Skip navigation

DSpace

機構典藏 DSpace 系統致力於保存各式數位資料(如:文字、圖片、PDF)並使其易於取用。

點此認識 DSpace
DSpace logo
English
中文
  • 瀏覽論文
    • 校院系所
    • 出版年
    • 作者
    • 標題
    • 關鍵字
    • 指導教授
  • 搜尋 TDR
  • 授權 Q&A
    • 我的頁面
    • 接受 E-mail 通知
    • 編輯個人資料
  1. NTU Theses and Dissertations Repository
  2. 生命科學院
  3. 生化科學研究所
請用此 Handle URI 來引用此文件: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/39485
完整後設資料紀錄
DC 欄位值語言
dc.contributor.advisor翁啟惠(Wong, Chi-Huey)
dc.contributor.authorTing-Yun Wangen
dc.contributor.author王亭云zh_TW
dc.date.accessioned2021-06-13T17:29:42Z-
dc.date.available2011-08-05
dc.date.copyright2011-08-05
dc.date.issued2011
dc.date.submitted2011-07-12
dc.identifier.citation1. Sui, J., Hwang, W. C., Perez, S., Wei, G., Aird, D., Chen, L.-m., Santelli, E., Stec, B., Cadwell, G., Ali, M., Wan, H., Murakami, A., Yammanuru, A., Han, T., Cox, N. J., Bankston, L. A., Donis, R. O., Liddington, R. C., and Marasco, W. A. (2009) Structural and functional bases for broad-spectrum neutralization of avian and human influenza A viruses, Nature Structural & Molecular Biology 16, 265-273.
2. Hassan, A. I., Hammad, S. A., El, A., II, Mourad, A. S., Masood, B. Z., and Hosny, A. (1979) A study on influenza virus and associated bacterial pathogens in upper and lower respiratory tract infections in children, J Egypt Public Health Assoc 54, 275-289.
3. Webster, R. G., Bean, W. J., Gorman, O. T., Chambers, T. M., and Kawaoka, Y. (1992) Evolution and ecology of influenza A viruses, Microbiol Mol Biol Rev 56, 152-179.
4. Whittaker, G. R. (2001) Intracellular trafficking of influenza virus: clinical implications for molecular medicine, Expert Rev Mol Med 2001, 1-13.
5. Webster, R. G., Wright, S. M., Castrucci, M. R., Bean, W. J., and Kawaoka, Y. (1993) Influenza--a model of an emerging virus disease, Intervirology 35, 16-25.
6. Neumann, G., Noda, T., and Kawaoka, Y. (2009) Emergence and pandemic potential of swine-origin H1N1 influenza virus, Nature 459, 931-939.
7. Schmitt, A. P., Lamb, R. A., and Polly, R. (2005) Influenza Virus Assembly and Budding at the Viral Budozone, Adv Virus Res 64, 383-416.
8. Nayak, D. P., Hui, E. K.-W., and Barman, S. (2004) Assembly and budding of influenza virus, Virus Res 106, 147-165.
9. Stegmann, T., White, J. M., and Helenius, A. (1990) Intermediates in influenza induced membrane fusion, EMBO J 9, 4231-4241.
10. Stevens, J., Blixt, O., Chen, L. M., Donis, R. O., Paulson, J. C., and Wilson, I. A. (2008) Recent avian H5N1 viruses exhibit increased propensity for acquiring human receptor specificity, J Mol Biol 381, 1382-1394.
11. Stevens, J., Blixt, O., Tumpey, T. M., Taubenberger, J. K., Paulson, J. C., and Wilson, I. A. (2006) Structure and receptor specificity of the hemagglutinin from an H5N1 influenza virus, Science 312, 404-410.
12. Ralf Wagner, M. M. H.-D. K. (2002) Functional balance between haemagglutinin and neuraminidase in influenza virus infections, Rev Med Virol 12, 159-166.
13. Chu, V. C., and Whittaker, G. R. (2004) Influenza virus entry and infection require host cell N-linked glycoprotein, Proc Natl Acad Sci USA 101, 18153-18158.
14. Stray, S. J., Cummings, R. D., and Air, G. M. (2000) Influenza virus infection of desialylated cells, Glycobiology 10, 649-658.
15. Ha, Y., Stevens, D. J., Skehel, J. J., and Wiley, D. C. (2003) X-ray structure of the hemagglutinin of a potential H3 avian progenitor of the 1968 Hong Kong pandemic influenza virus, Virology 309, 209-218.
16. Wilson, I. A., Skehel, J. J., and Wiley, D. C. (1981) Structure of the haemagglutinin membrane glycoprotein of influenza virus at 3 A resolution, Nature 289, 366-373.
17. Bizebard, T., Gigant, B., Rigolet, P., Rasmussen, B., Diat, O., Bosecke, P., Wharton, S. A., Skehel, J. J., and Knossow, M. (1995) Structure of influenza virus haemagglutinin complexed with a neutralizing antibody, Nature 376, 92-94.
18. Bullough, P. A., Hughson, F. M., Skehel, J. J., and Wiley, D. C. (1994) Structure of influenza haemagglutinin at the pH of membrane fusion, Nature 371, 37-43.
19. Hirst, G. K. (1941) The Agglutination of Red Cells by Allantoic Fluid of Chick Embryos Infected with Influenza Virus, Science 94, 22-23.
20. Carroll, S. M., Higa, H. H., and Paulson, J. C. (1981) Different cell-surface receptor determinants of antigenically similar influenza virus hemagglutinins, J Biol Chem 256, 8357-8363.
21. Rogers, G. N., and Paulson, J. C. (1983) Receptor determinants of human and animal influenza virus isolates: differences in receptor specificity of the H3 hemagglutinin based on species of origin, Virology 127, 361-373.
22. Rogers, G. N., Daniels, R. S., Skehel, J. J., Wiley, D. C., Wang, X. F., Higa, H. H., and Paulson, J. C. (1985) Host-mediated selection of influenza virus receptor variants. Sialic acid-alpha 2,6Gal-specific clones of A/duck/Ukraine/1/63 revert to sialic acid-alpha 2,3Gal-specific wild type in ovo, J Biol Chem 260, 7362-7367.
23. Rogers, G. N., Paulson, J. C., Daniels, R. S., Skehel, J. J., Wilson, I. A., and Wiley, D. C. (1983) Single amino acid substitutions in influenza haemagglutinin change receptor binding specificity, Nature 304, 76-78.
24. Ito, T., Couceiro, J. N., Kelm, S., Baum, L. G., Krauss, S., Castrucci, M. R., Donatelli, I., Kida, H., Paulson, J. C., Webster, R. G., and Kawaoka, Y. (1998) Molecular basis for the generation in pigs of influenza A viruses with pandemic potential, J Virol 72, 7367-7373.
25. Rogers, G. N., and D'Souza, B. L. (1989) Receptor binding properties of human and animal H1 influenza virus isolates, Virology 173, 317-322.
26. Blixt, O., Head, S., Mondala, T., Scanlan, C., Huflejt, M. E., Alvarez, R., Bryan, M. C., Fazio, F., Calarese, D., Stevens, J., Razi, N., Stevens, D. J., Skehel, J. J., van Die, I., Burton, D. R., Wilson, I. A., Cummings, R., Bovin, N., Wong, C.-H., and Paulson, J. C. (2004) Printed covalent glycan array for ligand profiling of diverse glycan binding proteins, Proc Natl Acad Sci USA 101, 17033-17038.
27. Chandrasekaran, A., Srinivasan, A., Raman, R., Viswanathan, K., Raguram, S., Tumpey, T. M., Sasisekharan, V., and Sasisekharan, R. (2008) Glycan topology determines human adaptation of avian H5N1 virus hemagglutinin, Nat Biotech 26, 107-113.
28. Liang, P.-H., Wang, S.-K., and Wong, C.-H. (2007) Quantitative analysis of carbohydrate-protein interactions using glycan microarrays: determination of surface and solution dissociation constants., J Am Chem Soc 129, 11177-11184.
29. Srinivasan, A., Viswanathan, K., Raman, R., Chandrasekaran, A., Raguram, S., Tumpey, T. M., Sasisekharan, V., and Sasisekharan, R. (2008) Quantitative biochemical rationale for differences in transmissibility of 1918 pandemic influenza A viruses, Proc Natl Acad Sci USA 105, 2800-2805.
30. C M Deom, A. J. C., and I T Schulze. (1981) Host cell-mediated selection of a mutant influenza A virus that has lost a complex oligosaccharide from the tip of the hemagglutinin., Proc Natl Acad Sci USA 83, 3771-3775.
31. Varki, A. (1993) Biological roles of oligosaccharides: all of the theories are correct, Glycobiology 3, 97-130.
32. Keil, W., Geyer, R., Dabrowski, J., Dabrowski, U., Niemann, H., Stirm, S., and Klenk, H. D. (1985) Carbohydrates of influenza virus. Structural elucidation of the individual glycans of the FPV hemagglutinin by two-dimensional 1H n.m.r. and methylation analysis, EMBO J. 4, 2711-2720.
33. Ohuchi, R., Ohuchi, M., Garten, W., and Klenk, H. D. (1997) Oligosaccharides in the stem region maintain the influenza virus hemagglutinin in the metastable form required for fusion activity, J. Virol. 71, 3719-3725.
34. Skehel, J. J., Stevens, D. J., Daniels, R. S., Douglas, A. R., Knossow, M., Wilson, I. A., and Wiley, D. C. (1984) A carbohydrate side chain on hemagglutinins of Hong Kong influenza viruses inhibits recognition by a monoclonal antibody, Proc Natl Acad Sci USA 81, 1779-1783.
35. Deshpande, K. L., Fried, V. A., Ando, M., and Webster, R. G. (1987) Glycosylation affects cleavage of an H5N2 influenza virus hemagglutinin and regulates virulence, Proc Natl Acad Sci USA 84, 36-40.
36. Garten, R. J., Davis, C. T., Russell, C. A., Shu, B., Lindstrom, S., Balish, A., Sessions, W. M., Xu, X., Skepner, E., Deyde, V., Okomo-Adhiambo, M., Gubareva, L., Barnes, J., Smith, C. B., Emery, S. L., Hillman, M. J., Rivailler, P., Smagala, J., de Graaf, M., Burke, D. F., Fouchier, R. A. M., Pappas, C., Alpuche-Aranda, C. M., Lopez-Gatell, H., Olivera, H., Lopez, I., Myers, C. A., Faix, D., Blair, P. J., Yu, C., Keene, K. M., Dotson, P. D., Jr., Boxrud, D., Sambol, A. R., Abid, S. H., St. George, K., Bannerman, T., Moore, A. L., Stringer, D. J., Blevins, P., Demmler-Harrison, G. J., Ginsberg, M., Kriner, P., Waterman, S., Smole, S., Guevara, H. F., Belongia, E. A., Clark, P. A., Beatrice, S. T., Donis, R., Katz, J., Finelli, L., Bridges, C. B., Shaw, M., Jernigan, D. B., Uyeki, T. M., Smith, D. J., Klimov, A. I., and Cox, N. J. (2009) Antigenic and Genetic Characteristics of Swine-Origin 2009 A(H1N1) Influenza Viruses Circulating in Humans, Science 325, 197-201.
37. Kuiken, T., Holmes, E. C., McCauley, J., Rimmelzwaan, G. F., Williams, C. S., and Grenfell, B. T. (2006) Host Species Barriers to Influenza Virus Infections, Science 312, 394-397.
38. Maines, T. R., Jayaraman, A., Belser, J. A., Wadford, D. A., Pappas, C., Zeng, H., Gustin, K. M., Pearce, M. B., Viswanathan, K., Shriver, Z. H., Raman, R., Cox, N. J., Sasisekharan, R., Katz, J. M., and Tumpey, T. M. (2009) Transmission and Pathogenesis of Swine-Origin 2009 A(H1N1) Influenza Viruses in Ferrets and Mice, Science 325, 484-487.
39. Jong, M. D. d., and Sanders, R. W. (2009) The future of influenza vaccines, Br Med J 339, 815-816.
40. Wei, C.-J., Boyington, J. C., Dai, K., Houser, K. V., Pearce, M. B., Kong, W.-P., Yang, Z.-y., Tumpey, T. M., and Nabel, G. J. (2010) Cross-Neutralization of 1918 and 2009 Influenza Viruses: Role of Glycans in Viral Evolution and Vaccine Design, Sci Transl Med 2, 24ra21.
41. Garcia-Garcia, L., Valdespino-Gomez, J. L., Lazcano-Ponce, E., Jimenez-Corona, A., Higuera-Iglesias, A., Cruz-Hervert, P., Cano-Arellano, B., Garcia-Anaya, A., Ferreira-Guerrero, E., Baez-Saldana, R., Ferreyra-Reyes, L., Ponce-de-Leon-Rosales, S., Alpuche-Aranda, C., Rodriguez-Lopez, M. H., Perez-Padilla, R., and Hernandez-Avila, M. (2009) Partial protection of seasonal trivalent inactivated vaccine against novel pandemic influenza A/H1N1 2009: case-control study in Mexico City, Br Med J 339, b3928-3935.
42. Hancock, K., Veguilla, V., Lu, X., Zhong, W., Butler, E. N., Sun, H., Liu, F., Dong, L., DeVos, J. R., Gargiullo, P. M., Brammer, T. L., Cox, N. J., Tumpey, T. M., and Katz, J. M. (2009) Cross-Reactive Antibody Responses to the 2009 Pandemic H1N1 Influenza Virus, N Engl J Med 361, 1945-1952.
43. WHO. (2009) World Health Organization recommendations on pandemic (H1N1) 2009 vaccines, http://www.who.int/csr/disease/swineflu/notes/h1n1_vaccine_20090713/en/print.html.
44. Cox, R. J., Brokstad, K. A., and Ogra, P. (2004) Influenza Virus: Immunity and Vaccination Strategies. Comparison of the Immune Response to Inactivated and Live, Attenuated Influenza Vaccines, Scand J Immunol 59, 1-15.
45. Webby, R. J., and Webster, R. G. (2003) Are We Ready for Pandemic Influenza?, Science 302, 1519-1522.
46. Kistner, O., Howard, M. K., Spruth, M., Wodal, W., Brl, P., Gerencer, M., Crowe, B. A., Savidis-Dacho, H., Livey, I., Reiter, M., Mayerhofer, I., Tauer, C., Grillberger, L., Mundt, W., Falkner, F. G., and Barrett, P. N. (2007) Cell culture (Vero) derived whole virus (H5N1) vaccine based on wild-type virus strain induces cross-protective immune responses, Vaccine 25, 6028-6036.
47. Hu, A. Y.-C., Weng, T.-C., Tseng, Y.-F., Chen, Y.-S., Wu, C.-H., Hsiao, S., Chou, A.-H., Chao, H.-J., Gu, A., Wu, S.-C., Chong, P., and Lee, M.-S. (2008) Microcarrier-based MDCK cell culture system for the production of influenza H5N1 vaccines, Vaccine 26, 5736-5740.
48. Hanson, S. R., Culyba, E. K., Hsu, T. L., Wong, C. H., Kelly, J. W., and Powers, E. T. (2009) The core trisaccharide of an N-linked glycoprotein intrinsically accelerates folding and enhances stability, Proceedings of the National Academy of Sciences 106, 3131-3136.
49. Srinivasan, A., Viswanathan, K., Raman, R., Chandrasekaran, A., Raguram, S., Tumpey, T. M., Sasisekharan, V., and Sasisekharan, R. (2008) Quantitative biochemical rationale for differences in transmissibility of 1918 pandemic influenza A viruses, Proceedings of the National Academy of Sciences 105, 2800-2805.
50. Ekiert, D. C., Bhabha, G., Elsliger, M. A., Friesen, R. H. E., Jongeneelen, M., Throsby, M., Goudsmit, J., and Wilson, I. A. (2009) Antibody Recognition of a Highly Conserved Influenza Virus Epitope, Science 324, 246-251.
51. Wang, C. C., Chen, J. R., Tseng, Y. C., Hsu, C. H., Hung, Y. F., Chen, S. W., Chen, C. M., Khoo, K. H., Cheng, T. J., Cheng, Y. S. E., Jan, J. T., Wu, C. Y., Ma, C., and Wong, C. H. (2009) Glycans on influenza hemagglutinin affect receptor binding and immune response, Proceedings of the National Academy of Sciences 106, 18137-18142.
52. Wagner, R., Heuer, D., Wolff, T., Herwig, A., and Klenk, H.-D. (2002) N-Glycans attached to the stem domain of haemagglutinin efficiently regulate influenza A virus replication, J Gen Virol 83, 601-609.
53. Vigerust, D. J., Ulett, K. B., Boyd, K. L., Madsen, J., Hawgood, S., and McCullers, J. A. (2007) N-Linked Glycosylation Attenuates H3N2 Influenza Viruses, J. Virol. 81, 8593-8600.
54. MF, B. (2008) Vaccination and antigenic drift in influena., Vaccine, 26:C28-C14.
55. Manicassamy, B., Medina, R. A., Hai, R., Tsibane, T., Stertz, S., Nistal-Villán , E., Palese, P., Basler, C. F., and García-Sastre , A. (2010) Protection of Mice against Lethal Challenge with 2009 H1N1 Influenza A Virus by 1918-Like and Classical Swine H1N1 Based Vaccines, PLoS Pathog 6, e1000745.
56. Xu, R., Ekiert, D. C., Krause, J. C., Hai, R., Crowe, J. E., Jr., and Wilson, I. A. (2010) Structural Basis of Preexisting Immunity to the 2009 H1N1 Pandemic Influenza Virus, Science 328, 357-360.
57. Ajit Varki RDBM, G. W. H., and Pamela Stanley. (2008 ) Essential of Glycobiology (Cold Spring Harbor Laboratory Press) 2Ed.
dc.identifier.urihttp://tdr.lib.ntu.edu.tw/jspui/handle/123456789/39485-
dc.description.abstract全球性的流感病毒(Influenza virus)傳染,主要源於人體免疫系統無法產生有效的抗體辨認流感病毒上的凝集素蛋白質(Hemagglutinin, HA),使得流感病毒在人跟人之間得以有效率的傳染開來。凝集素,是病毒表面上主要的醣蛋白(Glycoprotein),它具有專一性結合唾液酸(Sialic acid)的能力。流感病毒藉由凝集素結合人類呼吸道表皮細胞上的唾液酸,吸附和黏著住細胞並藉由細胞的吞噬作用(Endocytosis),進入宿主細胞(Host cell)。凝集素蛋白質被研究與發現是關鍵的抗原物質,如果將凝集素蛋白當成疫苗,可提供宿主細胞產生免疫反應,對抗病毒入侵人體。凝集素蛋白質的醣化對於蛋白質折疊以及受體的結合來說都十分重要,不過醣也可以遮蔽蛋白質上重要的、具有功能性的位置,讓宿主無法對病毒產生有效的抗體來對抗病毒的感染。之前的研究顯示黏著蛋白醣化位置具有三顆醣即可加速蛋白摺疊和增加穩定性,這意味著黏著蛋白上基本核心的三顆醣具有大體上穩定蛋白的功能,需再更進一步研究其它醣蛋白才能得知是否亦是如此。藉由這個研究我們獲得一個想法,或許凝集素蛋白醣化位置具有三顆醣是比其它醣化情形能成為更好的疫苗。在我們的研究,首先用酵素在酸鹼值4.9下將凝集素蛋白醣化位置上的多醣結構切成三醣,用去鹽管柱或離心過濾裝置移除酸溶液,用鎳樹酯純化三醣凝集素,之後用質譜等方法確定是否得到三醣凝集素,最後,探討三醣凝集素引發老鼠免疫反應的能力。實驗結果顯示八個凝集素蛋白醣化位置上的多醣結構大多切成三醣結構,三醣凝集素分子量也和預測之三醣凝集素分子量相似。此外,三醣凝集素二級結構與其它醣化型式凝集素相似。另外,在引發免疫反應的部分,三醣凝集素引發出的抗體效價並沒有比單醣凝集素引發出的抗體效價高,但比全醣凝集素高。這些研究結果或許對流感疾病的病理機轉有更進一步的瞭解與提供臨床治療有效疫苗的開發。zh_TW
dc.description.abstractInfluenza pandemics occur when influenza hemagglutinins (HA) are little recognized by immunity and the viruses transmit efficiently from human to human. HA is the major viral surface glycoprotein that binds to specific sialylated glycan receptors in the respiratory tract and allows the virus to enter the cell. It has been recognized as the key antigen in the host immune response to influenza virus in both natural infection and vaccination. The glycans of HA have been shown to be important for protein folding and receptor binding. Glycans can also mask important epitopes of protein so that the host may not produce effective antibodies to defeat the viruses. Previous study has showed that the core trisaccharide of an N-linked glycoprotein intrinsically accelerates folding and enhances stability. It means that the core triose of N-linked glycans has a general structure stabilizing effect. Here, we demonstrate that the core-trisaccharide HA (HAtg) could be a better protein vaccine than other HA glycoforms. Our analysis showed that the N-glycan of HAtg proteins were mostly two N-acetylglucosamines (GlcNAc) and one mannose (Man), and the molecular weight of HAtg was as expected. Furthermore, the secondary structure of HAtg is similar to HA with different glycosylations although it is in an aggregated form. The immunogenicity of HAtg was lower than the monoglycosylated HA (HAmg), but superior than the fullyglycosylated HA (HAfg). This study provides new insight into the vaccine design of HA glycoproteins against influenza.en
dc.description.provenanceMade available in DSpace on 2021-06-13T17:29:42Z (GMT). No. of bitstreams: 1
ntu-100-R98b46005-1.pdf: 3238963 bytes, checksum: cbefa9b6774cf4e7bd7545d29d159f52 (MD5)
Previous issue date: 2011
en
dc.description.tableofcontents誌謝 I
中文摘要 II
Abstract III
Table of Contents IV
1. Introduction 1
1.1 Influenza virus 1
1.2 Components of the influenza A virus 2
1.3 HA structure 4
1.4 HA receptor binding 5
1.5 Significance of glycosylation of influenza virus A hemagglutinin 6
1.6 The current pandemic virus status 7
1.7 HA protein vaccines development 9
1.8 The goal of this study 10
2. Materials and Methods 12
2.1 Gene constructs 12
2.2 Protein purification and endotoxin measurement 12
2.3 MALDI-TOF mass analysis 13
2.4 Glycan profiling by LC-MS/MS 14
2.5 Glycan microarray binding assay 14
2.6 Protease susceptibility assays 16
2.7 Circular dichroism (CD) spectroscopy 17
2.8 Virus challenge experiments 17
2.9 Enzyme-linked immunosorbent assay (ELISA) 18
2.10 Viruses 18
2.11 Hemagglutination inhibition (HI) assay 19
2.12 Micro-neutralization (MN) assay 20
3. Results 21
3.1 The core-trisaccharide HA (HAtg) protein purification 21
3.2 The characterization of HAtg 23
3.2.1 SDS/PAGE analysis of Bris/07 HA variants 23
3.2.2 MALDI-TOF analysis of Bris/07 HA variants 23
3.2.3 Summary of glycopeptides analysis of Bris/07 HAtg using LC MS/MS 23
3.2.4 Glycan microarray analysis of HA with different glycosylations 24
3.2.5 Principles of protease susceptibility analysis 24
3.2.6 Protease susceptibility analysis of Bris/07 HA with different glycosylations 25
3.2.7 Circular dichroism (CD) spectra analysis of Bris/07 HA with different glycosylations 25
3.3 Animal experiments 25
3.3.1 Survival rate and body weight of the mice vaccinated with Bris/07 HA protein vaccines after challenge with lethal dose of Cal/09 26
3.3.2 ELISA 26
3.3.3 Hemagglutination inhibition (HI) assay 27
3.3.4 Micro-neutralization (MN) assay 27
4. Discussion 29
Reference 33
Figure 39
Fig. 1 The flowchart of experimental design. 39
Fig. 2 The cleavage sites of Jack Bean α-mannosidase. 40
Fig. 3 To remove reaction buffer using desalting column. 41
Fig. 4 The purified Bris/07 HAtg proteins were analyzed by SDS/PAGE. 42
Fig. 5 The purified Bris/07 HAtg proteins were analyzed by gel filtration chromatography. 43
Fig. 6 SDS/PAGE analysis of Bris/07 HA variants. 44
Fig. 7 MALDI-TOF analysis of Bris/07 HA variants. 45
Fig. 8 Summary of glycopeptides analysis of Bris/07 HAtg using LC MS/MS. 46
Fig. 9 Glycan microarray analysis of HA with different glycosylations. 47
Fig. 10 Principles of protease susceptibility analysis. 48
Fig. 11 Protease susceptibility analysis of Bris/07 HA with different glycosylations. 49
Fig. 12 Circular dichroism (CD) spectra analysis of Bris/07 HA with different glycosylations. 50
Fig. 13 Animal experiments. 51
Fig. 14 Survival rate and body weight of the mice vaccinated with Bris/07 HA protein vaccines after challenge with lethal dose of Cal/09. 52
Fig. 15 The antibodies titers from the mice vaccinated with Bris/07 trimeric HAfg, aggregated HAtg, and trimeric HAmg were analyzed using ELISA. 53
Fig. 16 The antibodies titers from the mice vaccinated with Bris/07 trimeric HAfg, aggregated HAtg, and trimeric HAmg were analyzed using HI. 54
Fig. 17 The antibodies titers from the mice vaccinated with Bris/07 trimeric HAfg, aggregated HAtg, and trimeric HAmg were analyzed using MN. 55
Fig. 18 Glycosylation pathway in Golgi (57). 56
Fig. 19 HA2 undergoes a dramatic and irreversible conformational change between the pre- and postfusion states. 57
dc.language.isoen
dc.subject吞噬作用zh_TW
dc.subject流感病毒zh_TW
dc.subject凝集素蛋白質zh_TW
dc.subject醣蛋白zh_TW
dc.subject唾液酸zh_TW
dc.subjectSialic aciden
dc.subjectEndocytosisen
dc.subjectInfluenza virusen
dc.subjectHemagglutininen
dc.subjectGlycoproteinen
dc.title探討小鼠接種季節性流感病毒三醣化凝集素抗原免疫保護作用抵抗2009 H1N1新型流感病毒感染zh_TW
dc.titleThe Core-Trisaccharide Hemagglutinin as a Protein Vaccine against Influenza Virus Infectionen
dc.typeThesis
dc.date.schoolyear99-2
dc.description.degree碩士
dc.contributor.oralexamcommittee馬徹(Ma, Che Alex),吳宗益(Wu, Chung-Yi),詹家琮(Jan, Jia-Tsrong)
dc.subject.keyword流感病毒,凝集素蛋白質,醣蛋白,唾液酸,吞噬作用,zh_TW
dc.subject.keywordInfluenza virus,Hemagglutinin,Glycoprotein,Sialic acid,Endocytosis,en
dc.relation.page58
dc.rights.note有償授權
dc.date.accepted2011-07-12
dc.contributor.author-college生命科學院zh_TW
dc.contributor.author-dept生化科學研究所zh_TW
顯示於系所單位:生化科學研究所

文件中的檔案:
檔案 大小格式 
ntu-100-1.pdf
  未授權公開取用
3.16 MBAdobe PDF
顯示文件簡單紀錄


系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved