Skip navigation

DSpace

機構典藏 DSpace 系統致力於保存各式數位資料(如:文字、圖片、PDF)並使其易於取用。

點此認識 DSpace
DSpace logo
English
中文
  • 瀏覽論文
    • 校院系所
    • 出版年
    • 作者
    • 標題
    • 關鍵字
  • 搜尋 TDR
  • 授權 Q&A
  • 幫助
    • 我的頁面
    • 接受 E-mail 通知
    • 編輯個人資料
  1. NTU Theses and Dissertations Repository
  2. 電機資訊學院
  3. 電子工程學研究所
請用此 Handle URI 來引用此文件: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/39479
完整後設資料紀錄
DC 欄位值語言
dc.contributor.advisor劉致為(CheeWee Liu)
dc.contributor.authorCheng-Han Leeen
dc.contributor.author李承翰zh_TW
dc.date.accessioned2021-06-13T17:29:32Z-
dc.date.available2016-07-27
dc.date.copyright2011-07-27
dc.date.issued2011
dc.date.submitted2011-07-13
dc.identifier.citationChapter 1
1. Y. Taur and T. H. Ning, Fundamentals of Modern VLSI Devices, Second Edition (2009).
2. M. Lundstrom, International Electron Devices Meeting (IEDM), Technical Digest, 789 (2003).
3. C. Jungemann and B. Meinerzhagen, International Electron Devices Meeting (IEDM), Technical Digest, 191 (2003).
4. A. G. O’neill and A. D. Antoniadis, IEEE Trans. Electron Devices, 43, 911 (1996)
5. S. -H. Lee, J. Huang, P. Majhi, P. D. Kirsch, B. -G. Min, C. -S. Park, J. Oh, W. -Y. Loh, C. -Y. Kang, B. Sassman, P. Y. Hung, S. McCoy, J. Chen, B. Wu, G. Moon, D. Heh, C. Young, G. Bersuker, H. -H. Tseng, S. K. Banerjee, and R. Jammy, Symposium on VLSI Technology Digest of Technical Papers, 74 (2009).
6. N. Taoka, W. Mizubayashi, Y. Morita, S. Migita, H. Ota, and S. Takagi, Symposium on VLSI Technology Digest of Technical Papers, 80 (2009).
7. C. H. Lee, T. Nishimura, N. Saido, K. Nagashio, K. Kita, and A. Toriumi, International Electron Devices Meeting (IEDM), Technical Digest, 19.2.1 (2003).
8. C. -Y. Peng, F. Yuan, C. -Y. Yu, P. -S. Kuo, M. H. Lee, S. Maikap, C. -H. Hsu, and C. W. Liu, Appl. Phys Lett, 90, 012114 (2007)
9. Y. -C. Fu, W. Hsu, Y. -T. Chen, H. -S. Lan, C. -H. Lee, H. -C. Chang, H. -Y. Lee, G. -L. Luo, C. -H. Chien, C. W. Liu, C. Hu, and F. -L. Yang, International Electron Device Meeting (IEDM), San Francisco, Dec. 2010
10. N. Tamura, et. al., International Workshop on Junction Technology, 2008.
11. J. -S. Park, M. Curtin, J. M. Hydrick, J. Bai, M. Carroll, J. G. Fiorenza, and A. Lochtefeld, Journal of the Electrochemical Society, 156, H249 (2009)
12. M. D. Kim, S. K. Noh, S. C. Hong, and T. W. Kim, Appl. Phys. Lett., 82, 553 (2003).
13. A. I. Yakimov, A. V. Dvurechenskii, A. I. Nikiforov, and Yu. Yu. Skuryakov, J. Appl. Phys., 89, 5676 (2001).
14. C. J. Chen, K. K. Choi, W. H. Chang, and D. C. Tsui, Appl. Phys. Lett., 72, 7 (1998).
15. S. Krishna, S. Raghavan, G. von Winckel, A. Stintz, G. Ariyawansa, S. G. Matsik, and A. G. U. Perera, Appl. Phys. Lett., 83, 2745 (2003).
16. G. Ariyawansa, A. G. U. Perera, G. S. Raghavan, G. Von Winckel, A. Stintz, and S. Krishna, IEEE Photon. Technol. Lett., 17, 1064 (2005).
17. S. Chakrabarti, X. H. Su, P. Bhattacharya, G. Ariyawansa, and A. G. U. Perera, IEEE Photon. Technol. Lett., 17, 178 (2005).
18. S. Krishna, D. Forman, S. Annamalai, P. Dowd, P. Varangis, T. Tumolillo, A. Gray, J. Zilko, K. Sun, M. Liu, J. Campbell, and D. Carothers, Appl. Phys. Lett., 86, 193501 (2005).
19. S. D. Gunapala, S. V. Bandara, C. J. Hill, D. Z. Ting, J. K. Liu, E. R. Blazejewski, J. M. Mumolo, S. A. Keo, Y. C. Chang, S. B. Rafol, S. Krishna, and C. A. Scott, Proc. SPIE, 6206, 62060J-1 (2006).
20. G. Ariyawansa, M. B. M. Rinzan, D. G. Esaev, S. G. Matsik, G. Hastings, A. G. U. Perera, H. C. Liu, B. N. Zvonkov, and V. I. Gavrilenko, Appl. Phys. Lett., 86, 143510 (2005).
21. B.-C. Hsu, S. T. Chang, C. -R. Shie, C. -C. Lai, P. S. Chen, and C. W. Liu, IEEE Elec. Dev. Lett., 24, 318 (2003).
Chapter 2
1. C. -Y. Peng, F. Yuan, C. -Y. Yu, P. -S. Kuo, M. H. Lee, S. Maikap, C. -H. Hsu, and C. W. Liu, Appl. Phys Lett, 90, 012114 (2007)
2. J. C. Sturm, H. Manoharan, L. C. Lenchyshyn, M. L. W. Thewalt, N. L. Rowell, J. -P. Noël, and D. C. Houghton, Phys. Rev. Lett., 66, 1362 (1991)
3. C. Rosenblad, H. von Känel, M. Kummer, A. Dommann, and E. Müller, Appl. Phys. Lett., 76, 427 (2000)
4. S. -H. Lee, J. Huang, P. Majhi, P. D. Kirsch, B. -G. Min, C. -S. Park, J. Oh, W. -Y. Loh, C. -Y. Kang, B. Sassman, P. Y. Hung, S. McCoy, J. Chen, B. Wu, G. Moon, D. Heh, C. Young, G. Bersuker, H. -H. Tseng, S. K. Banerjee, and R. Jammy, Symposium on VLSI Technology Digest of Technical Papers, 74 (2009).
5. N. Tamura, et. al., International Workshop on Junction Technology, 2008.
6. C.-H. Lin, C.-Y. Yu, C.-C. Chang, C. -H. Lee, Y.-J. Yang, W. S. Ho, Y.-Y. Chen, M. H. Liao, C.-T. Cho, C.-Y. Peng and C. W. Liu, IEEE Trans. on Nanotech., 7, 558 (2008).
7. B. S. Meyerson, Appl. Phys. Lett., 48, 797 (1986)
8. B. S. Meyerson, F. K. LeGoues, T. N. Nguyen, and D. L. Harame, Appl. Phys. Lett., 50, 113 (1987)
9. B. S. Meyerson, K. J. Uram, and F. K. LeGoues, Appl. Phys. Lett., 53, 2555 (1988)
10. S. Iyer, R. A. Metzger, and F. G. Allener, J. Appl. Phys. 52, 5608 (1981).
11. R. People, Phys. Rev. B, 32, 1405 (1985)
12. D. V. Lang, R. People, J. C. Bean, and A. M. Sergent, Appl. Phys. Lett., 47, 1333 (1985)
13. F. W. Smith and G. Ghiddini, Journal of the Electrochemical Society, 133, 1300 (1984)
14. G. Ghiddini and F. W. Smith, Journal of the Electrochemical Society, 131, 2924 (1982).
15. B. S. Meyerson, IBM J. Res. Develop., 44, 132 (2000)
16. T. Kormann, P. Garnier, G. Chabanne, and A. Fortuin, Thin Solid Film, 517, 269 (2008)
17. B. S. Meyerson, IBM J. Res. Develop., 34, 806 (1990)
18. S. M. Gates, C. M. Greenlief, D. B. Beach, and P. A. Holbert, J. Chem. Phys., 92, 3144 (1990).
19. N. M. Russell and W. G. Breiland, J. Appl. Phys., 73, 3525 (1993)
Chapter 3
1. S. -H. Lee, J. Huang, P. Majhi, P. D. Kirsch, B. -G. Min, C. -S. Park, J. Oh, W. -Y. Loh, C. -Y. Kang, B. Sassman, P. Y. Hung, S. McCoy, J. Chen, B. Wu, G. Moon, D. Heh, C. Young, G. Bersuker, H. -H. Tseng, S. K. Banerjee, and R. Jammy, Symposium on VLSI Technology Digest of Technical Papers, 74 (2009).
2. N. Taoka, W. Mizubayashi, Y. Morita, S. Migita, H. Ota, and S. Takagi, Symposium on VLSI Technology Digest of Technical Papers, 80 (2009).
3. C. H. Lee, T. Nishimura, N. Saido, K. Nagashio, K. Kita, and A. Toriumi, International Electron Devices Meeting (IEDM), Technical Digest, 19.2.1 (2003).
4. C. -Y. Peng, F. Yuan, C. -Y. Yu, P. -S. Kuo, M. H. Lee, S. Maikap, C. -H. Hsu, and C. W. Liu, Appl. Phys Lett, 90, 012114 (2007)
5. Y. -C. Fu, W. Hsu, Y. -T. Chen, H. -S. Lan, C. -H. Lee, H. -C. Chang, H. -Y. Lee, G. -L. Luo, C. -H. Chien, C. W. Liu, C. Hu, and F. -L. Yang, International Electron Device Meeting (IEDM), San Francisco, Dec. 2010
6. M. H. Liao, C. -H. Lee, T. -A. Hung, and C. W. Liu, J. Appl. Phys. 102, 053520 (2007).
7. J. S. Im, H. J. Kim, and M. O. Thompson, Appl. Phys. Lett., 63, 1969 (1993)
8. M. T. Currie, C. W. Leitz, T. A. Langdo, G. Taraschi, E. A. Fitzgerald, and D. A. Antoniadis, J. Vac. Sci. Technol. B, 19, 2268 (2001).
9. Y. Taur and T. H. Ning, Fundamentals of Modern VLSI Devices, Second Edition (2009).
10. B. D. Cullity, Elements of X-Ray Diffraction, Second Edition (1978)
11. P. H. Tan, K. Brunner, D. Bougeard, and G. Abstreiter, Phys. Rev. B, 68, 125302 (2003).
12. E. Rudkevich, F. Liu, D. E. Savage, T. F. Kuech, L. McCaughan, and M. G. Lagally, Phys. Rev. Lett., 81, 3467, 1998.
13. M. Yang, M. Leong, L. Shi, K. Chan, V. Chan, A. Chou, E. Gusev, K. Jenkins, D. Boyd, Y. Ninomiya, D. Pendleton, Y. Surpris, D. Heenan, J. Ott, K. Guarini, C. D’Emic, M. Cobb, P. Mooney, B. To, N. Rovedo, J. Benedict, R. Mo, and H. Ng, International Electron Devices Meeting (IEDM), Technical Digest, 453 (2003).
14. P. W. Liu, J. W. Pan, T. Y. Chang, T. L. Tsai, T. F. Chen, Y. C. Liu, C. H. Tsai, B. C. Lan, Y. H. Lin, W. T. Chiang, and C. T. Tsai, Symposium on VLSI Technology Digest of Technical Papers, 148 (2006).
15. S. Joshi, S. Dey, S. Lee, C. Krug, H. J. Na, P. Sivasubramani, P. D. Kirsch, P. Majhi, W. Wang, A. Campion, and S. K. Banerjee, Device Research Conference, 53 (2007).
16. R. Hull, J. C. Bean, L. Peticolas, and D. Bahnck, Appl. Phys. Lett., 59, 964 (1991).
17. M. H. Lee, S. T. Chang, S. Maikap, C. -Y. Peng, and C. -H. Lee, IEEE Electron Device Letters, 31, 141 (2010).
18. M. V. Fischetti, Z. Ren, P. M. Solomon, M. Yang, and K. Rim, J. Appl. Phys., 94, 1079 (2003).
Chapter 4
1. J. C. Sturm, H. Manoharan, L. C. Lenchyshyn, M. L. W. Thewalt, N. L. Rowell, J. -P. Noël, and D. C. Houghton, Phys. Rev. Lett., 66, 1362 (1991)
2. Electronic Materials Series No. 6, Quantum Semiconductor Devices and Technologies, edited by T. P. Pearsall (2000).
3. G. Xia, O. O. Olubuyide, and J. L. Hoyt, Appl. Phys. Lett., 88, 013507 (2006).
4. J.-M. Baribeau, X. Wu, and D. J. Lockwood, J. Vac. Sci. Technol. A, 24(3), 663 (2006).
5. G. Jin, J. L. Liu, K. L. Wang, Appl. Phys. Lett., 83, 2847 (2003).
6. H. J. Kim, Y. H. Xie, Appl. Phys. Lett., 79, 263 (2001).
7. Y. Q. Wu, F. H. Li, J. Cui, J. H. Lin, R. Wu, J. Qin, C. Y. Zhu, Y. L. Fan, X. J. Yang, and Z. M. Jiang, Appl. Phys. Lett., 87, 223116 (2005).
8. S. W. Lee, P. S. Chen, T. Y. Chien, L. J. Chen, C. T. Chia, and C. W. Liu, Thin Solid Film, 508, 120 (2006)
9. B. S. Meyerson, Appl. Phys. Lett., 48, 797 (1986)
10. P. Meunier-Beillard, M. Caymax, K. Van Nieuwenhuysen, G. Doumen, B. Brijs, M. Hopstaken, L. Geenen, and W. Vandervorst, Appl. Surf. Sci., 224, 31 (2004).
11. M. H. Liao, C.-H. Lee, T.-A. Hung, and C. W. Liu, J. Appl. Phys. 102 (2007), 053520.
12. D. J. Eaglesham and M. Cerullo, Phys. Rev. Lett., 64, 1943 (1990)
13. Y. -W. Mo, D. E. Savage, B. S. Swartzentruber, and M. G. Lagally, Phys. Rev. Lett., 65, 1020 (1990)
14. L. Huang, F. Liu, G. –H. Lu, and X. G. Gong, Phys. Rev. Lett., 96, 016103 (2006)
15. D. -W. Kim, S. Hwang, T. F Edgar, and S.Banerjee, J. Electrochem. Soc., 150 (4) G240 (2003).
16. M. Stoehr, D. Aubel, S. Juillaguet, J. L. Bischoff, L. Kubler, D. Bolmont, F. Hamdani, B. Fraisse, and R. Fourcade, Phys. Rev. B, 53, 6923 (1996).
17. P. H. Tan, K. Brunner, D. Bougeard, and G. Abstreiter, Phys. Rev. B, 68, 125302 (2003).
18. Jeffrey S. Lannin, Phys. Rev. B, 16, 1510 (1977).
19. J. –M. Baribeau, X. Wu, and D. J. Lockwood, J. Vac. Sci. Technol. A, 24, 663 (2006).
20. G. Xia, M. Canonico, J. L. Hoyt, International SiGe Technology and Device Meeting (ISTDM), 2006
21. E. Rudkevich, F. Liu, D. E. Savage, T. F. Kuech, L. McCaughan, and M. G. Lagally, Phys. Rev. Lett., 81, 3467 (1998).
22. J. –P. Noël, N. L. Rowell, D. C. Houghton, and D. D. Perovic, Appl. Phys. Lett., 57, 1037 (1990).
23. P. Bratu, W. Brenig, A. Groβ, M. Hartmann, U. Höfer, P. Kratzer, R. Russ, Phys. Rev. B, 54, 5978 (1996).
24. R. Larciprete, S. Cozzi, E. Masetti, M. Montecchi, G. Padeletti, Thin Solid Film, 315, 49 (1998).
25. A. Nayfeh, C. O. Chui, K. C. Saraswat, and T. Yonehara, Appl. Phys. Lett., 85, 2815 (2004).
26. P.-S. Kuo, B.-C. Hsu, P.-W. Chen, P. S. Chen, and C. W. Liu, Electrochemical and Solid-State Letters, 7, G201 (2004).
27. C.-H. Lin, C.-Y. Yu, C.-C. Chang, C. -H. Lee, Y.-J. Yang, W. S. Ho, Y.-Y. Chen, M. H. Liao, C.-T. Cho, C.-Y. Peng and C. W. Liu, Trans. on Nanotech., 7, 558 (2008).
28. P. Boucaud, L. Wu, C. Guedj, F. H. Julien, I. Sajnes, Y. Campidelli, and L. Garchery, J. Appl. Phys. 80, 1414 (1996).
29. H. H. Silvestri, H. Bracht, J. L. Hansen, A. N. Larsen, and E. E. Haller, Institute of Physical Publishing. 21, 758 (2006)
30. J. Raisanen, J. Hirvonen, and A. Anttila, Solid-State Electron, 24, 333 (1981)
31. U. Sodervall and M. Friesel, Defect Diffus. Forum, 143–7, 1053 (1997)
32. A. Strohm, T. Voss, W. Frank, P. Laitinen, and J. Raisanen, Z. Metallkd., 93, 737 (2002)
33. C. Teichert, M. G. Lagally, L. J. Peticolas, J. C. Bean, and J. Tersoff, Phys. Rev. B, 53, 16334 (1996).
Chapter 5
1. H. Sunamura, N. Usami, Y. Shiraki, and S. Fukatsu, Appl. Phys. Lett., 66, 3024 (1995)
2. C. S. Peng, Q. Huang, W. Q. Cheng, J. M. Zhou, Y. H. Zhang, T. T. Sheng, and C. H. Tung, Phys. Rev. B, 57, 8805 (1998).
3. J. Wan, Y. H. Luo, Z. M. Jiang, G. Jin, J. L. Liu, K. L. Wang, X. Z. Liao, and J. Zou, Appl. Phys. Lett., 79, 1980 (2001).
4. B. -C. Hsu, S. T. Chang, C. -R. Shie, C. -C. Lai, P. S. Chen, and C. W. Liu, Proceedings of Int. Electron Devices Meet.(IEDM) Tech. Dig., p. 91 (2002)
5. Z. Pei, C. S. Liang, L. S. Lai, Y. T. Tzeng, Y. M. Hsu, P. S. Chen, S. C. Lu, C. M. Liu, M. -J. Tsai, and C. W. Liu, Proceedings of Int. Electron Devices Meet.(IEDM) Tech. Dig., p.271 (2002)
6. Y. -W. Mo, D. E. Savage, B. S. Swartzentruber, and M. G. Lagally, Phys. Rev. Lett., 65, 1020 (1990).
7. F. M. Ross, J. Tersoff, and R. M. Tromp, Phys. Rev. Lett., 80, 984 (1998).
8. G. Medeiros-Ribeiro, A. M. Brathovski, T. I. Kamins, D. A. A. Ohlberg, and R. S. Williams, Science, 279, 353 (1998).
9. M. De Seta, G. Capellini, L. Di Gaspare, F. Evangelisti, and F. D’Acapito, J. Appl. Phys., 100, 093516 (2006).
10. S. W. Lee, L. J. Chen, P. S. Chen, M. –J. Tsai, C. W. Liu, T. Y. Chien, and C. T. Chia, Appl. Phys. Lett., 83, 5283, (2003).
11. J. Chi, Q He, X. M. Jiang, Y. L. Fan, X. J. Yang, F. Xue, and Z. M. Jiang, Appl. Phys. Lett., 83, 2907, (2003).
12. M. H. Liao, C.-H. Lee, T.-A. Hung, and C. W. Liu, J. Appl. Phys. 102, 053520 (2007).
13. G. Katsaros, A. Rastelli, M. Stoffel, G. Isella, H. von Känel, A. M. Bittner, J. Tersoff, U. Denker, O. G. Schmidt, G. Costantini, and K. Kern, Surface Science, 600, 2608 (2006)
14. P. Sutter and M. G. Lagally, Phys. Rev. Lett., 81, 3471 (1998)
15. C. -H. Lee, C. -Y. Yu, C. M. Lin, C. W. Liu, H. Lin and W. -H. Chang, Applied Surface Sciece, 254, 6257 (2008)
16. J. M. Garcia, G. Medeiros-Ribeiro, K. Schmidt, T. Ngo, J. L. Feng, A. Lorke, J. Kotthaus, and P. M. Petroff, Appl. Phys. Lett., 71, 2014 (1997)
17. D. Granados and J. M. Garcia, Appl. Phys. Lett., 82, 2401 (2003)
18. J. -H. Dai, Y. -L. Lin, and S. -C. Lee, IEEE Photonics Technol. Lett., 19, 1511 (2007)
19. S. W. Lee, C. -H. Lee, H. T. Chang, S. L. Cheng and C. W. Liu, Thin Solid Film, 517, 5029 (2009)
20. U. Denker, A. Rastelli, M. Stoffel, J. Tersoff, G. Katsaros, G. Costantini, L. Kern, N.Y. Jin-Phillipp, D.E. Jesson, O.G. Schmidt, Phys. Rev. Lett., 94, 216103 (2005).
21. F.H. Li, Y.L. Fan, X.J. Yang, Z.M. Jiang, Y.Q. Wu, J. Zou, Appl. Phys. Lett., 89, 103108 (2006).
Chapter 6
1. J. M. Garcia, G. Medeiros-Ribeiro, K. Schmidt, T. Ngo, J. L. Feng, A. Lorke, J. Kotthaus, and P. M. Petroff, Appl. Phys. Lett., 71, 2014 (1997)
2. D. Granados and J. M. Garcia, Appl. Phys. Lett., 82, 2401 (2003)
3. J. -H. Dai, Y. -L. Lin, and S. -C. Lee, IEEE Photonics Technol. Lett., 19, 1511 (2007)
4. R. J. Warburton, C. Schulhauser, D. Haft, C. Schäflein, K. Karrai, J. M. Garcia, W. Schoenfeld, and P. M. Petroff, Phys. Rev. B, 65, 113303 (2002)
5. A. Lorke, R. J. Luyken, A. O. Govorov, J. P. Kotthaus, J. M. Garcia, and P. M. Petroff, Phys. Rev. Lett., 84, 2223 (2000)
6. S. S. Buchholz, S. F. Fischer, U. Kunze, D. Reuter, and A. D. Wieck, Appl. Phys. Lett., 94, 022107 (2009)
7. M. Bayer, M. Korkusinski, P. Hawrylak, T. Gutbrod, M. Michel, and A. Forchel, Phys. Rev. Lett., 90, 186801 (2003)
8. J. I. Climente, J. Planelles, and W. Jaskolski, Phys. Rev. B, 68, 075307 (2003)
9. S. W. Lee, L. J. Chen, P. S. Chen, M. –J. Tsai, C. W. Liu, T. Y. Chien, and C. T. Chia, Appl. Phys. Lett., 83, 5283, (2003).
10. J. Chi, Q He, X. M. Jiang, Y. L. Fan, X. J. Yang, F. Xue, and Z. M. Jiang, Appl. Phys. Lett., 83, 2907, (2003).
11. C. -H. Lee, C. M. Lin, C. W. Liu, H. T. Chang, S. W. Lee, P. Shushpannikov, V. A. Gorodtsov, and R. V. Goldstein, Electrochemistry Society Transactions, 16, 647 (2008)
12. M. H. Liao, C.-H. Lee, T.-A. Hung, and C. W. Liu, J. Appl. Phys. 102, 053520 (2007).
13. D. -W. Kim, S. Hwang, T. F Edgar, and S.Banerjee, J. Electrochem. Soc., 150 (4) G240-243, 2003.
14. T. I. Kamins, E. C. Carr, R. S. Willams, and S. J. Rosner, J. Appl. Phys., 81, 211 (1996)
15. A. Lorke, R. J. Luyken, J. M. Garcia, and P. M. Petroff, Jpn. J. Appl. Phys., 40, 1857 (2001).
16. L. Huang, F. Liu, G. –H. Lu, and X. G. Gong, Phys. Rev. Lett., 96, 016103 (2006)
17. E. Chason, T. M. Mayer, B. K. Kellerman, D. T. Mcllroy, and A. J. Howard, Phys. Rev. Lett., 72, 3040 (1994)
18. G. L. McVay and A. R. DuCharme, Phys. Rev. B, 9, 627 (1974)
19. B. D. Cullity, Elements of X-Ray Diffraction, Second Edition (1978)
20. J. M. Hartmann, B. Gallas, J. Zhang, and J. J. Harris, Semicond. Sci. Technol., 15, 370 (2000)
21. P. H. Tan, K. Brunner, D. Bougeard, and G. Abstreiter, Phys. Rev. B, 68, 125302 (2003)
22. A. Marzegalli, V. A. Zinovyev, F. Montalenti, A. Rastelli, M. Stoffel, T. Merdzhanova, O. G. Schmidt, and Leo Miglio, Phys. Rev. Lett., 99, 235505 (2007).
Chapter 7
1. J. M. Garcia, G. Medeiros-Ribeiro, K. Schmidt, T. Ngo, J. L. Feng, A. Lorke, J. Kotthaus, and P. M. Petroff, Appl. Phys. Lett., 71, 2014 (1997).
2. D. Granados and J. M. Garcia, Appl. Phys. Lett., 82, 2401 (2003).
3. G. Huang, W. Guo, P. Bhattacharya, G. Ariyawansa, and A. G. U. Perera, Appl. Phys. Lett., 94, 101115 (2009).
4. S. W. Lee, L. J. Chen, P. S. Chen, M. -J. Tsai, C. W. Liu, T. Y. Chien, and C. T. Chia, Appl. Phys. Lett., 83, 5283 (2003).
5. C. -H. Lee, Y. -Y. Shen, C. W. Liu, S. W. Lee, B. -H. Lin, and C. -H. Hsu, Appl. Phys. Lett., 94, 141909 (2009).
6. C. W. Liu, J. C. Sturm, Y. R. J. Lacroix, M. L. W. Thewalt, and D. D. Perovic, Appl. Phys. Lett., 65, 76 (1994).
7. M. Yang, M. Ieong, L. Shi, K. Chan, V. Chan, A. Chou, E. Gusev, K. Jenkins, D. Boyd, Y. Ninomiya, D. Pendleton, Y. Surpris, D. Heenan, J. Ott, K. Guarini, C. D’Emic, M. Cobb, P. Mooney, B. To, N. Rovedo, J. Benedict, R. Mo, and H. Ng, 49th International Electron Devices Meeting (IEDM), Technical Digest, 453, Washington D.C., Dec. 8-10 (2003).
8. J. D. Weil, X. Deng, and M. Krishnamurthy, J. Appl. Phys., 83, 212 (1998).
9. J. Arai, A. Ohga, T. Hattori, N. Usami, and Y. Shiraki, Appl. Phys. Lett., 71, 785 (1997).
10. M. H. Liao, C.-H. Lee, T.-A. Hung, and C. W. Liu, J. Appl. Phys. 102, 053520 (2007).
11. M. L. Lee, D. A. Antoniadis, and E. A. Fitzgerald, Thin Solid Film, 508, 136 (2006).
12. E. Rudkevich, F. Liu, D. E. Savage, T. F. Kuech, L. McCaughan, and M. G. Lagally, Phys. Rev. Lett., 81, 3467 (1998).
13. T. I. Kamins, E. C. Carr, R. S. Willams, and S. J. Rosner, J. Appl. Phys., 81, 211 (1996)
14. K. Romanyuk, V. Cherepanov, and B. Voigtlander, Phys. Rev. Lett., 99, 126103 (2007).
15. V. Yam, V. Le Thanh, D. Dbarre, Y. Zheng, and D. Bouchier, Appl. Surf. Sci., 224, 143 (2004)
16. H. Liu and R. Huang, J. Appl. Phys., 97, 113537 (2005).
17. A. Marzegalli, V. A. Zinovyev, F. Montalenti, A. Rastelli, M. Stoffel, T. Merdzhanova, O. G. Schmidt, and Leo Miglio, Phys. Rev. Lett., 99, 235505 (2007).
Chapter 8
1. S. W. Lee, L. J. Chen, P. S. Chen, M. –J. Tsai, C. W. Liu, T. Y. Chien, and C. T. Chia, Appl. Phys. Lett., 83, 5283, (2003).
2. C. -H. Lee, Y. -Y. Shen, C. W. Liu, S. W. Lee, B. -H. Lin, and C. -H. Hsu, Appl. Phys. Lett., 94, 141909 (2009).
3. C. -H. Lee, C. W. Liu, H. -T. Chang, and S. W. Lee, J. Appl. Phys. 107, 056103 (2010).
4. C. -H. Lee, C. M. Lin, S. W. Lee, P. Shushpannikov, R. V. Goldstein and C. W. Liu, 214th Meeting of Electrochemical Society, Honolulu, Hawaii, Oct. 12-17, 2008
5. M. L. Lee, D. A. Antoniadis, and E. A. Fitzgerald, “Challenges in epitaxial growth of SiGe buffers on Si (111), (110), and (112),” Thin Solid Film, 508, 136 (2006).
6. M. H. Liao, C.-H. Lee, T.-A. Hung, and C. W. Liu, J. Appl. Phys. 102, 053520 (2007).
7. J. Arai, A. Ohga, T. Hattori, N. Usami, and Y. Shiraki, Appl. Phys. Lett., 71, 785 (1997)
8. F. Ratto, F. Rosei, A. Locatelli, S. Cherifi, S. Fontana, S. Heun, P.-D. Szkutnik, A. Sgarlata, M. D. Crescenzi, and N. Motta, J. Appl. Phys. 97, 043516 (2005).
9. E. Rudkevich, F. Liu, D. E. Savage, T. F. Kuech, L. McCaughan, and M. G. Lagally, Phys. Rev. Lett., 81, 3467 (1998).
10. M. L. Lee, D. A. Antoniadis, and E. A. Fitzgerald, Thin Solid Film, 508, 136 (2006).
11. K. Romanyuk, V. Cherepanov, and B. Voigtlander, Phys. Rev. Lett., 99, 126103 (2007).
12. T. I. Kamins, E. C. Carr, R. S. Willams, and S. J. Rosner, J. Appl. Phys., 81, 211 (1996).
13. F. Ratto, F. Rosei, A. Locatelli, S. Cherifi, S. Fontana, S. Heun, P.-D. Szkutnik, A. Sgarlata, M. D. Crescenzi, and N. Motta, J. Appl. Phys. 97, 043516 (2005).
Chapter 9
1. S. -H. Lee, J. Huang, P. Majhi, P. D. Kirsch, B. -G. Min, C. -S. Park, J. Oh, W. -Y. Loh, C. -Y. Kang, B. Sassman, P. Y. Hung, S. McCoy, J. Chen, B. Wu, G. Moon, D. Heh, C. Young, G. Bersuker, H. -H. Tseng, S. K. Banerjee, and R. Jammy, Symposium on VLSI Technology Digest of Technical Papers, 74 (2009).
2. N. Taoka, W. Mizubayashi, Y. Morita, S. Migita, H. Ota, and S. Takagi, Symposium on VLSI Technology Digest of Technical Papers, 80 (2009).
3. C. H. Lee, T. Nishimura, N. Saido, K. Nagashio, K. Kita, and A. Toriumi, International Electron Devices Meeting (IEDM), Technical Digest, 19.2.1 (2003).
4. C. Rosenblad, H. von Känel, M. Kummer, A. Dommann, and E. Müller, Appl. Phys. Lett., 76, 427 (2000)
5. P. M. Mooney, J. L. Jordan-Sweet, J. O. Chu, and F. K. LeGoues, Appl. Phys. Lett., 66, 3642 (1995)
6. R. Loo, G. Wang, L. Souriau, J. C. Lin, S. Takeuchi, G. Brammertz, and M. Caymax, J. Electrochem. Soc., 157, H13 (2010)
7. J. S. Xia, W. Pan, C. L. Vicente, E. D. Adams, N. S. Sullivan, H. L. Stormer, D. C. Tsui, L. N. Pfeiffer, K. W. Baldwin, and K. W. West, Phys. Rev. Lett., 93, 176809 (2004)
8. W. Pan, J. S. Xia, H. L. Stormer, D. C. Tsui, C. L. Vicente, E. D. Adams, N. S. Sullivan, L. N. Pfeiffer, K. W. Baldwin, and K. W. West, Phys. Rev. Lett., 95, 066808 (2005)
9. S. V. Kravchenko and M. P. Sarachik, Rep. Prog. Phys., 67, 1 (2004).
10. D. Monroe, Y. H. Xie, E. A. Fitzgerald, P. J. Silverman, and G. P. Watson, J. Vac. Sci. Technol. B, 11, 1731 (1993)
11. B. D. Cullity, Elements of X-Ray Diffraction, Second Edition (1978)
12. J. S. Reparaz, A. Bernardi, A. R. Goñi, M. I. Alonso, and M. Garriga, Appl. Phys. Lett., 92, 081909 (2008)
13. P. H. Tan, K. Brunner, D. Bougeard, and G. Abstreiter, Phys. Rev. B, 68, 125302 (2003)
14. P. D. Ye, G. D. Wilk, J. Kwo, B. Yang, H. -J. L. Gossmann, M. Frei, S. N. G. Chu, J. P. Mannaerts, M. Sergent, M. Hong, K. K. Ng, and J. Bude, Electron Device Lett., 24, 209 (2003)
15. P. D. Ye, B. Yang, K. K. Ng, J. Bude, G. D. Wilk, S. Halder, and J. C. M. Hwang, Appl. Phys. Lett., 86, 063501 (2005)
16. T. M. Lu, D. R. Luhman, K. Lai, D. C. Tsui, L. N. Pfeiffer, and K. W. West, Appl. Phys. Lett., 90, 112113 (2007)
17. T. M. Lu, D. C. Tsui, C. -H. Lee, and C. W. Liu, Appl. Phys. Lett., 94, 182102 (2009)
18. K. Lai, W. Pan, D. C. Tsui, S. Lyon, M. Mühlberger, and F. Schäffler, Phys. Rev. Lett., 93, 156805 (2004)
19. M. A. Armstrong, D. A. Antoniads, A. Sadek, K. Ismail, and F. Stern, IEEE Trans. Electron Devices, 43, 1224 (1996)
20. A. Sadek, K. Ismail, Solid State Electronics, 38, 1731 (1995)
21. T. M. Lu, C. -H. Lee, D. C. Tsui, and C. W. Liu, Appl. Phys. Lett., 96, 253103 (2010)
22. G. S. Higashi and C. G. Fleming, Appl. Phys. Lett., 55, 1963 (2001)
23. F. Schäffler, Semicond. Sci. Tech., 12, 1515 (1997)
24. Y. H. Xie, D. Monroe, E. A. Fitzgerald, P. J. Silverman, F. A. Thiel, and G. P. Watson, Appl. Phys. Lett., 63, 2263 (1993)
Chapter 10
1. T. Ando, A. B. Fowler, and F. Stern, Rev. Mod. Phys., 54, 437 (1982).
2. K. v. Klitzing, G. Dorda, and M. Pepper, Phys. Rev. Lett., 45, 494 (1980).
3. D. C. Tsui, H. L. Stormer, and A. C. Gossard, Phys. Rev. Lett., 48, 1559 (1982).
4. F. Schäffer, Semi. Sci. and Technol., 12, 1515 (1997).
5. R. Vrijen, E. Yablonovitch, K. Wang, H. W. Jiang, A. Balandin, V. Roychowdhury, T. Mor, and D. DiVincenzo, Phys. Rev. A, 62, 012306 (2000).
6. C. Tahan, M. Friesen, and R. Joynt, Phys. Rev. B, 66, 035314 (2002).
7. R. de Sousa and S. Das Sarma, Phys. Rev. B, 67, 033301 (2003).
8. A. M. Tyryshkin, S. A. Lyon, W. Jantsch, and F. Schäffer, Phys. Rev. Lett., 94, 126802 (2005).
9. T. M. Lu, D. C. Tsui, C. -H. Lee, and C. W. Liu, Appl. Phys. Lett., 94, 182102 (2009)
10. T. M. Lu, C. -H. Lee, D. C. Tsui, and C. W. Liu, Appl. Phys. Lett., 96, 253103 (2010)
11. D. Monroe, Y. H. Xie, E. A. Fitzgerald, P. J. Silverman, and G. P. Watson, J. Vac. Sci. Technol. B, 11, 1731 (1993)
12. G. S. Higashi and C. G. Fleming, Appl. Phys. Lett., 55, 1963 (1989).
13. D. -G. Park, H. -J. Cho, K. -Y. Lim, C. Lim, I. -S. Yeo, J. -S. Roh, and J. W. Park, J. Appl. Phys., 89, 6275 (2001).
14. M. Lenzlinger and E. H. Snow, J. Appl. Phys., 40, 278 (1969).
15. G. Abstreiter, H. Brugger, T. Wolf, H. Jorke, and H. J. Herzog, Phys. Rev. Lett., 30, 226 (1985)
Chapter 11
1. M. Myronov, K. Sawano, and Y. Shiraki, Appl. Phys. Lett., 88, 252115 (2006)
2. P. Chaisakul, D. Marris-Morini, G. Isella, D. Chrastina, X. Le Roux, S. Edmond, E. Cassan, J. -R. Coudevylle, and L. Vivien, Appl. Phys. Lett., 98, 131112 (2011)
3. M. Oehme, A. Karmous, M. Sarlija, J. Werner, E. Kasper, and J. Schulze, Appl. Phys. Lett., 97, 012101 (2010)
4. M. Kolahdouz, A. A. Farniya, L. Di Benedetto, and H. H. Radamson, Appl. Phys. Lett., 96, 213516 (2010)
5. Y. -W. Mo, D. E. Savage, B. S. Swartzentruber, and M. G. Lagally, Phys. Rev. Lett., 65, 1020 (1990).
6. A. Sakai and Toru Tatsumi, Phys. Rev. Lett., 71, 4007 (1993).
7. N. Taoka, W. Mizubayashi, Y. Morita, S. Migita, H. Ota, and S. Takagi, Symp.on VLSI Tech., T4B-4, 80 (2009).
8. K. Martens, A. Firrincieli, R. Rooyackers, B. Vincent, R. Loo, S. Locorotondo, E. Rosseel, T. Vandeweyer, G. Hellings, B. De Jaeger, M. Meuris, P. Favia, H. Bender, B. Douhard, J. Delmotte, W. Vandervorst, E. Simoen, G. Jurczak, D. Wouters, and J. A. Kittl, Proceedings of Int. Electron Devices Meet.(IEDM) Tech. Dig., p.18.4.1 (2010)
9. D. Pachinger, H. Groiss, H. Lichtenberger, G. Strangl, G. Hesser, and F. Schäffler, Appl. Phys. Lett., 91, 233106, (2007).
10. L. Huang, F. Liu, G. -H. Lu, and X. G. Gong, Phys. Rev. Lett., 96, 016103 (2006).
11. T. I. Kamins, E. C. Carr, R. S. Willams, and S. J. Rosner, J. Appl. Phys., 81, 211 (1996)
12. A. Rastelli, M. Kummer, and H. V. Känel, Mat. Rev. Soc. Symp. Proc., 707, N5.4.1 (2002)
13. A. van de Walle, M. Asta, and P. W. Voorhees, Phys. Rev. B, 67, 041308 (2003)
14. Y. H. Xie, G. H. Gilmer, C. Roland, P. J. Silverman, S. K. Buratto, J. Y. Cheng, E. A. Fitzgerald, A. R. Kortan, S. Schuppler, M. A. Marcus, and P. H. Citrin, Phys. Rev. Lett., 73, 3006 (1994)
15. F. Montalenti, D. B. Migas, F. Gamba, and Leo Miglio, Phys. Rev. B, 70, 245315 (2004)
16. C.-Y. Peng, C.-F. Huang, Y.-C. Fu, Y.-H. Yang, C.-Y. Lai, S.-T. Chang, and C. W. Liu, J. Appl. Phys., 105, 083537 (2009).
dc.identifier.urihttp://tdr.lib.ntu.edu.tw/jspui/handle/123456789/39479-
dc.description.abstract於本論文中,超高真空化學氣相沉積矽鍺磊晶技術被詳細的探討。我們成長矽鍺量子點與奈米環狀結構以供光偵測器元件等先進光學元件應用開發,而矽鍺量子井以及矽鍺漸進層結構則被設計來提供金氧半場效電晶體元件以及絕緣層閘極場校電晶體元件等先進電子元件的開發。
於本論文的第一部份,矽鍺量子井與矽鍺量子點這兩種已經歷史悠久的矽鍺奈米微結構的生長機制將被再次討論,特別是載流氣體對矽鍺量子井與量子點結構的生長影響。氫原子表面覆蓋現象在矽鍺量子井與量子點結構的生長中扮演很重要的角色,特別是會影響到矽鍺奈米結構中的鍺濃度以及應變分布。除此之外,這兩種奈米結構在元件上的應用也被充份的討論。利用在Si(100),Si(110)與Si(111)三種基板上製作的金氧半場效電晶體在本次論文中亦被開發。等效質量的差異導致了在這三種基板上製作之元件的載子遷移率不同。另一方面,利用多層量子點結構製作的紅外光偵測器特性也在此部份被討論。
在矽鍺量子井與矽鍺量子點之生長與元件應用介紹後,我們利用類似的概念開發出矽鍺奈米環狀結構。兩種生長機制:矽原子表面擴散與鍺原子外擴散現象分別被建構在於六百度生長與於五百度生長的矽鍺奈米環狀結構上。利用鍺原子外擴散現象所製作的矽鍺奈米環狀結構,由於對環狀結構的深度以及邊緣的鍺濃度具有較好的控制性,被我們認為是比較適合於開發未來新型光偵測器等先進元件應用。而除了開發出此結構外,我們亦同時開發出在Si(100),Si(110)與Si(111)三種基板上的矽鍺奈米環狀結構。利用改變底部基板,我們可以控制矽鍺奈米環狀結構的基底形狀,藉以得到更多光學元件的應用。
在本論文的第三部份,我們開發出了具有目前世界紀錄二維電子氣載子遷移率的高速元件,並進一步的將此紀錄往前推進。此項高速元件在載子濃度於1.5×1011 /cm2時,具有約1.6×106 cm2/Vs的二維電子氣載子遷移率。另一方面,我們更進一步的將此概念開發成可同時具有二維電子氣以及二維電洞氣載子遷移率的互補元件。P型通道場效電晶體的特性以及反用換流器也同時被開發成功。除此之外,我們也討論了對於二維電子氣密度以及二維電子氣載子遷移率的限制性。各種在矽鍺奈米結構內的散射現象,包括雜質、背景雜質、介面粗糙度、還有線差排密度等,都可以很直接的降低我們的二維電子氣載子遷移率。而藉由這部份的發現,我們也成功將我們二維電子氣載子遷移率的紀錄推進到2×106 cm2/Vs,並在可預期的未來,我們還有更多進步空間。
最後一個部份裡,我們討論了在鍺基板上成長矽的生長機制。一個與一般在矽基板上生長鍺狀況不同,從三維生長回歸到二維生長的機制,被第一次在鍺基板上成長矽的情形中發現。這一連串的生長分成三個階段,首先,矽量子點會先出現在鍺基板表面。在持續的矽沉積後,一種奈米環狀結構將會取代原本的矽量子點。而最後,整個矽表面將會變平,回歸到二維的生長當中。這種生長機制,推測是來自於拉伸應變可以增強矽原子在表面的表面擴散效應,並增進側向的成長,從而形成從三維生長回歸到二維生長的機制。這種平坦狀的矽磊晶層,對於先進的光電以及奈米電子元件開發,具有非常大的助益。
zh_TW
dc.description.abstractSiGe epitaxial growth by ultra-high vacuum chemical vapor deposition has been investigated in this dissertation. The SiGe quantum dots (QDs) and nanorings were fabricated for the applications of the photodetectors, while the SiGe quantum wells (QWs) and the SiGe graded buffer layers (GBLs) were fabricated for the applications of the metal-oxide-semiconductor field effect transistors (MOSFETs) and the insulator-gate field effect transistors (IGFETs).
In the first part of this thesis, the growth mechanisms of the SiGe QWs and SiGe QDs have been discussed. The carrier gas effects on the growth of the QWs and QDs are also discussed. The hydrogen passivation, which can influence the Ge concentration and the strain in the SiGe nanostructures, plays a crucial role in the SiGe QWs and SiGe QDs growth. Moreover, the device applications are also introduced. The MOSFETs fabricated from the SiGe QWs grown on Si(100), Si(110), and Si(111) have been discussed. The higher mobility in the <110> direction of Si and SiGe is due to the smaller conductive effective mass. The quantum dot infrared photodetectors (QDIPs) made by the multi-layer SiGe QDs substrate have also been demonstrated.
After the discussion on the growth of the SiGe QWs and QDs, the SiGe nanorings have also been investigated. The Si surface diffusion mechanism and the Ge out-diffusion mechanism were proposed for nanorings formation at 600oC and 500oC, respectively. The SiGe nanorings created by Ge out-diffusion show controllable depth and well-defined Ge content at edges. The novel nanoring structures can be used in new optoelectronic devices. Moreover, the surface orientation effects on SiGe QDs and nanorings formation are investigated. The base shapes of SiGe QDs and nanorings can be controlled by different surface orientation.
In the third part of this thesis, the two dimensional electron gas (2DEG) devices with the world record high 2DEG mobility have been investigated. The 2DEG in a Si QW on SiGe GBLs with the world record high mobility of 1.6×106 cm2/Vs at carrier densities n~1.5×1011 /cm2. On the other hand, the complementary devices on an undoped Si/SiGe substrate where both 2D electrons and holes have also been investigated. A p-channel FET is characterized and the operation of an inverter is demonstrated. Moreover, the limitations of the two dimensional electron densities and 2DEG mobility have been discussed. The scattering from remote dopants, background impurities, interface roughness, and threading dislocations can all degrade the mobility in SiGe heterostructures. Based on the knowledge above, we have successfully improved the 2DEG mobility to 2×106 cm2/Vs by changing the substrate structures.
Finally, the growth mechanism of the Si on Ge growth was investigated. The transition from 3-dimensional (3D) to 2-dimensional (2D) growth for Si on Ge, which is different from the Ge on Si case, was observed for the first time. The Si quantum dots can be observed in the initial Si growth on Ge. With the increasing Si deposition, the ring-like structures appeared. Finally, the flat surface without any nanostructures above can be observed. The tensile strain to enhance surface mobility of Si atoms favors proposedly the lateral growth, and leads to the three to two dimensional growth. The flatter Si layer growth directly on Ge can be used for the application of novel nanoelectronics and optoelectronics devices.
en
dc.description.provenanceMade available in DSpace on 2021-06-13T17:29:32Z (GMT). No. of bitstreams: 1
ntu-100-F94943130-1.pdf: 12897145 bytes, checksum: df41f872323ad4fc7710bbfafb28e415 (MD5)
Previous issue date: 2011
en
dc.description.tableofcontentsList of Figures XIV
List of Tables XXV
Chapter 1 Introduction 1
1.1 Motivation 1
1.2 Substrate Engineering 3
1.3 Source/Drain Engineering 7
1.4 SiGe Nanostructures 9
1.5 Dissertation Organization 11
References 16

Chapter 2 Basic Theory of SiGe Epitaxial Growth by Ultra -high Vacuum Chemical Vapor Deposition 19
2.1 Introduction 19
2.2 SiGe Epitaxial Growth by Ultrahigh Vacuum Chemical Vapor Deposition 20
2.3 Surface Pre-cleaning Before SiGe Epitaxial Growth 24
2.4 Growth Mechanism of the SiGe Epitaxial Growth 27
References 29
Chapter 3 SiGe Quantum Well Growth and Device Applications 31
3.1 Introduction 31
3.2 Experiment 33
3.3 The Morphologies of the SiGe Quantum Well 34
3.4 Strain and Ge Concentration in the SiGe Quantum Well 37
3.5 Carrier Gas Effects on SiGe Quantum Well Growth 43
3.6 Si Cap Layer Effects on SiGe Quantum Well Growth 47
3.7 SiGe Channel P-type Metal-oxide-semiconductor Field Effect Transistors on Si(110) and Si(111) Substrate 51
3.8 Conclusion 56
References 58
Chapter 4 SiGe Quantum Dots Growth and Device Applications 61
4.1 Introduction 61
4.2 Experiment 63
4.3 The Stranski-Krastanov Mode SiGe Quantum Dots Growth and the Carrier Gas Effects 64
4.4 Mechanism Development of Carrier Gas Effects from the Strain and Ge Content Analysis 69
4.5 Si/Ge Intermixing in the SiGe Quantum Dots 74
4.6 SiGe Quantum Dots Infrared Photodetectors 79
4.7 Conclusion 82
References 83
Chapter 5 SiGe Nanorings Formation by Si Surface Diffusion Mechanism 86
5.1 Introduction 86
5.2 Experiment 87
5.3 Morphologies of SiGe Nanorings Grown by Si Surface Diffusion Mechanism
88
5.4 Raman Analysis of Si Quantum Dots and Nanorings 95
5.5 Thermal Effects on SiGe Nanorings 99
5.6 Simulation of Strain Distribution and the Si Surface Diffusion Mechanism
102
5.7 Analysis of Ge Concentration Distribution in SiGe Quantum Dots and Nanorings by Chemical Etching Method 105
5.8 Conclusion 107
References 109
Chapter 6 SiGe Nanorings Formation by Ge Out-diffusion Mechanism 112
6.1 Introduction 112
6.2 Experiment 113
6.3 Morphologies of SiGe Nanorings Grown by Ge Out-diffusion Mechanism
114
6.4 Ge Out-diffusion Mechanism 118
6.5 Strain and Ge Concentration Analysis 123
6.6 Conclusion 131
References 133

Chapter 7 SiGe Quantum Dots and Nanorings on Si(110) Substrate 136
7.1 Introduction 136
7.2 Experiment 137
7.3 Morphologies of SiGe Quantum Dots and Nanorings on Si(110) 138
7.4 Growth Mechanism of SiGe Nanorings on Si(110) 144
7.5 Raman Analysis of SiGe Quantum Dots and Nanorings on Si(110) 151
7.6 Conclusion 153
References 155
Chapter 8 Surface Orientation Effects on SiGe Quantum Dots and Nanorings Formation 157
8.1 Introduction 157
8.2 Experiment 158
8.3 Surface Orientation Effects on SiGe Quantum Dots Growth on Si(100), Si(110), and Si(111) Substrate 159
8.4 Surface Orientation Effects on SiGe Nanorings Growth on Si(100), Si(110), and Si(111) Substrate 167
8.5 Conclusion 175
References 177
Chapter 9 SiGe Graded Buffer Layer Growth and 2D Electron Gas Device Applications 179
9.1 Introduction 179
9.2 Experiment 181
9.3 Strained Si Quantum Well with SiGe Graded Buffer Layer 182
9.4 2D Electron Gas Mobility and Quantum Hall Effects 187
9.5 Applications of 2D Electron Gas Devices 193
9.6 Conclusion 201
References 202

Chapter 10 Limitation of 2D Electron Density and the Two-Dimensional Electron Gas Mobility 205
10.1 Introduction 205
10.2 Experiment 206
10.3 Limitation of 2D Electron Density 209
10.4 The Background Impurity Influences on 2D Electron Mobility 217
10.5 The Ge Concentration Influences on 2D Electron Mobility 224
10.6 Conclusion 231
References 233

Chapter 11 A Transition of Three to Two Dimensional Si Growth on Ge(100) Substrate 235
11.1 Introduction 235
11.2 Experiment 236
11.3 Surface Morphologies of the Si on Ge(001) Substrate Growth 237
11.4 Growth Mechanism of Si on Ge Growth 242
11.5 The Strain Analysis from Raman and In-plane X-ray Diffraction 250
11.6 Conclusion 253
References 254

Chapter 12 Summary and Future Work 256
12.1 Summary 256
12.2 Future Work 259

Appendix Related Publication 262
dc.language.isoen
dc.title超高真空化學氣相沉積矽鍺磊晶成長暨先進元件應用zh_TW
dc.titleSiGe Epitaxial Growth by Ultra-high Vacuum Chemical Vapor Deposition and the Advanced Device Applicationsen
dc.typeThesis
dc.date.schoolyear99-2
dc.description.degree博士
dc.contributor.oralexamcommittee李資良,林進祥,羅廣禮,張守進,林中一,張廖貴術,胡振國
dc.subject.keyword矽鍺,量子井結構,量子點結構,漸進層結構,奈米環狀結構,二維電子氣載子遷移率,金氧半場效電晶體,絕緣層閘極場校電晶體,鍺基板上成長矽,三維生長回歸到二維生長,應變,zh_TW
dc.subject.keywordSiGe,QWs,QDs,GBLs,nanorings,2DEG mobility,MOSFETs,IGFETs,Si on Ge,3D to 2D growth,strain,en
dc.relation.page267
dc.rights.note有償授權
dc.date.accepted2011-07-13
dc.contributor.author-college電機資訊學院zh_TW
dc.contributor.author-dept電子工程學研究所zh_TW
顯示於系所單位:電子工程學研究所

文件中的檔案:
檔案 大小格式 
ntu-100-1.pdf
  目前未授權公開取用
12.59 MBAdobe PDF
顯示文件簡單紀錄


系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved