請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/39440完整後設資料紀錄
| DC 欄位 | 值 | 語言 |
|---|---|---|
| dc.contributor.advisor | 張樹成(Shu-Cheng Chang) | |
| dc.contributor.author | Jung-Sheng Lu | en |
| dc.contributor.author | 呂融昇 | zh_TW |
| dc.date.accessioned | 2021-06-13T17:28:34Z | - |
| dc.date.available | 2011-07-26 | |
| dc.date.copyright | 2011-07-26 | |
| dc.date.issued | 2011 | |
| dc.date.submitted | 2011-07-13 | |
| dc.identifier.citation | [1] R. Schoen and S.-T. Yau, Lectures on differential geometry, Conference Proceedings and Lecture
Notes in Geometry and Topology, I, International Press, Cambridge, MA, 1994. Lecture notes prepared by Wei Yue Ding, Kung Ching Chang [Gong Qing Zhang], Jia Qing Zhong and Yi Chao Xu; Translated from the Chinese by Ding and S. Y. Cheng; Preface translated from the Chinese by Kaising Tso. MR1333601 (97d:53001) pp1∼11,155∼181 [2] Manfredo Perdig˜ao do Carmo, Riemannian geometry, Mathematics: Theory & Applications, Birkh‥auser Boston Inc., Boston, MA, 1992. Translated from the second Portuguese edition by Francis Flaherty. MR1138207 (92i:53001) [3] Richard L. Bishop and Richard J. Crittenden, Geometry of manifolds, AMS Chelsea Publishing, Providence, RI, 2001. Reprint of the 1964 original. MR1852066 (2002d:53001) [4] Isaac Chavel, Eigenvalues in Riemannian geometry, Pure and Applied Mathematics, vol. 115, Academic Press Inc., Orlando, FL, 1984. Including a chapter by Burton Randol; With an appendix by Jozef Dodziuk. MR768584 (86g:58140) [5] Peter Li and Shing Tung Yau, Estimates of eigenvalues of a compact Riemannian manifold, Geometry of the Laplace operator (Proc. Sympos. Pure Math., Univ. Hawaii, Honolulu, Hawaii, 1979), Proc. Sympos. Pure Math., XXXVI, Amer. Math. Soc., Providence, R.I., 1980, pp. 205– 239. MR573435 (81i:58050) [6] David Gilbarg and Neil S. Trudinger, Elliptic partial differential equations of second order, Classics in Mathematics, Springer-Verlag, Berlin, 2001. Reprint of the 1998 edition. MR1814364 (2001k:35004) pp33∼36 [7] Lawrence C. Evans, Partial differential equations, 2nd ed., Graduate Studies in Mathematics, vol. 19, American Mathematical Society, Providence, RI, 2010. MR2597943 (2011c:35002)pp326∼344 [8] Marcel Berger, Paul Gauduchon, and Edmond Mazet, Le spectre d’une vari′et′e riemannienne, Lecture Notes in Mathematics, Vol. 194, Springer-Verlag, Berlin, 1971 (French). MR0282313 (43 #8025) | |
| dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/39440 | - |
| dc.description.abstract | 在一般的歐氏空間上,我們已經能清楚的把熱核表達出來。但在較為複雜的黎曼曲面上則難以表達。在我的文章中,我將會分為在完備而不緊緻的黎曼流型上以及完備且邊界是凸的黎曼流型上分別討論。在這兩種情況上,藉由得到相同的梯度估計,以此推導出相同的哈拿估計,在由此二估計,推出相同型式的熱核上界。另外,藉由畢社比較定理,估計出在此二種情況中相同型式的熱核下界。最後,利用熱的上界及下界可導出在拉普拉斯運算下的特徵值下界、以及格林函數的估計。 | zh_TW |
| dc.description.abstract | In the common Euclidean spaces, we can explicitly express the form of heat kernel.But in the more complicated Riemannian manifolds, it is hard to express. In my survey, I will discuss in two cases, first, in complete noncompact manifold, second, in compactmanifold with convex boundary. In this two cases, we can get the same form of gradient estimate and Harnack estimate, and by these two estimates, we can get the same form ofheat kernel upper bound in these two cases. Also, by Bishop volume comparison, we can get the same form of heat kernel upper bound in these two cases. With heat kernelestimates, we can estimate the lower bound of eigenvalue of Laplace operator and Green function. | en |
| dc.description.provenance | Made available in DSpace on 2021-06-13T17:28:34Z (GMT). No. of bitstreams: 1 ntu-100-R98221025-1.pdf: 485117 bytes, checksum: 1bae762cf9cc0f4228d1216773ddf3c2 (MD5) Previous issue date: 2011 | en |
| dc.description.tableofcontents | 1. Introduction 2
2. Gradient Estimate and Harnack Inequality 4 2.1. Gradient Estimate on Compact Manifold 6 2.2. Gradient Estimate on Complete Manifold 14 2.3. Harnack Inequality on Complete Manifold 15 2.4. Harnack Inequality on Compact Manifold 16 3. The Upper Bound of the Heat Kernel 18 3.1. Heat Kernel Estimate for Upper Bound on Complete Manifold 24 3.2. Heat Kernel Estimate for Upper Bound on Compact Manifold 28 4. The Lower Bound of the Heat Kernel 29 4.1. Bishop Volume Comparison 30 4.2. Heat Kernel Estimate for Lower Bound on Complete Manifold 31 4.3. Heat Kernel Estimate for Lower Bound on Compact Manifold 37 5. Two Applications of Heat Kernel Estimate 39 5.1. Eigenvalue Estimate for Lower Bound 40 5.2. Green’s Function Estimate 43 References 45 | |
| dc.language.iso | en | |
| dc.subject | 熱核 | zh_TW |
| dc.subject | heat kernel | en |
| dc.title | 黎曼流型上的熱核估計 | zh_TW |
| dc.title | Heat kernel estimate on Riemannian manifolds | en |
| dc.type | Thesis | |
| dc.date.schoolyear | 99-2 | |
| dc.description.degree | 碩士 | |
| dc.contributor.oralexamcommittee | 王藹農(Ai-Nung Wang),陳瑞堂(Jui-Tang Chen) | |
| dc.subject.keyword | 熱核, | zh_TW |
| dc.subject.keyword | heat kernel, | en |
| dc.relation.page | 46 | |
| dc.rights.note | 有償授權 | |
| dc.date.accepted | 2011-07-13 | |
| dc.contributor.author-college | 理學院 | zh_TW |
| dc.contributor.author-dept | 數學研究所 | zh_TW |
| 顯示於系所單位: | 數學系 | |
文件中的檔案:
| 檔案 | 大小 | 格式 | |
|---|---|---|---|
| ntu-100-1.pdf 未授權公開取用 | 473.75 kB | Adobe PDF |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。
