請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/39474完整後設資料紀錄
| DC 欄位 | 值 | 語言 |
|---|---|---|
| dc.contributor.advisor | 駱尚廉(Shang-Lien Lo) | |
| dc.contributor.author | Wei-Rong Chen | en |
| dc.contributor.author | 陳威榮 | zh_TW |
| dc.date.accessioned | 2021-06-13T17:29:24Z | - |
| dc.date.available | 2016-07-25 | |
| dc.date.copyright | 2011-07-25 | |
| dc.date.issued | 2011 | |
| dc.date.submitted | 2011-07-13 | |
| dc.identifier.citation | Almeida, G., J. O. Brito, P. Perré., 'Alterations in energy properties of eucalyptus
wood and bark subjected to torrefaction: The potential of mass loss as a synthetic indicator', Bioresource Technology 101(24): 9778-9784, (2010). Arias, B., C. Pevida, J. Fermoso, M. Plaza, F. Rubiera, J. Pis., 'Influence of torrefaction on the grindability and reactivity of woody biomass', Fuel Processing Technology 89(2): 169-175, (2008). Bergman, P. C. A., A. R. Boersma, R.W.R. Zwart, J.H.A. Kiel. 'Torrefaction for biomass co-firing in existing coal-fired power stations-BIOCOAL', ECN report, ECN-C--05-013, (2005). Bergman, P. C. A., 'Combined torrefaction and pelletisation', ECN report, ECN-C--05-073, (2005). Bridgeman, T. G., J. M. Jones, A. Williams, D. J. Waldron, 'An investigation of the grindability of two torrefied energy crops', Fuel 89(12): 3911-3918, (2010). Chen, W. H. and P. C. Kuo., 'A study on torrefaction of various biomass materials and its impact on lignocellulosic structure simulated by a thermogravimetry', Energy 35(6): 2580-2586, (2010). Couhert, C., S. Salvador and J. M. Commandré, 'Impact of torrefaction on syngas production from wood', Fuel 88(11): 2286-2290, (2009). Dominguez, A., J. Menendez, Y. Fernandez, J. Pis, J. Nabias, P. Carrott, M. Carrott, 'Conventional and microwave induced pyrolysis of coffee hulls for the production of a hydrogen rich fuel gas', Journal of Analytical and Applied Pyrolysis 79(1-2): 128-135, (2007). Environmental Protection Administration, Executive Yuan, 'The Evaluation on the pilot facility construction of high-efficeient biomass gasification', EPA-97-1605-02-02, (2008). Kingston, H. and L. Jassie, 'Microwave-enhanced chemistry, Fundamentals, sample preparation and applications', American Chemical Society Publishing, Washington DC, (1998). Huang, Y. F., W. H. Kuan, S. L. Lo, C. F. Lin, 'Total recovery of resources and energy from rice straw using microwave-induced pyrolysis', Bioresource Technology 99(17): 8252-8258, (2008). Huang, Y. F., W. H. Kuan, S. L. Lo, C. F. Lin, 'Hydrogen-rich fuel gas from rice straw via microwave-induced pyrolysis' Bioresource Technology 101(6): 1968-1973, (2010). Haygreen, J. G. and J.L. Bowyer, Forest Products and Wood Science. An Introduction, Iowa State University Press, Ames, IA, pp. 282–285, (1987). Johnes, D. A., T. P. Leylyveld, S. D. Mavrofidis, S. W. Kingman, N. J. Miles, 'Microwave Heating Applications in Environmental Engineering – A Review', Resources, Conservation and Recycling 34: 75-90, (2002). Mehmet Sefik Tunc, 'Hemicellulose extraction of mixed southern hard woods' Ph.D. Dissertation, Chemical Engineering, University of Maine, Maine, U.S., (2008). Miura, M., 'Rapid pyrolysis of wood block by microwave heating', Journal of Analytical and Applied Pyrolysis 71(1): 187-199, (2004). Mohan, D., C. U. Pittman, P. H. Steele, 'Pyrolysis of wood/biomass for bio-oil: a critical review', Energy & Fuels 20(3): 848-889, (2006). Pentananunt, R., A. N. M. M. Rahman, S. C. Bhattacharyat, 'Upgrading of biomass by means of torrefaction' Energy 15(12): 1175-1179, (1990). Phanphanich, M. and S. Mani, 'Impact of torrefaction on the grindability and fuel characteristics of forest biomass', Bioresource Technology 102(2): 1246-1253, (2011). Prins, M., K. Ptasinski, F. Janssen, 'More efficient biomass gasification via torrefaction' Energy 31(15): 3458-3470, (2006). McGill, S. L., J.W. Walkiewicz, G.A. Smyres, 'The effect of power level on the microwave heating of minerals and chemicals', Mat Res. Soc. Proc. 124: 247–252, (1988). Sadaka, S. and S. Negi, 'Improvements of biomass physical and thermochemical characteristics via torrefaction process', Environmental Progress & Sustainable Energy 28(3): 427-434, (2009). Repellin, V., A. Govin, M. Rolland, R. Guyonnet, 'Modelling anhydrous weight loss of wood chips during torrefaction in a pilot kiln', Biomass and Bioenergy 34(5): 602-609, (2010). Repellin, V., A. Govin, M. Rolland, R. Guyonnet, 'Energy requirement for fine grinding of torrefied wood', Biomass and Bioenergy 34(7): 923-930, (2010). Zhao, X. Q., Z. L. Song, H. Z. Liu, Z. Q. Li, L. Z. Li, C. Y. Ma, 'Microwave pyrolysis of corn stalk bale: A promising method for direct utilization of large-sized biomass and syngas production', Journal of Analytical and Applied Pyrolysis 89(1): 87-94, (2010). Yan, W., T. C. Acharjee, C. J. Coronella, V. R. Va´ squez, 'Thermal pretreatment of lignocellulosic biomass', Environmental Progress & Sustainable Energy 28(3): 435-440, (2009). 中文部份: 王美茹,「以微波誘發農林廢棄物焙燒技術之研究」,碩士論文,國立台灣大學環 境工程學研究所,2010。 張慶源,「都市生活垃圾中有機纖維之蒸煮萃取技術」,2011 生質廢棄物轉製再 生燃料技術交流研討會,2011。 吳耿東,「焙燒生質物混燒應用」,2011 生質廢棄物轉製再生燃料技術交流研討 會,2011。 經濟部能源局網頁資料,http://www.moeaboe.gov.tw,2010。 工業技術研究院網頁資料,http://www.itri.org.tw,2010。 經濟部能源局民國98 年年報,經濟部能源局,2010。 | |
| dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/39474 | - |
| dc.description.abstract | 生質物焙燒技術為一種輕微裂解之技術,透過此熱化學技術可改善生質物之特性,以利於生質物後序轉換程序。微波誘發焙燒技術可以克服傳統焙燒技術的缺點,譬如升溫速率低、處理時間長以及生質物表面和核心之間嚴重的溫度梯度等。本實驗以稻稈和狼尾草作為研究對象,並以工業用微波爐(單模聚焛式)提供微波來源,通以氮氣使其在無氧的環境下進行焙燒反應,並調整微波功率介於150 W~350 W之間。其他操作參數包括:微波功率、反應時間及反應溫度等,以期找出最佳之操作條件。微波焙燒反應前後,會探討其固態產物熱值變化、O/C比例、近似分析,元素含量、重量損失、及其三相產物之能量分配及Energy yield。
稻稈在300 W反應時間25分鐘及350 W反應時間10~15分鐘條件下,熱值提升最多可達30~34%;狼尾草則在300 W反應時間25分鐘及350 W反應時間10分鐘下,熱值提升最多可達55~56%。與傳統焙燒方法比較,反應時間明顯縮短許多,反應時間視微波功率而有所調整,但都在25分鐘前即可反應完畢。 稻稈和狼尾草在150 W反應時間10分鐘之條件下,可取得最佳的Energy yield分別為78.0%和79.6%。此外,在固定微波功率(350 W)將生質物加熱到不同溫度250℃和300℃時,發現稻稈和狼尾草其重量保留百分比和Energy yield在250℃和300℃條件下差異不大,250℃時稻稈和狼尾草之重量保留百分比分別為43.7%和42.9%,在300℃為42.9%與41.6%,而250℃下稻稈和狼尾草之Energy yield分別為52.9%與59.8%,300℃下為54.7%與56.9%。因此,較高功率微波焙燒時,溫度對重量保留百分比與Energy yield的相關性較低,反而是反應時間和微波功率相關性較高。 固態產物之元素分析結果顯示,C元素會隨微波功率提升而上升,而O元素會隨微波功率和反應時間增加而降低,H元素則隨微波功率升有些微下降。整體而言,O/C及H/C比值會隨著微波功率和反應時間增加而遞減。粒徑分析方面,可發現粒徑大小隨微波功率提升而越小且粒徑分布越均勻。 氣態產物以CH4、CO2、CO和H2居多,和少量C2H6及C3H8。在150 W-10 min條件下,稻稈和狼尾草之氣態產物以CO (54.91%和43.07%)最多,H2(19.59%和28.31%)次之,跟傳統加熱法比較可使溫室氣體CO2的產量降低。液相產物主要以Phenol、Benzofuran, 2,3-dihydro-、Phenol, 4-ethyl-以及Phenol, 4-methyl-為主。 由上述結果顯示,微波誘發焙燒與傳統加熱焙燒相比,其達到的加熱速率更快且可迅速達到高溫。產出的固態產物具疏水性和穩定性且易儲存之特性,能源密度也有提升的趨勢。 | zh_TW |
| dc.description.abstract | Torrefaction is a mild pyrolysis process which used to improve the properties of the biomass. Microwave-induced torrefaction can minimize the disadvantages of conventional torrefaction methods such as low heating rate, long processing time and severe temperature gradient between central and surface of biomass. Microwave irradiation is single-mode from the industrial microwave device. Two agricultural residues, rice straw and pennisetum were torrefied under different microwave power in nitrogen ambient. In this study, microwave power level was set between 150W~350W. Different operating conditions, including microwave power, processing time and temperature, were undertaken to examine optimization of the process for the biomass. After torrefaction, solid product would be investigated its caloric value, O/C ratio, proximate analysis, elemental analysis, mass reduction, energy distribution of three phase products and energy yield.
The caloric value of solid product was enhanced 30~34% in the condition that rice straw was torrefied under 300 W for 25 minutes and 350 W for 10~15 minutes. With regards to pennisetum the caloric value was enhanced 55~56% in the condition that pennisetum was torrefied under 300 W for 25 minutes and 350 W for 10 minutes. In Comparison with conventional torrefaction, microwave-induced torrefaction could shorten processing time significantly, and make reaction go completely within 25 minutes. The energy yield of rice straw and pennisetum which were torrefied under 150W for 10 minuntes could reach 84.9% and 79.6% respectively. When the biomass was heated to 250℃ and 300℃ under 350 W, the results indicated that mass yield and energy yield of rice straw and pennisetum under 250℃ were similar to those under 300℃. The mass yield and energy yield of rice straw at 250℃ was 43.7% and 52.9% separately, and at 300℃was 42.9% and 54.7% separately;pennisetum at 250℃ was 42.9% and 59.8% separately, and at 300℃ was 41.6% and 56.9% separately. Therefore, temperature had less correlation to mass yield and energy yield under high level microwave power. By contract, processing time and microwave power were the key parameters of the reaction. Elemental analysis showed that carbon content of solid product increased with the increase of microwave power. However, oxygen content decreased with the increase of microwave power and processing time, and hydrogen content had slight decrease. Overall, O/C ratio and H/C ratio decreased with the increase of microwave power and processing time. The size of torrefied char was smaller and more uniform with the increase of microwave power. The majority of gas products were CH4, CO2, CO and H2, with a few C2H6 and C3H8. Under the 150 W-10 min operating condition, The percentage of CO content of rice straw and pennisetum were 54.91% and 43.07%, and H2 19.59% and 28.31%. Comparing with conventional method, microwave -induced method could reduce greenhouse gas CO2. The major compounds in liquid products were Phenol、Benzofuran, 2,3-dihydro-、Phenol, 4-ethyl- and Phenol, 4-methyl-. In conclusion, the heating rate of microwave-induced torrefaction was faster than conventional torrefaction and could easily reach high temperature. This method could save time and energy. The solid products provided stability and hydrophobic characteristic for longer storage, and had a tendency to increase the energy density of solid products. | en |
| dc.description.provenance | Made available in DSpace on 2021-06-13T17:29:24Z (GMT). No. of bitstreams: 1 ntu-100-R98541132-1.pdf: 5234543 bytes, checksum: 4917d5ac2a9cac5fd5dc9707b098792a (MD5) Previous issue date: 2011 | en |
| dc.description.tableofcontents | 中文摘要.................................................. I
Abstract ............................................... III 目錄.......................................................V 圖目錄.................................................. VII 表目錄.................................................... X 第一章 緒論............................................... 1 1-1 研究背景 ............................................. 1 1-2 研究目的 ............................................. 3 1-3 研究內容 ............................................. 3 第二章 文獻回顧........................................... 6 2-1 農林生質廢棄物的來源及組成............................ 6 2-1-2 農林生質廢棄物的來源 ............................... 6 2-1-2 農林生質廢棄物的組成 ............................... 7 2-1-3 半纖維素 ........................................... 9 2-1-4 纖維素 ............................................ 10 2-1-5 木質素 ............................................ 11 2-1-6 萃取物 ............................................ 12 2-2 熱處理技術 .......................................... 12 2-2-1 焚化技術 .......................................... 13 2-2-2 蒸煮分選技術 ...................................... 14 2-2-3 裂解技術 .......................................... 14 2-2-4 氣化技術 .......................................... 15 2-2-5 電漿火炬技術 ...................................... 15 2-3 焙燒技術 ............................................ 16 2-3-1 焙燒反應 .......................................... 16 2-3-2 焙燒反應之三相產物 ................................ 17 2-3-3 焙燒反應降解機制 .................................. 18 2-3-4 焙燒生質物特性 .................................... 19 2-3-5 生質物焙燒反應之應用 .............................. 20 2-4 微波加熱技術 ........................................ 27 2-5 微波加熱與傳統加熱之比較 ............................ 31 第三章 材料與方法........................................ 33 3-1 實驗架構 ............................................ 33 3-2 實驗材料 ............................................ 35 3-3 實驗設備 ............................................ 35 3-4 實驗流程 ............................................ 39 3-5 生質物成分分析 ...................................... 40 3-5-1 木質纖維素分析 .................................... 40 3-5-2 近似分析、元素分析 ................................ 42 3-5-3 熱值分析 .......................................... 43 3-5-4 熱重分析(TGA) ..................................... 43 3-5-5 粒徑分析 .......................................... 44 3-5-6 GC-MS, GC-TCD和GC-FID分析 ......................... 44 第四章 結果與討論........................................ 46 4-1 稻稈及狼尾草之基本性質分析 .......................... 46 4-1-1 近似分析、元素分析及木質纖維素之分析 .............. 46 4-1-2 熱重分析 .......................................... 48 4-2 微波功率對焙燒溫度之影響 ............................ 52 4-2-1 生質物在不同微波功率下升溫之情形................... 52 4-2-2 微波功率對焙燒溫度之關係 .......................... 55 4-3 固態產物之分析與探討 ................................ 57 4-3-1 微波功率和反應時間對重量損失之探討................. 57 4-3-2 微波功率對固態產物熱值之影響 ...................... 60 4-3-3 反應時間對固態產物熱值之影響 ...................... 61 4-4 不同參數與固態產物之關係 ............................ 63 4-4-1 反應溫度和重量損失之關係 .......................... 63 4-4-2 反應溫度對固態產物熱值之關係 ...................... 66 4-4-3 重量損失對固態產物熱值之關係 ...................... 69 4-5 Energy yield ........................................ 71 4-6 微波加熱至固定溫度對固態產物之探討 .................. 75 4-7 焙燒之固態產物近似分析、元素分析比較 ................ 77 4-8 焙燒之固態產物粒徑分析比較與討論 .................... 80 4-9 焙燒之固態產物熱重分析比較與討論 .................... 85 4-10 破碎與否之比較 ..................................... 94 4-11 烘乾與否之比較 ..................................... 96 4-12 氣態產物定性定量之分析 ............................. 97 4-13 液態產物定性之分析 ................................. 98 4-13 三相產物熱值之分配 ................................ 100 第五章 結論與建議....................................... 102 5-1 結論 ............................................... 102 5-2 建議 ............................................... 104 參考文獻................................................ 106 附錄.................................................... 110 原始數據................................................ 110 | |
| dc.language.iso | zh-TW | |
| dc.subject | Energy yield | zh_TW |
| dc.subject | 微波誘發焙燒 | zh_TW |
| dc.subject | 農林廢棄物 | zh_TW |
| dc.subject | 焙燒炭 | zh_TW |
| dc.subject | 熱值 | zh_TW |
| dc.subject | torrefied char calorific value | en |
| dc.subject | energy yield | en |
| dc.subject | microwave-induced torrefaction | en |
| dc.subject | agricultural residues | en |
| dc.title | 以微波誘發焙燒反應處理稻稈及狼尾草之研究 | zh_TW |
| dc.title | Processing Rice Straw and Pennisetum by Microwave-Induced Torrefaction | en |
| dc.type | Thesis | |
| dc.date.schoolyear | 99-2 | |
| dc.description.degree | 碩士 | |
| dc.contributor.oralexamcommittee | 闕蓓德(Pei-Te Chiueh),官文惠(Kuan, Wen-Hui) | |
| dc.subject.keyword | 微波誘發焙燒,農林廢棄物,焙燒炭,熱值,Energy yield, | zh_TW |
| dc.subject.keyword | microwave-induced torrefaction,agricultural residues,torrefied char calorific value,energy yield, | en |
| dc.relation.page | 133 | |
| dc.rights.note | 有償授權 | |
| dc.date.accepted | 2011-07-13 | |
| dc.contributor.author-college | 工學院 | zh_TW |
| dc.contributor.author-dept | 環境工程學研究所 | zh_TW |
| 顯示於系所單位: | 環境工程學研究所 | |
文件中的檔案:
| 檔案 | 大小 | 格式 | |
|---|---|---|---|
| ntu-100-1.pdf 未授權公開取用 | 5.11 MB | Adobe PDF |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。
