Skip navigation

DSpace

機構典藏 DSpace 系統致力於保存各式數位資料(如:文字、圖片、PDF)並使其易於取用。

點此認識 DSpace
DSpace logo
English
中文
  • 瀏覽論文
    • 校院系所
    • 出版年
    • 作者
    • 標題
    • 關鍵字
  • 搜尋 TDR
  • 授權 Q&A
    • 我的頁面
    • 接受 E-mail 通知
    • 編輯個人資料
  1. NTU Theses and Dissertations Repository
  2. 生物資源暨農學院
  3. 農業化學系
請用此 Handle URI 來引用此文件: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/39459
完整後設資料紀錄
DC 欄位值語言
dc.contributor.advisor王一雄
dc.contributor.authorTzu-Chuan Chiuen
dc.contributor.author邱子權zh_TW
dc.date.accessioned2021-06-13T17:29:02Z-
dc.date.available2006-10-19
dc.date.copyright2004-10-19
dc.date.issued2004
dc.date.submitted2004-09-21
dc.identifier.citation參考文獻
王一雄,1997。土壤環境污染與農藥。國立編譯館主編。pp.148
王一雄、陳尊賢、李達源,1995。有機污染物之來源與特性。土壤污染學。國立空中大學出版。
王正雄,1999。淺談環境賀爾蒙--干擾內分泌之化學物質。環境檢驗通訊雜誌。第二十四期第四版。
王正雄,2001。持久性有機污染物經食物鏈之生物累積與濃縮。環境檢驗通訊雜誌。pp. 14-17。
王正雄及柳家瑞,2000。台灣歷年環境中有機氯化烴殺蟲劑衰減殘留分析之探討(1973-1999)。Journal of food and drug analysis。8(3):149-157。
王正雄、張小萍、洪文宗、李宜樺、黃壬瑰及陳佩珊,2000。台灣地區擬似環境荷爾蒙物質管理及環境流布調查。微生物與環境賀爾蒙研討會論文集。pp. 1-29。
林依蓉,2001。多氯聯苯厭氧馴養降解菌群微生物多樣性解析。國立中央大學生命科學研究所碩士論文。
陳意銘,1997。台灣本土厭氧菌對多氯聯苯還原性脫氯作用之研究。國立台灣大學農業化學研究所博士論文。
黃香賓珽,2001。單槽連續進流回分式活性污泥系統微生物菌相變化之研究。國立中央大學環境工程學系碩士論文。
環保團體提出食品受POPs污染調查報告 ﹙ENDS Daily 2000/3/17 附件九﹚ 國際環保新聞週報 (2000.03.25~2000.03.31), http://www.epa.gov.tw /news/news00035.htm
Abou-Arab, A. A. K., M. N. E. Gomaa, A. Badawy and K. Naguib. 1995. Distribution of organochlorine pesticides in the Egyptian aquatic ecosystem. Food Chem. 54:141-146.
Adrian, L., L. Jan, C. Schloetelburg, U. B. Goebel and F. von Wintzingerode. (Unpublished). Development and initial population analysis of stable bacterial consortia removing predominantly singly flanked chlorine substituents from chlorobenzenes.
Amann, R. I., W. Ludwig and K.-H. Schleifer. 1995. Phylogenetic identification and in situ detection of individual microbial cells without cultivation. Microbiol. Rev. 59(1):143-169.
Barra, R., M. Cisternas, R. Urrutia, K. Pozo, P. Pacheco, O. Parra and S. Focardi. 2001. First report on chlorinated pesticide deposition in a sediment core from a small lake in central Chile. Chemosphere. 45:479-757.
Bidlan, R. and H. K. Manonmani. 2002. Aerobic degradation of dichlorodiphenyltrichloroethane (DDT) by Serratia marcescens DT-1P. Process Biochem. 38:49-56.
Bixby, M. W., G. M. Boush and F. Matsumura. 1971. Degradation of dieldrin to carbon dioxide by a soil fungus Trichoderma koningi. Bull. Environ. Contam. Toxicol. 6:491-494.
Breitenstein, A., A. Saano, M. Salkinoja-Salonen, J. R. Andreesen and U. Lechner. 2001. Analysis of a 2,4,6-trichlorophenol-dehalogenating enrichment culture and isolation of the dehalogenating member Desulfitobacterium frappieri strain TCP-A. Arch. Microbiol. 175(2): 133-142.
Bumpus, J. A. and S. D. Aust. 1987. Biodegradation of DDT [1,1,1-trichloro-2,2-bis(p-chlorophenyl)ethane] by the white rot fungus Phanerochaete chrysosporium. Appl. Environ. Microbiol. 53:2001-2008.
Carter, F. L. and C. A. Stringer. 1970. Residues and degradation products of technical heptachlor in various soil types. J. Econ. Entomol. 63(2):625-628.
Chang, Y. J., J. R. Stephen, A. P. Richter, A. D. Venosa, J. Bruggemann, S. J. Macnaughton, G. A. Kowalchuk, J. R. Haines, E. Kline and D. C. White. 2000. Phylogenetic analysis of aerobic freshwater and marine enrichment cultures efficient in hydrocarbon degradation: effect of profiling method. J. Microbiol. Methods. 40:19-31.
Choi, J. W., M. Matsuda, M. Kawano, B. Y. Min and T. Wakimoto. 2001. Accumulation profiles of organochlorines in waterbirds from an estuary in Korea. Arch. Environ. Contam. Toxicol. 41:353-363.
Corona-Cruz, A., G. Gold-Bouchat, M. Gutierrez-Rojas, O. Monroy-Hermosilli and E. Favela. 1999. Anaerobic-aerobic biodegradation of DDT (dichlorodiphenyl trichloroethane) in soils. Bull. Environ. Contam. Toxicol. 63:219-225.
Cowan, D. A. 2000. Microbial genomes -- the untapped resource. Trends in biotech. 18:14-16.
Doong, R. A., Y. C. Sun, P. L. Liao, C. K. Peng and S. C. Wu. 2002. Distribution and fate of organochlorine pesticide residues in sediments from the selected rivers in Taiwan. Chemosphere. 48:237-246.
Dykaar, B. B. and P. K. Kitanidis. 1996. Macrotransport of a biologically reacting solute through porous media. Water Resour. Res. 32: 307-320.
El-Fantroussi, S., L. Verschuere, W. Verstraete and E. M. Top. 1999. Effect of phenylurea herbicides on soil microbial communities estimated by analysis of 16S rRNA gene fingerprints and community-level physiological profiles. Appl. Environ. Microbiol. 65(3):982-988.
El-Fantroussi, S. 2000. Enrichment and molecular characterization of a bacterial culture that degrades methoxy-methyl urea herbicides and their aniline derivatives. Appl. Environ. Microbiol. 66(12):5110-5115.
Fasola, M., P. A. Movalli and C. Gandini. 1998. Heavy metal, organochlorine pesticide, and PCB residues in eggs and feather of herons breeding in northern Italy. Arch. Environ. Contam. Toxicol. 34:87-93.
Felsenstein, J. 1993. PHYLIP (Phylogeny Inference Package) version 3.5c. Distributed by the author. Department of Genetics, University of Washington, Seattle, USA. Available from http://rdp.cme.msu.edu/cgis/phylip.cgi.
Focht, D. D. and M. Alexander. 1972. Aerobic co-metabolism of DDT analogues by Hydrogenomonas sp. J. Agric. Food. Chem. 1971(19): 20-22.
Fromberg, A., M. Cleemann and L. Carlsen. 1999. Review on persistent organic pollutants in the environment of Greenland and Faroe Islands. Chemosphere. 38(13):3075-3093.
Gelsomino, A., A. C. Keijzer-Wolters, G. Cacco and J. D. van Elsas. 1999. Assessment of bacterial community structure in soil by polymerase chain reaction and denaturing gradient gel electrophoresis. J. Microbiol. Methods. 38:1-15.
Ghiorse, W. C. and J. T. Wilson. 1988. Microbial ecology of the terrestrial subsurface. Adv. Appl. Microbiol. 33: 107-172.
Guillette, L. J. 2000. Organochlorine pesticides as endocrine disruptors in wildlife. Cent. Eur. Public. Health. 8:34-35.
Gunsalus, R. P., J. A. Romesser and R. S. Wolfe. 1978. Preparation of coenzyme M analogues and their activity in the methylcoenzyme M reductase system of Methanobacterium thermoautotrophicum. Biochem. 17:1274-2377.
Häggblom, M. M., V. K. Knight and L. J. Kerkhof. 2000. Anaerobic decomposition of halogenated aromatic compounds. Environ. Pollut. 107: 199-207.
Hall, T. 2004. BioEdit version 6.0.5. Distributed by the author. Department of Microbiology, University of North Carolina State, Raleigh, USA. Download from http://www.mbio.ncsu.edu/BioEdit/bioedit.html.
Hay, A. G. and D. D. Focht 2000. Transformation of 1,1-dichloro-2,2-(4- chlorophenyl)ethane (DDD) by Ralstonia eutropha strain A5. FEMS microbiol. ecology. 31:249-253.
Hay, A. G. and D. D. Focht. 1998. Cometabolism of 1,1-dichloro-2,2-bis(4- chlorophenyl)ethylene by Pseudomonas acidovorans M3GY grown on biphenyl. Appl. Environ. Microbiol. 64(6):2141-2146.
Hitch, R. K. and H. R. Day. 1992. Unusual persistence of DDT in some western USA soils. Bull. Environ. Contam. Toxicol. 48:259-264.
Holland, K. T., J. S. Knapp and J. G. Shoesmith. 1987. Anaerobic bacteria. Chapman and Hall. New York.
Kirby, M. L., R. L. Barlow and J. R. Bloomquist. 2001. Neurotoxicity of the organochlorine insecticide heptachlor to murine striatal dopaminergic pathway. Toxicol. Sci. 61:100-106.
Kitamura, S., M. Mita, Y. Shimizu, K. Sugihara and S. Otha. 1999. Conversion of dieldrin to aldrin by intestinal bacteria in rats. Biol. Pharm. Bull. 22(8):880-882.
Kozdroj, J. and J. D. van Elsas. 2001. Structural diversity of microbial communities in arable soils of a heavily industrialized area determined by PCR-DGGE fingerprint and FAME profiling. Applied Soil Ecology. 17:31-42.
Laug, E. P., F. M. Kunze and C. S. Prickett. 1951. Occurrence of DDT in human fat and milk. Arch. Ind. Hyg. Occup. Med. 3:245-246.
Lichtenstein, E. P., K.R. Schulz, T. W. Fuhremann and T. T. liang. 1970. Degradation of aldrin and heptachlor in field soils during a ten-year period. J. Agric. Food. Chem. 18(1):100-106
Liu, W.-T., K. D. Linning, K. Nakamura, T. Mino, T. Matsuo and L. J. Forney. 2000. Microbial community changes in biological phosphate-removal systems on altering sludge phosphorus content. Microbiology. 146:1099-1107.
Matsumura, F. and G. M. Boush. 1967. Dieldrin: degradation by soil microorganisms. Sicence. 156: 959-961.
Matsumura, F. and Benezet, H. 1978. Microbial Degradation of Insecticides in Pesticide Microbiology (Ttill IR and Wright SRL). New York: Academic Press. p640.
Maule, A., S. Plyte and A.V. Quirk. 1987. Dehalogenation of organochlorine insecticides by mixed anaerobic microbial populations. Pestic. Biochem. Physiol. 27:229-236.
Menone, M. L., J. E. Aizpún de Moreno, V. J. Moreno, A. L. Lanfranchi, T. L. Metcalfe and C. D. Metcalfe. 2001. Organochlorine pesticides and PCBs in a southern Atlantic Coastal Lagoon watershed, Arigentina. Arch. Environ. Contam. Toxicol. 40:355-362.
Miles, J. R. W., C. M. Tu and C. R. Harris. 1969. Metabolism of heptachlor and its degradation products by soil microorganisms. J. Econ. Entomol. 62(6):1334-1338.
Miles, J. R. W., C. M. Tu and C. R. Harris. 1971. Degradation of heptachlor epoxide and heptachlor by a mixed culture of soil microorganisms. J. Econ. Entomol. 64(4):839-841.
Mohn, W. W. and J. M. Tiedje. 1992. Microbial reductive dehalogenation. Microbiol. Rev. 56:482-507.
Muyzer, G. and K. Smalla. 1998. Application of denaturing gradient gel electrophoresis (DGGE) and temperature gradient gel electrophoresis (TGGE) in microbial ecology. Antonie van Leeuwenhoek. 73: 127-141
Muyzer, G., E. C. De waal and A. G. Uitterlinden. 1993. Profiling of complex microbial populations by denaturing gradient gel electrophoresis analysis of polymerase chain reaction-amplified genes coding for 16S rRNA. Appl. Environ. Microbiol. 59: 695-700.
Nadeau, L. J., F. M. Menn, A. Breen and G. S. Sayler. 1994. Aerobic degradation of 1,1,1-trichloro-2,2-bis(p-chlorophenyl)ethane (DDT) by Alcaligene eutrophus A5. Appl. Environ. Microbiol. 60:51-55.
Nollet, L., D. Demeyer and W. Verstraete. 1997. Effect of 2-bromoethanesulfonic acid and peptostreptococcus productus ATCC 35244 addition on stimulation of reductive acetogenesis in the ruminal necosystem by selective inhibition of methanogenesis. Appl. Environ. Microbiol. 63:194-200.
Ntow, W. J. 2001. Organochlorine pesticides in water, sediment, crops, and human fluids in a farming community in Ghana. Arch. Environ. Contam. Toxicol. 40:557-563.
Nübel, U., B. Engelen, A. Felske, J. Snaidr, A. Wieshuber and R. I. Amann. 1996. Sequence heterogeneities of genes encoding 16S rRNAs in Paenibacillus polymyxa detected by temperature-gradient gel electrophoresis. J. Bacteriol. 178:5636-5643.
O'Brien, R. D. 1970. Insecticides -- action and metabolism 3rd ed. Academic Press. New York.
Okonkwo, J. Q. and L. Kampira. 2002. Organochlorine pesticide residues in mother’s milk in Swaziland, 1996-1997. Bull. Environ. Contam. Toxicol. 68:740-746.
Osuna-Flores, I. and M. C. Riva. 2002. Organochlorine pesticide residue concentrations in shrimps, sediments, and surface water from bay of Ohuira, Topolobampo, Sinaloa, Mexico. Bull. Environ. Contam. Toxicol. 68:532-539.
Parshina, S. N., R. Kleerebezem, J. L. Sanz, G. Lettinga, A. N. Nozhevnikova, N. A. Kostrikina, A. M. Lysenko and A. J. M. Stams. Soehngenia saccharolytica gen. nov., sp. nov. and Clostridium amygdalinum sp. nov., two novel anaerobic, benzaldehyde-converting bacteria. Int. J. Syst. Evol. Microbiol. 53 (Pt 6): 1791-1799.
Pavlostathis, S. G. and P. Zhuang. 1993. Reductive dechlorination of chloroalkenes in microcosms developed with a field contaminated soil. Chemosphere. 27:585-595.
Pfaender, F. K. and M. Alexander. 1972. Extensive microbial degradation of DDT in vitro and DDT metabolism by natural communities. J. Agric. Food Chem. 20:842-846.
Prescotti, L. M., J. P. Harley and D. A. Klein. 2002. Microbiology 5th ed. Allen, D., eds. McGraw-Hill, New York. p. 424
Ranjard, L., F. Poly and S. Nazaret. 2000. Monitoring complex bacterial communities using culture-independent molecular techniques: application to soil environment. Res. Microbiol. 151:167-177.
Rossetti, S., L. L. Blackall, M. Majone, P. Hugenholtz, J. J. Plumb and V. Tandoi. 2003. Kinetic and phylogenetic characterization of an anaerobic dechlorinating microbial community. Microbiology 149: 459-469.
Sarkar, A., R. Nagarain, S. Chaphadkar, S. Pal and S. Y. S. Singbal. 1997. Contamination of organochlorine pesticides in sediments from the Arabian sea along the west coast of India. Wat. Res. 31(2):195-200.
Schlöter, M., M. Lebuhn, T. Heulin and A. Hartmann. 2000. Ecology and evolution of bacterial microdiversity FEMS. Microbiol. Rev. 24:647-660
Schloetelburg, C. (Unpublished). Mikrobielle Diversitaet und Dynamik einer 1,2-Dichlorpropan dechlorierend en Mischkultur.
Singh, R. P. 2001. Comparison of organochlorine pesticide levels in soil and groundwater of Agar, India. Bull. Environ. Contam. Toxicol. 67:126-132.
Smit, E., P. Leeflang and K. Wernars. 1997. Detection of shifts in microbial community structure and diversity in soil caused by copper contamination using amplified ribosomal DNA restriction enzyme. FEMS. Microbiol. Ecology. 23:249-261.
Sneath, P.H. and R.R. Sokal, 1973. Numerical taxonomy: the principles and practice of numerical classification. W.H. Freeman, San Francisco, 573.
Spencer, W. F., G. Singh, C. D. Taylor, R.A. LeMert, M. M. Cliath and W. J. Farmer. 1996. DDT persistence and volatility as affected by management practices after 23 years. J. Environ. Qual. 25:815-821.
Stams, A. J. M. and T.A. Hansen. 1984. Fermentation of glutamate and other compounds by Acidaminobacter hydrogenoformans gen. nov. sp. nov., an obligate anaerobe isolated from black mud. Studies with pure cultures and mixed cultures with sulfate-reducing and methanogenic bacteria. Arch. Microbiol. 137: 329-337.
Subba Rao, R.V. and M. Alexander. 1977. Co-metabolism product of 1,1,1-trichloro-2,2-bis(p-chlorophenyl)ethane (DDT) by Pseudomonas putida. J. Agric. Food Chem. 25:855-858.
Subba Rao, R.V. and M. Alexander. 1985. Bacterial and fungal co-metabolism of 1,1,1-trichloro-2,2-bis(p-chlorophenyl)ethane (DDT) and its breakdown products. Appl. Environ. Microbiol. 45:509-516.
Tamura, K. 1999. TreeExplorer version 2.12. Distributed by the author. Department of Biology, Tokyo Metropolitan University, Tokyo, Japan. Download from http://evolgen.biol.metro-u.ac.jp/TE/
Tartakovsky, B., J. Hawari and S. R. Guiot. 2000. Enhanced dechlorination of aroclor 1242 in an anaerobic continuous bioreactor. Wat. Res. 34(1):85-92.
Tu, C. M. and Miles, J. R. W. 1976. Interactions between insecticides and soil microbes. Residue Rev. 64:17-65.
van Elsas, J.D., J. T. Trevors and E. M. H. Wellington. 1997. Modern soil microbiology. p. 377
Waliszewski, S. M., A. A. Aguirre, R. M. Infanzon, C. S. Silva and J. Siliceo. 2001. Organochlorine pesticide levels in maternal adipose tissue, maternal blood serum, umbilical blood serum, and milk from inhabitants of Veracruz, Mexico. Arch. Environ. Contam. Toxicol. 40:432-438.
Waliszewski, S. M., A. A. Aguirre, R. M. Infanzon and J. Silceo. 2002. Persistent organochlorine pesticide levels in maternal blood serum, colostrum, and mature milk. Bull. Environ. Contam. Toxicol. 68:324-331.
Walker, A. 1974. A simulation model for prediction of herbicide persistence. J. Environ. Qual. 3: 396-401.
Waner, K. A., C. C. Gilmour and D. G. Capone. 2002. Reductive dechlorination of 2,4-dichlorophenol and related microbial processes under limiting and non-limiting sulfate concentration in anaerobic mid-Chesapeake Bay sediments. FEMS Microbiol. Ecology. 40:159-165.
Ward, D. M., R. Weller and M. M. Bateson. 1990. 16S rDNA sequences reveal numerous uncultured microorganisms in a natural community. Nature. 62:1353-1370.
Wedemeyer, G. 1967. Dechlorination of 1,1,1-trichloro-2,2-bis(p- chlorophenyl)ethane by Aerobacter aerogenes. Appl. Environ. Microbiol. 15:569-574.
WHO. 1984. Heptachlor: environmental health criteria No. 38, Geneva, World Health Organization, p. 50.
WHO. 1989. DDT and its derivatives – environmental aspects: environmental health criteria No. 83, Geneva, World Health Organization, p. 9.
Wiegel, J and Q. Wu. 2000. Microbial reductive dehalogenation of polychlorinated biphenyls. FEMS Microbiol. Ecology. 32:1-15.
Wiegel, J., X. Zhang and Q. Wu. 1999. Anaerobic dehalogenation of hydroxylated polychlorinated biphenyls. FEMS Microbiol. Ecology. 32:1-15.
