Skip navigation

DSpace

機構典藏 DSpace 系統致力於保存各式數位資料(如:文字、圖片、PDF)並使其易於取用。

點此認識 DSpace
DSpace logo
English
中文
  • 瀏覽論文
    • 校院系所
    • 出版年
    • 作者
    • 標題
    • 關鍵字
    • 指導教授
  • 搜尋 TDR
  • 授權 Q&A
    • 我的頁面
    • 接受 E-mail 通知
    • 編輯個人資料
  1. NTU Theses and Dissertations Repository
  2. 工學院
  3. 應用力學研究所
請用此 Handle URI 來引用此文件: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/39439
完整後設資料紀錄
DC 欄位值語言
dc.contributor.advisor李世光(Chih-Kung Lee)
dc.contributor.authorYou-Chia Changen
dc.contributor.author張祐嘉zh_TW
dc.date.accessioned2021-06-13T17:28:33Z-
dc.date.available2004-11-23
dc.date.copyright2004-11-23
dc.date.issued2004
dc.date.submitted2004-10-12
dc.identifier.citationAdamson, A. W., Physical Chemistry of Surfaces, (John Wiley & Sons, Inc., New York, 1990).
Barthlott, W. and Neinhuis, C., “Purity of the Sacred Lotus, or Escape from Contamination in Biological Surfaces,” Planta, 202, 1 (1997).
Bernhard, C. G., “Structural and Functional Adaptation in a Visual System,” Endeavor, 26, 79 (1967).
Barrat, J. L., and Bocquet, L., “Large Slip Effect at a Nonwetting Fluid-Solid Interface,” Phys. Rev. Lett., 82, 4671 (1999).
Bico, J., Marzolin, C. and Quere, D., “Pearl Drops,” Europhys. Lett., 47, 220 (1999).
Bico, J., Thiele, U. and Quere, D., “Wetting of Textured Surfaces,” Colloids surf., 206, 41 (2002).
Blossey, R. and Bosio, A., “Contact Line Deposits on cDNA microarrays: A Twin-Spot Effect,” Langmuir, 18, 2952 (2002).
Blossey, R., “Self-cleaning surfaces – virtual realities,” Nat. Mater., 2, 301 (2003).
Born, M. and Wolf, E., Principles of Optics, (Cambridge University Press, Cambridge, UK, 2002).
Brundrett, D., Glytsis, E. N. and Gaylord, T. K., “Homogeneous Layer Models for High-spatial-frequency Dielectric Surface-relief Gratings: Conical Diffraction and Antireflection Designs,” Appl. Opt., 33, 2695 (1994).
Cassie, A.B. D. and Baxter, “Wettability of Porous Surfaces,” S., Trans. Faraday Soc., 40, 546 (1944).
Cescato, L. H., Gluch, E. and Streibl, N., “Holographic Quarterwave Plates,” Appl. Opt., 29, 3286 (1990).
Chikuni, M., Kojima, E., Kitamura, A., Shimohigoshi, M. and Watanabe T., “Light-induced Amphiphilic surfaces,” Nature, 388, 431 (1997).
Chen, W., Fadeev, Y., Hsieh, M. C., Oner, D., Youngblood, J. and McCarthy, T. J., “Ultra-hydrophobic and Ultralyophobic Surfaces: Some Comments and Examples,” Langmuir, 15, 3395 (1999).
Chou, S. Y., Krauss, P. R. and Renstrom P. J., “Imprint of sub-25nm vias and trenches in polymers,” Appl. Phys. Lett., 67, 3114 (1995).
Denbigh, K., The Principles of Chemical Equilibrium, (Cambridge University Press, New York, New York, 1981).
Duparre, A., Flemming, M., Steinert, J. and Reihs, K., “Optical coatings with enhanced roughness for ultra-hydrophobic, low-scatter applications,” Appl. Opt., 41, 3294 (2002).
Enger, R. C. and Case, S. K., “Optical elements with ultrahigh spatial-frequency surface corrugations,” Appl. Opt., 22, 3220 (1983).
Erbil, H. Y., Demirel, A. L., Avci, Y. and Mert O., “Transformation of a Simple Plastic into a Superhydrophobic Surface,” Science, 299, 1377 (2003).
Extrand, C. W., “Model for Contact Angles and Hysteresis on Rough and Ultraphobic Surfaces,” Langmuir, 18, 7991 (2002).
Feynman, R. P., Leighton, R. B. and Sands, M., The Feynman Lectures on Physics, Vol. 1, (Addison-Wesley Publishing Company, Massachusetts, 1963).
Gaylord, T. K. and Moharam, M. G., “Analysis and Applications of Optical Diffraction by Gratings,” Proc. IEEE, 73, 894 (1985).
Glaser, T., Schroter, S., Bartelt, H., Fuchs, H. J., and Kley, E. B., “Diffractive Optical Isolator Made of High-efficiency Dielectric Gratings Only,” Appl. Opt., 41, 3558 (2002).
Goodman, J., Introduction to Fourier Optics, (McGraw-Hill, New York, New York, 1996).
Griffiths, D. J., Introduction to Quantum Mechanics, (Prentice Hall International, Englewood Cliffs, New Jersey, 1995).
Griffiths, D. J., Introduction to electrodynamics, (Prentice Hall International, Upper Saddle River, New Jersey, 1999).
Hadobas, K., Kirsch, S., Carl, A., Acet, M. and Wassermann, E. F., “Reflection properties of nanostructure-arrayed silicon surfaces,” Nanotechnology, 11, 161 (2000).
He, B., Patankar, N. A. and Lee, L., “Multiple equilibrium Droplet Shapes and Design Criterion for Rough Hydrophobic Surfaces,” Langmuir, 19, 4999 (2003).
Kanamori, Y., Sasaki, M. and Hane, K., “Broadband antireflection gratings fabricated upon silicon substrates,” Opt. Lett., 24, 1422 (1999).
Kim, J. and Kim, C. J., “Nanostructured Surfaces for Dramatic Reduction of Flow resistance in Droplet-based Microfluidics,” IEEE Conference on MEMS, Las Vegas, NV, 479 (2002).
Krupenkin, T. N., Taylor, J. A., Schneider, T. M. and Yang, S., “From Rolling Ball to Complete Wetting: The Dynamic Tuning of Liquids on Nanostructured Surfaces,” Langmuir, 20, 3824 (2004).
Lalanne, L., Astilean, S., Chavel, P., Cambril, E. and Launois, H., “Design and Fabrication of Blazed-binary Diffractive Elements with Sampling Periods Smaller than the Structural Cutoff,” J. Opt. Soc. Am. A, 16, 1143 (1999).
Lalanne, L. and Hutley, M., “Artificial Media Optical Properties—Subwavelength Scale,” Encyclopedia of Optical Engineering, (Marcel Dekker, Inc., New York, 2003).
Lalanne, P. and Morris, G. M., “Antireflection behavior of silicon subwavelength periodic structure for visible light,” Nanotechnology, 8, 53 (1997).
Landua, L. D. and Lifshitz, E. M., Fluid Mechanics, (Addison-Wesley, Inc., London, 1959).
Lee, C. C., Thin Film Optics and Coating Technology, (Yi Hsien, Publishing Co., Taipei, Taiwan, 2002), (in Chinese).
Lundgren M., Allan, N. and Cosgrove, T., “Molecular Dynamics Study of Wetting of a Pillar Surface,” Langmuir, 19, 7127 (2003).
Mait, J. N., Prather, D. W. and Mirotznik, M. S., “Binary Subwavelength Diffractive-lens Design,” Opt. Lett., 23, 1343 (1998).
Marmur, A., “Wetting on Hydrophobic Rough Surfaces: To Be Heterogeneous for Not To Be,” Langmuir, 19, 8343 (2003).
Moharam, M. G. and Gaylord, T. K., “Diffraction analysis of dielectric surface-relief gratings,” J. Opt. Soc. Am., 72, 1385 (1982).
Nakajima, A., Hashimoto, K. and Watanabe, T., “Transparent Superhydrophobic Thin Films with Self-Cleaning Properties,” Langmuir, 16, 7044 (2000).
Nakajima, A., Hashimoto, K. and Watanabe, T., “Recent Studies on Super-hydrophobic films,” Monatshefte fur Chemie, 132, 31 (2001).
Oner, D. and McCarthy, T. J., “Ultrahydrophobic Surface. Effects of Topography Length Scales on Wettability,” Langmuir, 16, 7777 (2000).
Ono, Y., Kimura, Y., Ohta, Y. and Nishida, N., “Antireflection effect in ultrahigh spatial-frequency holographic relief gratings,” Appl. Opt., 26, 1142 (1987).
Patankar, N. A., “On the Modeling of Hydrophobic Contact Angles on Rough Surfaces,” Langmuir, 19, 1249 (2003).
Pedrotti, F. L. and Pedrotti, L. S., Introduction to optics, (Prentice Hall International, Upper Saddle River, New Jersey, 1993).
Quere, D., “Rough Ideas on Wetting,” Physica A., 313, 32 (2002).
Raguin, D. and Morris, G., “Analysis of Antireflection-Structured Surfaces with Continuous One-Dimensional Surface Profiles,” Appl. Opt., 32, 2582 (1993).
Reid, C. E., Chemical Thermodynamics, (McGraw-Hill Publishing Company, Singapore, 1990).
Ren, S. L., Yang, S. R. and Zhao, Y. P., “Nano-Tribological Study on a Super-Hydrophobic Film Formed on Rough Aluminum Substrates,” Acta Mechanica Sinica, 20, 159 (2004).
Richard, D. and Quere, D., “Bouncing of Water Drops,” Europhys. Lett., 50, 769 (2000).
Rowlinson, J. S. and Widom, B., Molecular Theory of Capillarity, (Oxford University Press, New York, 1982).
Roura, P. and Fort, J., “Comment on Effects of the Surface Roughness on Sliding Angles of Water Droplets on Superhydrophobic Surfaces,” Langmuir, 18, 566 (2002).
Shibuichi, S., Onda, T., Satoh, N. and Tsujii, K., “Super Water-Repellent Surfaces Resulting from Fractal Structure,” J. Phys. Chem., 100, 19512 (1996).
Wenzel, R. N., “Surface Roughness and Contact Angle,” Ind. Eng. Chem., 28, 988 (1936).
Xia, Y. and Whitesides, G. M., “Soft lithography,” Annu. Rev. Mater. Sci., 28, 153 (1998).
Yeh, P., Optical Waves in Layered Media, (John Wiley & Sons, Inc., New York, 1991).
Yu, Z., “Subwavelength Gratings and Applications”, Ph. D. Thesis, Princeton University (2003a).
Yu, Z., Gao, H., Wu, W., Ge, H. and Chou, S. Y., “Fabrication of large area subwavelength antireflection structures on Si using trilayer resist nanoimprint lithography and liftoff,” J. Vac. Sci. Technol. B, 21, 2874 (2003b).
dc.identifier.urihttp://tdr.lib.ntu.edu.tw/jspui/handle/123456789/39439-
dc.description.abstract包含蓮葉在內的某些具有結構之表面展現出非常特別的可溼性。這些的表面的接觸角大於140度,因些被稱超疏水表面。它們最引人注目的是所謂的自清潔效應。另一方面,有另一類的具結構表面展現出抗反射的效果。而這一類的表面,其結構必須是週期性的並且在次波長這一個等級。
本論文中,我們提出了一個新的想法,認為因為它們都是由表面結構造成的,所以抗反射和超疏水的特性是可以被結合在一起的。這樣的結合能產生許多新的應用。例如,具有自清潔性的抗反射表面可以用在太陽能電池上來改善效率。而透明的超疏水表面可以用於汽車的擋風玻璃或是窗戶上。
根據次波長結構光學及可溼性的知識,我們認為若在本身為疏水的材料上設計外形為連續的次波長週期結構,將可望結合這兩個效應。其中我們使用等效折射率理論和嚴格耦合波理論來分析抗反射的行為,而可溼性則利用最小總表面能的方法進行分析。
實驗上,我們採用全像微影術、電漿蝕刻以及旋鍍鐵氟龍的方式來製作試片,並量測該試片的反射頻譜和接觸角。在本論文中製作的結構,量測到的頻譜和模擬有一定的吻合度。雖然在規則的一維結構上,我們並未觀測到超疏水現象,但卻在過度蝕刻的不規則一維結構上成功地觀察到。我們從實驗結果推論,認為一維結構並不適合結合抗反射及超疏水效應。但實驗顯示適當的二維結構很有可能達成這兩個效應的結合。
zh_TW
dc.description.abstractSome structured surfaces such as lotus leaves show very special wettability behavior. They are called super-hydrophobic surfaces since the contact angles exceed 140 degree. Most attractive property of super-hydrophobic surface is the self-cleaning effect. On the other hand, there is another group of structured surfaces which shows antireflective (AR) effect. For this kind of surfaces, the structure is periodic and at subwavelength scale.
In this thesis, we propose a new idea – the AR and super-hydrophobic effects can be combined together since they both attribute to the existence of surface structure. The combination can produce new applications. For example, a “self-cleaning” AR surface can be used on solar cells to improve efficiency. A “transparent” super-hydrophobic surface can be made on windshields or windows.
From the knowledge of subwavelength optics and wettability, we conclude that the combination is possible by imparting a periodic subwavelength structure with continuous profile to an intrinsically hydrophobic material. The AR behavior is analyzed by effective medium theory (EMT) and rigorous coupled-wave approach (RCWA). The wettability is analyzed by minimizing the total surface energy.
We fabricate desired structured surfaces by holographic lithography, plasma etching and Teflon coating. The performance is evaluated by measuring the reflectance spectrum and contact angle. For the 1D structure fabricated in this thesis, the measured reflectance spectrum matches the simulation. Although super-hydrophobic effect is not observed on regular 1D structure, it is observed super-hydrophobicity on over-etched irregular 1D structure. We conclude from experimental results that 1D structure is not suitable for the combination of AR and super-hydrophobic effects. The experiment indicates the combination is very promising by proper 2D structures.
en
dc.description.provenanceMade available in DSpace on 2021-06-13T17:28:33Z (GMT). No. of bitstreams: 1
ntu-93-R91543009-1.pdf: 3681424 bytes, checksum: 953857b0ec4f32269019d5a3e1f25183 (MD5)
Previous issue date: 2004
en
dc.description.tableofcontentsTable of Contents
誌謝 I
ABSTRACT IV
摘要 VI
TABLE OF CONTENTS VII
LIST OF FIGURES IX
LIST OF TABLES XIV
CHAPTER 1 INTRODUCTION 1
1.1 MOTIVATION 1
1.2 REVIEW OF EXISTED TECHNOLOGIES 6
1.2.1 Anti-reflection (AR) effect 6
1.2.2 Super-hydrophobic surface 15
1.3 THESIS ORGANIZATION 26
CHAPTER 2 THEORY 28
2.1 SUBWAVELENGTH OPTICS 28
2.1.1 Effective medium theory (EMT) 32
2.1.2 Design of AR surfaces by subwavelength gratings 45
2.2 SURFACE TENSION 56
2.2.1 Basic laws of surface tension 57
2.2.2 Wettability on structured surfaces 64
CHAPTER 3 SIMULATION AND CALCULATION 82
3.1 OPTICAL BEHAVIORS OF SUBWAVELENGTH GRATINGS SIMULATED BY RCWA 82
3.1.1 Simulation of AR behavior for binary gratings 83
3.1.2 Simulation of AR behavior for sinusoidal gratings 90
3.2 WETTABILITY CALCULATION OF SINUSOIDAL GRATINGS 95
CHAPTER 4 EXPERIMENTS 97
4.1 FABRICATION 97
4.1.1 The working principle of holographic lithography 99
4.1.2 Fabrication on silicon substrate 101
4.1.3 Fabrication on glass substrate 114
4.2 MEASUREMENT OF AR AND HYDROPHOBIC EFFECTS 118
4.2.1 Measurement of reflectance spectrum 118
4.2.2 Measurement of contact angle 121
CHAPTER 5 DISCUSSIONS AND FUTURE WORKS 124
5.1 DISCUSSIONS 124
5.1.1 Contact line continuity 124
5.1.2 Form birefringence 126
5.1.3 Combination of AR and super-hydrophobic effects 126
5.1.4 Fabrication of 2D subwavelength gratings 127
5.1.5 Contact angle hysteresis 128
5.2 FUTURE WORKS 129
CHAPTER 6 CONCLUSIONS 131
APPENDIX I DERIVATION OF ONE-DIMENSIONAL EMT FROM BLOCH WAVES 133
APPENDIX II THE WKB APPROXIMATION 138
REFERENCE 140
dc.language.isoen
dc.subject次波長結構zh_TW
dc.subject抗反射zh_TW
dc.subject超疏水表面zh_TW
dc.subject蓮花效應zh_TW
dc.subjectsuper-hydrophobic surfaceen
dc.subjectsubwavelength structureen
dc.subjectantireflectionen
dc.subjectlotus effecten
dc.title具抗反射及疏水特性之奈米結構表面設計與先導性製程研究zh_TW
dc.titleDesign and Preliminary Fabrication of Nanostructured Surface for Anti-reflective and Hydrophobic Effecten
dc.typeThesis
dc.date.schoolyear93-1
dc.description.degree碩士
dc.contributor.oralexamcommittee顏家鈺(Jia-Yush Yen),葉吉田(Jyi-Tyan Yeh),吳文中(Wen-Jong Wu),李正中(Cheng-Chung Lee)
dc.subject.keyword抗反射,超疏水表面,蓮花效應,次波長結構,zh_TW
dc.subject.keywordlotus effect,subwavelength structure,super-hydrophobic surface,antireflection,en
dc.relation.page145
dc.rights.note有償授權
dc.date.accepted2004-10-13
dc.contributor.author-college工學院zh_TW
dc.contributor.author-dept應用力學研究所zh_TW
顯示於系所單位:應用力學研究所

文件中的檔案:
檔案 大小格式 
ntu-93-1.pdf
  未授權公開取用
3.6 MBAdobe PDF
顯示文件簡單紀錄


系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved