorption study of surface complexes: selenium oxyanions on α-FeOOH. Science. 238:783-786. 33. Hlavay, J., and K. Polyak. 2005. Determination of surface properties of iron hydroxide-coated aluminum adsorbent prepared for removal of arsenic from drinking water. J. Colloid Interface Sci. 284:71-77. 34. Hughes, M.F. 2002. Arsenic toxicity and potential mechanism of action. Toxicol. Lett. 133:1-16. 35. Hsia, T.H., S.L. Lo, C.F. Lin, and D.Y. Lee. 1993. Chemical and spectroscopic for specific adsorption of chromate on hydrous iron oxide. Chemosphere. 26:1897-1904. 36. Hsu, P.H. and T.F. Bates. 1964. Formation of X-ray amorphous and crystalline aluminum hydroxides. Mineral Mag. 33:749-768. 37. IARC. 1987. Monographs on the Evaluation of Carcinogenic Risks to Humans. International Agency for Research on Cancer. Vol.79. 38. James, B., and N. J. Barlett. 1983. Behavior of chromium in soils: VII. Adsorption and reduction of hexavalent forms. J. Environ. Qual. 12:177-181. 39. Kameda, T., T. Yoshioka, T. Mitsuhashia, M. Uchidaa, and A. Okuwaki. 2003. The simultaneous removal of calcium and chloride ions from calcium chloride solution using magnesium-aluminum oxide. Water Res. 37:4045-4050. 40. Kondo, H., Y. Ishiguro, K. Ohno, M. Nagase, M. Toba, and T. Makoto. 1999. Naturally occurring arsenic in the groundwater in the southern region of Fukuoka Prefecture, Japan. Water Res. 33:1967-1972. 41. Kuan, W.H., S.L. Lo, M.K. Wang, and C.F. Lin. 1998. Removal of Se(IV) and Se(VI) from water by aluminum-oxide-coated sand. Water Res. 32:915-923. 42. Kuan, W.H., S.L. Lo, and M.K. Wang. 2000. pH effect on the surface and bulk characteristics of metallic cations/SiO2 suspensions. Water Sci. Technol. 442: 441-446. 43. Kuan, W.H., S.L. Lo, M.K. Wang, and C.F. Lin. 2004. Modeling and electrokinetic evidences on the processes of the Al (III) sorption continuum in SiO2(s) suspension. J. Colloid Interface Sci. 272:489-497. 44. Liu, C., and P.M. Huang. 2000. Kinetics of phosphate adsorption on iron oxides formed under the influence of citrate. Can. J. Soil Sci. 80:445-454. 45. Mandal, B.K., and K. T. Suzuki. 2002. Arsenic round the world: a review. Talanta. 58:201-235. 46. Matis, K.A., A.I. Zouboulis, F.B. Malamas, M.D.R. Afonso, and M.J. Husdon. 1997. Flotation removal of As (V) on to goethite. Environ. Pollut. 97:239-245. 47. Meng, X., and R.D. Letterman. 1993. Effect of component oxide interaction on the adsorption properties of mixed oxides. Environ. Sci. Technol. 27: 970-975. 48. Morril, L.G., B.C. Mahilum, and S.H. Mohiuddin. 1982. Sorption, degradation and persistence. In: Organic compounds in soils. Ann Arbor Sci. Publishers, Ann Arbor, Michigan. 49. Mudakavi, J.R., G. Venkateshwar, and M. Ravindram. 1995. Removal of chromium from electroplating effluents by the sulphide process. Indian J. Chem. Technol. 2:53-58. 50. Muller, K., V.S.T. Ciminelli, M.S.S. Dantas,and S. Willscher. 2010. A comparative study of As(III) and As(V) in aqueous solutions and adsorbed on iron oxy-hydroxides by Raman spectroscopy. Water Res. 44:5660-5672. 51. Myneni, S.C.B., S.J. Traina, G.A. Waychunas, T.J. Logan. 1998. Experimental and theoretical vibrational spectroscopic evaluation of arsenate coordination in aqueous solutions, solids, and at mineral-water interfaces. Geochem. Cosmochim. Acta. 62:3285-3300. 52. National Research Council. Committee on biologic effects of atmospheric pollutants. 1974.chromium. Nation Academy of Science, Washington, DC. 53. Ning, R.Y. 2002. Arsenic removal by reverse osmosis. Desalination. 143:237-241. 54. Pirerce, M.L., and C.B. Moore. 1982. Adsorption arsenite and arsenate on amorphous iron hydroxide. Water Res. 16:1247-1253. 55. Poulton, S.W., M.D. Kroma, J. Van Rijn, and R. Raiswell. 2002. The use of hydrous iron (III) oxides for the removal of hydrogen sulphide in aqueous system. Water Res. 36: 825-834. 56. Rai, D., L.E. Eary, and J.M. Zachara. 1989. Environmental chemistry of chromium. Sci. Total Environ. 86: 15-23. 57. Richard, F., and A.C.M. Bourg. 1991. Aqueous geochemistry of chromium :a review. Water Res. 25:807-816. 58. Ross, D.S., R.E. Sjorgren, and R.J. Barlett. 1981. Behavior of chromium in soils: IV. Toxicity to microorganisms. J. Environ. Qual. 10:145-148. 59. Sadler, R., H. Olszowy, G. Shaw, and D. Cnell. 1994. Soil and water contamination by arsenic from tannery waste. Water Air Soil Pollut. 78:189-198. 60. Schwertmann, U., and R.M. Tayolr. 1989. Iron oxides, In: Minerals in Soil Environments. Dixon, J. B., Weed S. B. (ed.), 2nd ed. Soil Sci. Soc. Am. J., Madison, Wisconsin. 379-428. 61. Silva, J., J.W.V. Mello, M. Gasparon, W.A.P. Abrahao, V.S.T. Ciminelli, T. Jong. 2010. The role of Al-Goethites on arsenate mobility. Water Res. 44:5684-5692. 62. Smedley, P.L., and D.G Kinniburgh. 2002. A review of source, behavior and distribution of arsenic in natural waters. Applied Geochem. 17:517-568. 63. Sparks, D.L. 1989. Kinetics of Soil Chemical Process. Academic Press, New York. 64. Stumm, W., 1992. Chemistry of the Solid-Water Interface: Processes at the Mineral-Water and Particle-Water Interface in Natural Systems. John Wiley & Sons. New York.. 65. Weerasooriya, R., and H.J. Tobschall. 2000. Mechanistic modeling of chromate adsorption onto goethite. Colloids Surf. 162:167-175. 66. WHO. 1993. Guidelines for Drinking Water Quality. Vol. 1:Recommendations. 2nd edition. World Health Organization, Geneva. 67. Wu, C.H., C.F. Lin, and S.L. Lo. 2003. Modeling competitive adsorption of chromate, sulfate and selenate on γ-Al2O3 : comparison between the triple layer model and Freundlich-type multi-component isotherm. J. Chin. Inst. Environ. Eng. 12:87-94. 68. Yamauchi, H., and A.F. Bruce. 1994. Toxicity and Metabolism of Inorganic and Methylated Arsenicals. In: Arsenic in the Environment (JO.Nriagu Eds) Part II: Human Health and Ecosystem Effects. J. Wiley and Sons, Inc., New York. 69. Zachara, J.M., C.C. Ainsworth, C.E. Cowan, and C.t. Resch. 1989. Adsorption of chromate by subsurface soil horizons. Soil Sci. Soc. Am. J. 53:418-428. 70. Zeng, L. 2003. A method for preparing silica-cintaing iron(III) oxide adsorbents for arsenic removal. Water Res. 37:4351-4358. 71. Zhang, G., H. Liu, R. Liu, and J. Qu. 2009. Adsorption behavior and mechanism of arsenate at Fe–Mn binary oxide/water interface. J. Hazard. Mater. 168:820-825. 72. Zhang, G.S., J.H. Qu, H.J. Liu, R.P. Liu, and R.C. Wu. 2007. Preparation and evaluation of a novel Fe-Mn binary oxide adsorbent for effective arsenite removal. Water Res. 41:1921-1928. 73. Zhu, W., C.J. Hirschmugl, A.D. Laine, B. Sinkovic, and S.S.P. Parkin. 2001. Determination of the thickness of Al oxide films used as barriers. Appl. Phys. Lett. Vol. 78. No. 20. 74. Zongo, I., J. Leclerc, H.A. Maiga, J. Wethe, and F. Lapicque. 2009. Removal of hexavalent chromium from industrial wastewater by electrocoagulation : A comprehensive comparison of aluminium and iron electrodes. Separ. Purif. Technol. 66:159-166. | |
| dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/39507 | - |
| dc.description.abstract | 隨著科技、工業進步,方便人類的同時卻也產生了許多汙染,重金屬汙染即為一例。砷及鉻為人類工業活動所產生之常見重金屬汙染物。當環境中,存在高濃度的砷或鉻,勢必對環境生態造成衝擊,故移除砷和鉻有其必要性。本研究以合成Fe-Si及Al-Si之二元氧化物吸附水溶液中之砷酸鹽及鉻酸鹽,進而討論砷酸鹽或鉻酸鹽和不同二元氧化物之間的吸附差異。實驗方法為以100 mL 10 g SiO2(s) L-1與10 mL 0.5 M Fe(NO3)3或Al(NO3)3混合,將pH值調整至5,定量至1L後進行合成、老化24小時,形成本研究所使用之二元氧化物。由界達電位可知Fe-Si二元氧化物之零電點較Al-Si二元氧化物低,Fe-Si與Al-Si二元氧化物之零電點分冸為6.4和8.5,因此在吸附砷酸鹽或鉻酸鹽時,皆以Al-Si系統之吸附量較高。而隨著pH下降,Fe-Si系統吸附砷酸鹽或鉻酸鹽的量上升々Al-Si系統在pH 5時吸附砷酸鹽與鉻酸鹽皆有最大吸附量。由離子強度效應及FT-IR分析可知在二元氧化物系統吸附砷酸鹽與鉻酸鹽可能為內圈錯合。等溫吸附實驗結果以Langmuir等溫吸附模式擬合後,砷酸鹽最大吸附量於Fe-Si和Al-Si系統分冸為22.27及33.33 (mg g-1)々鉻酸鹽最大吸附量分冸為19.69及20.41 (mg g-1)。動力吸附實驗結果顯示吸附砷酸鹽系統約在3小時平衡々吸附鉻酸鹽系統約6小時達平衡。經由砷酸鹽與鉻酸鹽競爭吸附結果,可知砷酸鹽會抑制鉻酸鹽吸附,因此可知二元氧化物對砷酸鹽的親和力較高。藉由不同濃度之磷酸脫附,於Fe-Si與Al-Si系統中以310 (mg L-1)磷酸最多脫附分冸為49及65 %之砷酸鹽々Fe-Si與Al-Si系統中,62 (mg L-1)磷酸即可脫附95及77%之鉻酸鹽,因此可知本研究合成之二元氧化物對砷酸鹽有較高的移除潛力。 | zh_TW |
| dc.description.abstract | Technological and industrial progress benefit human beings and also generate a lot of pollution. Arsenate (As (V)) and chromate (Cr (VI)) are common heavy metal pollutants produced by human industrial activities. There is high concentrations of As (V) or Cr (VI) in the environments, it will be impacted and produced the environmental and ecosystem problems. Therefore, it is necessary to remove As (V) and Cr (VI). The objectives of this study are to investigate the adsorption of As (V) and Cr (VI) in aqueous solution by synthetic Fe-Si and Al-Si binary oxides, and to compare the differences between As (V) and Cr (VI) on binary oxides. Experimental method was to mix 100 mL 10 g SiO2 L-1 and 10 mL 0.5 M Fe (NO3)3 or Al (NO3)3, then the pH adjusted to about 5, and quantitative to 1L, aging for 24 hours, it is the binary oxides. The zeta potential showed zero-point charge (pH zpc) of Fe-Si binary oxide is lower than Al-Si binary oxide, and the pH zpc of Fe-Si and Al-Si binary oxides is 6.4 and 8.5, respectively. Therefore, the adsorption capacity of Al-Si binary oxide is higher than that of Fe-Si binary oxide . With the decline in pH , the adsorption of As (V) and Cr (VI) increased on Fe-Si system; but the maximum adsorption of As (V) and Cr (VI) is at pH 5 on Al-Si system. The effects of ionic strength and FT-IR analysis showed that the adsorption of As (V) and Cr (VI) on the binary oxide system can be inner-sphere complex. The isotherm experiments fit with the Langmuir equation, the maximum adsorption of As (V) on Fe-Si and Al-Si system were 22.27 and 33.33 (mg /g), respectively; the maximum adsorption of Cr (VI) was 19.69 and 20.41 (mg /g), respectively. Kinetic experiments showed that the adsorption of As (V) reached equilibrium is about 3 hours; the adsorption of Cr (VI) reached equilibrium is about 6 hours. By competitive adsorption of As (V) and Cr (VI), As (V) can inhibit the absorption of Cr (VI). Therefore, binary oxides have higher affinity to As (V) rather than Cr (VI). The desorption of As (V) by 310 (mg L-1) phosphate showed that As(V) desorbed 49% and 65% on Fe-Si and Al-Si system, respectively; and Cr (VI) is desorbed 95% and 77% by 62 (mg L-1) phosphate on Fe-Si and Al-Si system, respectively. Thus, binary oxides possess higher adsorption potential to As(V) than Cr (VI). | en |
| dc.description.provenance | Made available in DSpace on 2021-06-13T17:30:18Z (GMT). No. of bitstreams: 1 ntu-100-R98623015-1.pdf: 2711068 bytes, checksum: 7cc7b235f508ab86b1b23d398846b776 (MD5) Previous issue date: 2011 | en |
| dc.description.tableofcontents | 謝誌.................................................................................................................................I
摘要...............................................................................................................................II Abstract........................................................................................................................III 目錄..............................................................................................................................V 圖目錄.......................................................................................................................VIII 表目錄...........................................................................................................................X 第一章 前言................................................................................................................1 第二章 文獻回顧........................................................................................................3 2.1 砷.............................................................................................................................3 2.1.1 砷的基本性質......................................................................................................3 2.1.2 砷的汙染來源......................................................................................................6 2.1.3 砷的毒性............................................................................................................8 2.2 鉻...........................................................................................................................11 2.2.1 鉻的基本性質....................................................................................................11 2.2.2 鉻的汙染來源....................................................................................................15 2.2.3 鉻的毒性............................................................................................................16 2.3 氧化鐵、鋁形成....................................................................................................18 2.3.1 氧化鐵................................................................................................................18 2.3.2 氧化鋁................................................................................................................20 2.4 氧化鐵、鋁表面特性............................................................................................22 2.5 吸附現象理論.......................................................................................................25 2.5.1 物理吸附............................................................................................................25 2.5.2 化學吸附............................................................................................................25 2.5.3 專一性與非專一性吸附....................................................................................26 2.6 固液界面模式.......................................................................................................28 2.6.1 等溫吸附模式....................................................................................................28 2.7 鐵、鋁氧化物吸附陰離子.....................................................................................30 2.8 鐵、鋁氧化物吸附砷、鉻研究.............................................................................32 2.9 二元氧化物之吸附研究.......................................................................................33 第三章 材料與方法....................................................................................................34 3.1 實驗設計...............................................................................................................34 3.2 藥品配製與合成...................................................................................................35 3.2.1 背景溶液與儲備溶液配製................................................................................35 3.2.2 合成吸附劑........................................................................................................36 3.3 吸附劑物化性質研究...........................................................................................37 3.3.1 X光繞射法鑑定晶形..........................................................................................37 3.3.2 比表面積............................................................................................................39 3.3.3界達電位.............................................................................................................40 3.3.4 粒徑分析............................................................................................................41 3.4 吸附特性研究.......................................................................................................42 3.4.1 背景離子強度效應............................................................................................42 3.4.2 pH值效應...........................................................................................................42 3.4.3 恆溫動力吸附實驗............................................................................................43 3.4.4 等溫吸附實驗....................................................................................................43 3.3.5 砷/鉻競爭實驗 .................................................................................................44 3.4.6 磷酸鹽脫附實驗................................................................................................44 3.4.7 傅立葉轉換紅外線光譜分析............................................................................44 3.4.8 X光吸收光譜分析.............................................................................................45 第四章 結果與討論....................................................................................................46 4.1 吸附劑之基本性質...............................................................................................46 4.1.1 X光繞射法鑑定晶形.......................................................................................46 4.1.2 傅立葉轉換紅外線光譜分析............................................................................47 4.1.3 比表面積與粒徑................................................................................................49 4.1.3 界達電位............................................................................................................50 4.2 吸附實驗...............................................................................................................52 4.2.1 背景離子強度效應............................................................................................52 4.2.2 pH值效應...........................................................................................................53 4.2.3 二元氧化物界面關係........................................................................................56 4.2.4 恆溫動力吸附....................................................................................................59 4.2.5等溫吸附實驗.....................................................................................................68 4.2.6 砷酸鹽與鉻酸鹽之競爭吸附............................................................................74 4.2.7 磷酸鹽脫附實驗................................................................................................76 4.2.8 傅立葉轉換紅外線光譜分析............................................................................78 4.2.9 X光吸收光譜分析..............................................................................................84 第五章 結論................................................................................................................86 第六章 參考文獻........................................................................................................87 | |
| dc.language.iso | zh-TW | |
| dc.subject | 砷酸鹽 | zh_TW |
| dc.subject | 吸附 | zh_TW |
| dc.subject | 零電點 | zh_TW |
| dc.subject | 鉻酸鹽 | zh_TW |
| dc.subject | 內圈錯合 | zh_TW |
| dc.subject | 二元氧化物 | zh_TW |
| dc.subject | arsenate (As (V) | en |
| dc.subject | inner-sphere complex | en |
| dc.subject | adsorption | en |
| dc.subject | zero-point charge (pH zpc) | en |
| dc.subject | binary oxides | en |
| dc.subject | chromate (Cr (VI) | en |
| dc.title | 鐵-矽或鋁-矽二元氧化物吸附砷酸鹽與鉻酸鹽 | zh_TW |
| dc.title | Adsorption of arsenate and chromate on Fe-Si or Al-Si binary oxides | en |
| dc.type | Thesis | |
| dc.date.schoolyear | 99-2 | |
| dc.description.degree | 碩士 | |
| dc.contributor.oralexamcommittee | 王尚禮,官文惠,張大偉,劉鎮宗 | |
| dc.subject.keyword | 二元氧化物,砷酸鹽,鉻酸鹽,零電點,吸附,內圈錯合, | zh_TW |
| dc.subject.keyword | binary oxides,arsenate (As (V),chromate (Cr (VI),zero-point charge (pH zpc),adsorption,inner-sphere complex, | en |
| dc.relation.page | 93 | |
| dc.rights.note | 有償授權 | |
| dc.date.accepted | 2011-07-11 | |
| dc.contributor.author-college | 生物資源暨農學院 | zh_TW |
| dc.contributor.author-dept | 農業化學研究所 | zh_TW |
| 顯示於系所單位: | 農業化學系 | |
文件中的檔案:
| 檔案 | 大小 | 格式 | |
|---|---|---|---|
| ntu-100-1.pdf 未授權公開取用 | 2.65 MB | Adobe PDF |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。