Woese, C. R. 1987. Bacterial evolution. Microbiol. Rev. 51:221-271.
Wu, Q., D. L. Bedard and J. Wiegel. 1997. Effect of incubation temperature on the route of microbial reductive dechlorination of 2,3,4,6-tetrachlorobiphnyl in polychlorinate biphenyl(PCB)-contaminated and PCB-free freshwater sediments. Appl. Environ. Microbiol. 63(7): 2836-2843.
Ye, D., J. F. Quensen III, J. M. Tiedje and S. A. Boyd. 1995. Evidence for para dechlorination of polychlorobiphenyls by Methanogenic bacteria. Appl. Environ. Microbiol. 61(6): 2166-2171.
Yu, Z. and G. B. Smith. 1997. Chloroform dechlorination by a wastewater methanogenic consortium and cell extracts of Methanosarcina barkeri. Wat. Res. 31(8):1879-1886.
Yuan, D., D. Yang, T. L. Wade and Y. Qian. 2001. Status of persistent organic pollutants in the sediment from several estuaries in China. Environ Pollut. 114:101-111.
Zhang, X. and J. Wiegel. 1990. Sequential anaerobic degradation of 2, 4-dichlorophenol in freshwater sediment. Appl. Emviron. Microbiol. 56: 1119-1127.
Zhulidov, A. V., R. D. Robarts, J. V. Headley, K. Liber, D. A. Zhulidova, O. V. Zhulodova and D. F. Pavlov. 2002. Levels of DDT and hexachlorocyclohexane in burbot from Russian arctic river. The Science of the Environment. 292:231-246.
Zinder, S. H., T. Anguish and S. C. Cardwell. 1984. Selective inhibition by 2-bromoethanesulfonate on methanogenesis from acetate in a thermophilic anaerobic digester. Appl. Environ. Mcrobiol. 47:1343-1345.
dc.identifier.urihttp://tdr.lib.ntu.edu.tw/jspui/handle/123456789/39459-
dc.description.abstract本研究旨在探討四種有機氯化烴殺蟲劑:滴滴涕(DDT)、飛佈達(heptachlor)、阿特靈(aldrin)以及地特靈(dieldrin)於厭氧環境下的微生物降解作用,並結合微生物核酸萃取、聚合酶鏈鎖反應及變性梯度凝膠電泳法等分子生物技術來瞭解台灣本土河川底泥中,厭氧微生物與這些同屬環境賀爾蒙及持續性有機污染物的有機氯化烴殺蟲劑,在降解過程間的關連性。
實驗結果發現,四種有機氯化烴殺蟲劑在滅菌底泥中的消散速率均明顯較在未滅菌底泥中緩慢,顯示在厭氧環境中微生物降解作用是有機氯化烴殺蟲劑最主要的降解方式。由不同理化因子(溫度、濃度及碳源)對厭氧混合菌降解有機氯化烴殺蟲劑的影響結果可知,溫度對厭氧混合菌的降解活性具有相當顯著的影響,滴滴涕在40℃下的降解速率相當快速,在此溫度下的半衰期為0.7天,而在10℃下則為5.9天。類似的結果在飛佈達、阿特靈以及地特靈中均可發現,顯示40℃為本研究中混合菌最佳之降解溫度。由厭氧混合菌對於不同濃度(0.5、2、5、10、50及100 μg/mL)有機氯化烴殺蟲劑的降解測試結果亦可發現,厭氧混合菌對有機氯化烴殺蟲劑降解之最適濃度範圍為0.5 ~ 10 μg/mL,添加濃度達50 μg/mL以上時,混合菌之降解活性受到抑制。另一方面,比較由不同碳源(酵母萃取粉、醋酸鈉及葡萄糖)為基質培養厭氧混合菌的實驗結果可知,各批次實驗組之降解速率,以添加酵母萃取粉為基質的實驗組最快,其次為醋酸鹽,而以葡萄糖為基質則使得混合菌降解速率遲緩,唯一例外的是,阿特靈的厭氧混合菌降解速率並不受碳源種類影響。添加電子接受者(碳酸氫鈉、硫酸鈉及硝酸鈉)的結果顯示,電子接受者的存在對於研究中厭氧混合菌降解作用並無明顯促進情形,在許多情況下反而造成遲滯現象,特別是以硝酸鈉作為電子接受者時,滴滴涕、飛佈達及地特靈的降解皆受到壓制。
代謝產物鑑定之結果顯示,本土厭氧混合菌能夠藉由還原性脫氯作用將滴滴涕轉化為其主要代謝產物DDD。飛佈達的厭氧降解機制亦是還原性脫氯作用,可脫去其五碳環上的一個氯原子,生成其主要代謝產物chlordene。另外,在本研究中發現厭氧混合菌能夠經由環氧還原作用將地特靈轉化為阿特靈。可知在不同有機氯化烴殺蟲劑存在下,混合菌能發展出不同的轉化能力。
根據甲烷生成菌厭氧毒性分析之結果,混合菌產生甲烷的能力會受到培養溫度、碳源種類、電子接受者及抑制劑的存在而有所改變,有機氯化烴殺蟲劑的種類及濃度會影響甲烷的生成。根據實驗結果, 2 μg/mL的滴滴涕或飛佈達即能夠抑制甲烷的產生,顯示此兩種有機氯化烴殺蟲劑對甲烷生成菌毒性頗高。
由變性梯度凝膠電泳的結果顯示,添加有機氯化烴殺蟲劑之實驗組與未添加有機氯化烴殺蟲劑之控制組在菌群結構上明顯不同,添加有機氯化烴殺蟲劑之處理主要可觀察到五條不同的優勢亮帶表現,將這些亮帶進行核酸定序分析後發現,亮帶的核酸序列與Clostridium sp., Sedimentibacter saalensis, Acidaminobacter hydrogenoformans等細菌族群之16S rDNA序列有高達94 ~ 99 %的相似度。由本研究結果推論,亮帶所代表菌群與四種有機氯化烴殺蟲劑之存在有關。藉由本論文之實驗結果,除可更深一層瞭解有機氯化烴殺蟲劑與環境中微生物菌相的關連外,亦可作為厭氧環境下以微生物進行復育之參考。
zh_TW
dc.description.abstractAnaerobic microbial degradation is as an important mechanism for degrading organochlorine pesticides (OCPs) in low-oxygen environment. The present research was designed to investigate the potential of anaerobic degradation of OCPs by indigenous microorganisms of river sediment. The effects of several factors including OCP concentrations, incubation temperatures and carbon sources, on both OCPs degradation and metabolite formation were studied. Denaturing gradient gel electrophoresis (DGGE) was used for analyzing the bacterial community structures during OCP degradation periods.
Four OCPs, p,p’-DDT (1,1,1-trichloro-2,2-bis(4-chlorophenyl)-ethane), heptachlor (1,4,5,6,7,8,8-heptachloro-3a,4,7,7a- tetrahydro-4,7-methanoindene), aldrin (1,2,3,4,10,10-hexachloro-1,4,4a,5,8,8a-hexahydro-1,4-endo-exo-5,8- dimethanonaphthalene) and dieldrin (1,2,3,4,10,10-hexachloro-6,7-epoxy- 1,4,4a,5,6,7,8,8a-octahydro-1,4-endo-exo-5,8-dimetha-nonaphthalene), were chosen for this study. According to the results, these OCPs under anaerobic conditions were more easily degraded in a 2,3,4-trichlorobiphenyls-adapted mixed culture than those in sterilized medium. Incubation temperature was an important factor in determining the degradation rates of the OCPs. The degradation rates of OCPs were faster at 40℃ than other lower temperatures (10 ~ 30℃). Microbial degradation can proceed better in the presence of OCPs in the mixed culture, at concentrations between 0.5 to 10 μg/mL. However, the microbial degradation was inhibited by adding 50 or 100 μg/mL of OCPs to the culture. Based on the addition of different carbon sources (yeast extracts, sodium acetate, or glucose), anaerobic mixed cultures exhibited diverse abilities in the OCPs degradation. The highest degradation activity was observed in the case of culture augmented with yeast extract. In 2,3,4- trichlorobiphenyls-adapted mixed cultures, the degradation rates of DDT, heptachlor and dieldrin were slightly affected by the addition of electron acceptor such as NaHCO3 or Na2SO4, but strongly inhibited by NaNO3.
The evolution of metabolites occurred simultaneously with the degradation of OCPs. Metabolites of OCPs were identified by matching their retention times and mass spectra with authentic chemicals. Gas chromatography (GC) analysis indicated that p,p’-DDT and heptachlor were dechlorinated to p,p’-DDD and chlordene, respectively. Dieldrin was transformed to aldrin via epoxide reduction during the incubation periods. Anaerobic toxicity analysis (ATA) was carried out by measuring the production of methane from the anaerobic mixed culture. The production of methane was inhibited by the presence of p,p’-DDT and heptachlor, but slightly enhanced by the presence of aldrin and dieldrin.
DGGE analysis of the 16S rDNA fragments obtained from mixed cultures indicated that microbial community structure was shifted during the incubation periods. Cluster analysis showed that the microbial community structures were significantly different between the OCPs-treated and nontreated cultures. Partial sequences of some bands observed in OCPs-treated culture showed that these sequences were most similar to the groups of Clostridium sp., Acidaminobacter hydrogenoformans, and Sedimentibacter saalensis, separately. Moreover, according to their physiological features of these groups, these bacteria may play significant roles during the OCPs degradation periods.
en
dc.description.provenanceMade available in DSpace on 2021-06-13T17:29:02Z (GMT). No. of bitstreams: 1
ntu-93-D89623404-1.pdf: 3437052 bytes, checksum: 7f8c08724431e6ccb8a6356b107886d0 (MD5)
Previous issue date: 2004
en
dc.description.tableofcontents目錄
中文摘要 ………………………………………………………………… I
Abstract ………………………………………………………………........ III
目錄 ……………………………………………………………………… V
圖目錄 …………………………………………………………………… VII
表目錄 …………………………………………………………………… XIII
附錄目錄 ………………………………………………………………… XIV
第一章、前言 …………………………………………………………… 1
第二章、文獻回顧 ……………………………………………………… 8
第一節、有機氯化烴殺蟲劑基本介紹 ….………………………… 8
第二節、有機氯化烴殺蟲劑在水體環境中的流佈 ….…………… 10
第三節、有機氯化烴殺蟲劑之生物累積及毒性相關研究 ……… 13
第四節、環境中有機氯化烴殺蟲劑之降解 …….………………… 16
第五節、與有機氯化烴殺蟲劑降解相關之微生物菌群 ………… 18
第六節、本研究相關生物技術簡介 ……………………….……… 20
第三章、研究目的及內容 ……………………………………………… 28
第四章、材料與方法 …………………………………………………… 29
第一節、厭氧微生物降解測試 ………………..…………..……… 29
第二節、有機氯化烴殺蟲劑厭氧降解過程中微生物之菌群解析 41
第五章、結果與討論 …………………………………………………… 51
第一節、有機氯化烴殺蟲劑之厭氧降解測試 …..….………..…… 51
第二節、有機氯化烴殺蟲劑降解過程中,厭氧混合菌的菌相轉變 107
第六章、結論 …………………………………………………………… 141
參考文獻 ………………………………………………………………… 143
附錄 …………………………………………………………………..….. 154
dc.language.isozh-TW
dc.title有機氯化烴殺蟲劑厭氧微生物降解作用與其菌群結構之研究zh_TW
dc.titleStudy on biodegradation of organo-chlorinated insecticides and its anaerobic microbial communityen
dc.typeThesis
dc.date.schoolyear93-1
dc.description.degree博士
dc.contributor.coadvisor顏瑞泓
dc.contributor.oralexamcommittee李國欽,張碧芬,劉秀美,黃慶璨,林鴻淇
dc.subject.keyword厭氧降解,地特靈,阿特靈,飛佈達,滴滴涕,有機氯化烴殺蟲劑,變性梯度凝膠電泳.,zh_TW
dc.subject.keywordorganochlorine insecticides.,anaerobic degradation,denaturing gradient gel electrophoresis (DGGE),en
dc.relation.page169
dc.rights.note有償授權
dc.date.accepted2004-09-22
dc.contributor.author-college生物資源暨農學院zh_TW
dc.contributor.author-dept農業化學研究所zh_TW
顯示於系所單位:農業化學系

文件中的檔案:
檔案 大小格式 
ntu-93-1.pdf
  目前未授權公開取用
3.36 MBAdobe PDF
顯示文件簡單紀錄


系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved