請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/39422完整後設資料紀錄
| DC 欄位 | 值 | 語言 |
|---|---|---|
| dc.contributor.advisor | 王如意(Ru-Yih Wang) | |
| dc.contributor.author | Tsung-Yi Pan | en |
| dc.contributor.author | 潘宗毅 | zh_TW |
| dc.date.accessioned | 2021-06-13T17:28:09Z | - |
| dc.date.available | 2004-11-11 | |
| dc.date.copyright | 2004-11-11 | |
| dc.date.issued | 2004 | |
| dc.date.submitted | 2004-11-01 | |
| dc.identifier.citation | 1. 王如意、李如晃:「颱風逐時區域平均雨量最佳化估計之研究」,農業工程學報,第39卷第3期,13-30,1993。
2. 王如意、易任:應用水文學,上下冊,國立編譯館出版,茂昌圖書有限公司,1979。 3. 王如意、張啟麟:「狀態空間模式之研究及其應用於臺灣河川統量之演算及預測」,國立臺灣大學水工試驗所研究報告第75號,1985。 4. 王如意等:「台北防洪整體檢討計畫(一)、(二)、(三)」,台灣大學農業工程學研究所,1996-1998。 5. 柯文俊:「由狀態空間系統萃取結構系統矩陣與模態參數」,國立臺灣大學造船及海洋工程研究所博士論文,2002。 6. 陳燕慶、鹿浩:神經網路理論及其在控制工程中的應用,儒林圖書有限公司,1992。 7. 焦李成:神經網路系統理論,儒林圖書有限公司,1991。 8. 葉怡成:類神經網路模式應用與實作,儒林圖書有限公司,1994。 9. 鄭士仁:「降雨效應與土地利用改變對逕流歷線特性之影響」,國立臺灣大學生物環境系統工程學研究所博士論文,2001。 10. 劉豹:現代控制理論,科技圖書股份有限公司出版,1992。 11. Abrahart, R. J. and See, L., “Comparing neural network and autoregressive moving average techniques for the provision of continuous river flow forecasts in two contrasting catchments,” Hydrological Processes, 14, 2157-2172, 2000. 12. Aoki, M., State Space Modeling of Time Series, Springer-Verlag, 1990. 13. Atiya, A. and Parlos, A. G., “Identification of nonlinear dynamics using a general spatio-temporal network,” Mathematical and Computer Modelling, 21(1/2), 53-71, 1995. 14. Atiya, A. F., El-Shoura, S. M., Shaheen, S. I., and El-Sherif, M. S., “A comparison between neural-network forecasting techniques-case study: river flow forecasting,” IEEE Transactions on Neural Networks, 10(2), 402-409, 1999. 15. Atiya, A. F. and Parlos, A. G., “New results on recurrent network training: unifying the algorithms and accelerating convergence,” IEEE Transactions on Neural Networks, 11(3), 697-709, 2000. 16. Baruch, I., Thomas, F., Garrido, R., and Gortcheva, E., “A hybrid multimodel neural network for nonlinear systems identification,” IJCNN’99, International Joint Conference on Neural Networks, Washington D. C., USA, July 10-16, 1999. 17. Baruch, I., Flores, J. M., Thomas, F., and Gortcheva, E., “A multimodel recurrent neural network for systems identification and control,” INNS-IEEE Conference on Neural Networks, Washington D. C., USA, July 14-19, 2001. 18. Bastin, G., Lorent, B., Duue, C. and Gevers, M., “Optimal estimation of the average rainfall and optimal selection of raingauge locations,” Water Resour. Res., 20(4), 463-470, 1984. 19. Blanco, A., Delgado, M., and Pegalajar, M. C., “A genetic algorithm to obtain the optimal recurrent neural nerwork,” International Journal of Approximate Reasoning, 23, 67-83, 2000. 20. Bodri, L. and Čermák, V., “Prediction of extreme precipitation using a neural network: application to summer flood occurrence in Moravia,” Advances in Engineering Software, 31, 311-321, 2000. 21. Cameron, D., Kneale, P., and See, L., “An evaluation of a traditional and a neural net modeling approach to flood forecasting for an upland catchment,” Hydrological Processes, 16, 1033-1046, 2002. 22. Campolo, M., Andreussi, P., and Soldati, A., “River flood forecasting with a neural network model,” Water Resources Research, 35(4), 1191-1197, 1999. 23. Chang, F. J. and Hwang, Y. Y., “A self-organization algorithm for real-time flood forecast,” Hydrological Processes, 13, 123-38, 1999. 24. Chang, F. J. and Chen, Y. C., “A counterpropagation fuzzy-neural network modeling approach to real time streamflow prediction,” Journal of Hydrology, 245, 153-164, 2001. 25. Chang, F. J., Liang J. M., and Chen Y. C., “Flood forecasting using radial basis function neural networks,” IEEE Transactions on Systems, Man, and Cybernetics-Part C: Applications and Reviews, 31(4), 530-535, 2001. 26.Chang, F. J., Chang, L. C., and Huang, H. L., “Real-time recurrent learning neural network for stream-flow forecasting,” Hydrological Processes, 16, 2577-2588, 2002. 27. Chang, F. J. and Chen, Y. C., “Estuary water-stage forecasting by using radial basis function neural network,” Journal of Hydrology, 270, 158-166, 2003. 28. Chang, L. C., Chang, F. J., and Chiang Y. M., “A two-step-ahead recurrent neural network for stream-flow forecasting,” Hydrological Processes, 18, 81-92, 2004. 29. Chang, W. F. and Mak, M. W., “A conjugate gradient learning algorithm for recurrent neural networks,” Neurocomputing, 24, 173-189, 1999. 30. Chen, C. T., Linear System Theory and Design, Oxford, 1999. 31. Chow, V. T., et al., Handbook of Applied Hydrology, McGraw-Hill Book Company, 1964. 32. Chow, V. T., Maidment, D. R. and Mays, L. W., Applied Hydrology, McGraw-Hill Book Company, 1988. 33. Connor, J. T., Martin, R. D., and Atlas, L. E., “Recurrent neural networks and robust time series prediction,” IEEE Transactions on Neural Networks, 5(2), 240-254, 1994. 34. Coulibaly, P., Anctil, F., and Bobée, B., “Daily reservoir inflow forecasting using artificial neural networks with stopped training approach,” Journal of Hydrology, 230, 244-257, 2000a. 35. Coulibaly, P., Anctil, F., Rasmussen, P., and Bobée, B., “A recurrent neural networks approach using indices of low-frequency climatic variability to forecast regional annual runoff,” Hydrological Processes, 14, 2755-2777, 2000b. 36. Delgado, A., Kambhampati, C., and Warwick, K., “Dynamic recurrent neural network for system identification and control,” IEE Proceedings-Control Theory and Applications, 142(4), 307-314, 1995. 37. Dooge, J. C. I., “A general theory of the unit hydrograph,” Journal of Geophysical Research, 64(1), 241-256, 1959. 38. Elman, J. L., “Finding structure in time,” Cognitive Science, 14, 179-211, 1990. 39. Elshorbagy, A., Simonovic, S. P., and Panu, U. S., “Estimation of missing streamflow data using principles of chaos theory,” Journal of Hydrology, 255, 123-133, 2002. 40. French, M. N., Krajewski, W. F., and Cuykendall, R. R., “Rainfall forecasting in space and time using a neural network,” Journal of Hydrology, 137, 1-31, 1992. 41. Georgakakos, A. P., “A state-space model for hydrologic river routing,” Water Resources Research, 26(5), 827-838, 1990. 42. Golob, R., Štokelj, T., and Grgič, D., “Neural-network-based water inflow forecasting,” Control Engineering Practice, 6, 593-600, 1998. 43. Gong, N., Denoeux, T., and Bertrand-Krajewski, J. L., “Neural networks for solid transport modeling in sewer systems during storm events,” Water Science and Technology, 33(9), 85-92, 1996. 44. Hamdan, A. M. A., “An investigation of the significance of singular value decomposition in power system dynamics,” Electrical Power and Energy Systems, 21, 417-424, 1999. 45. Hankan, E. and Ata M., “Design sensitivity analysis of structures based upon the singular value decomposition,” Computer Methods in Applied Mechanics and Engineering, 191, 3459-3476, 2002. 46. Havenner, A. and Leng, Z., “Improved estimates of the parameters of state space time series models,” Journal of Economic Dynamics and Control, 20, 767-789, 1996. 47. Ho, S. L., Xie, M., and Goh, T. N., “A comparative study of neural network and Box-Jenkins ARIMA modeling in time series prediction,” Computers & Industrial Engineering, 42, 371-375, 2002. 48. Hornik, K., Stinchcombe, M., and White, H., “Multilayer Feedforward Networks are Universal Approximators.” Neural Networks, 2, 359-366, 1989. 49. Hsieh, L. S. and Wang, R. Y., “A semi-distributed parallel-type linear reservoir rainfall-runoff model and its application in Taiwan,” Hydrological Processes, 13(8), 1247-1268, 1999. 50. Hsu, K. L., Gupta, H. V., Gao, X., and Sorooshian, S., “Estimation of physical variables from multichannel remotely sensed imagery using a neural network: application to rainfall estimation,” Water Resources Research, 35(5), 1605-1618, 1999. 51. Hunt, K. J., Sbarbaro, D., Zbikowski, R., and Gawthrop P. J., “Neural networks for control system. a survey,” Automatica, 28(6), 1083-1112, 1992. 52. Jakeman, A. J., Littlewood, I. G., and Whitehead, P. G., “Computation of instantaneous unit hydrograph and identifiable component flows with application to two small upland catchments,” Journal of Hydrology, 117, 275-300, 1990. 53. Khalil, M., Panu, U. S., and Lennox, W. C., “Groups and neural networks based streamflow data infilling procedures,” Journal of Hydrology, 241, 153-176, 2001. 54. Kim, G. and Barros, A. P., “Quantitative flood forecasting using multisensor data and neural networks,” Journal of Hydrology, 246, 45-62, 2001. 55. Kohonen, T., “An introduction to neural computing,” Neural Networks, 1(1), 3-16, 1988. 56. Krishnaswamy, J., Lavine, M., Richter, D. D., and Korfmacher, K., “Dynamic modeling of long-term sedimentation in the Yadkin River basin,” Advances in Water Resources, 23, 881-892, 2000. 57. Kung, S. Y., “A new identification and model reduction algorithm via singular value decomposition,” 12th Asilomar Conference on Circuits, Systems and Computers, Pacific Grove, Calif., USA, 1974. 58. Kuschewski, J. G., Hui, S., and Zak, S. H., “Application of aeedforward neural networks to dynamical system identification and control,” IEEE Transactions on Control Systems Technology, 1(1), 37-49, 1993. 59. Lebel, T., Bastin, G., Obled, C. and Creutin, J. D., “On the accuracy of areal rainfall estimation: a case study,” Water Resources Research, 23(11), 2123-2134, 1987. 60. Lebel, T. and Kottegoda, N. T., “Rainfall network design through comparative kriging method,” Hydrological Sciences Journal des Sciences Hydrologiques, 36(3), 1991. 61. Liong, S. Y., Lim, W. H., Kojiri, T., and Hori, T., “Advance flood forecasting for flood stricken Bangladesh with a fuzzy reasoning method,” Hydrological Processes, 14, 431-448, 2000. 62. Lippmann, R. P., “An introduction to computing with neural nets,” IEEE ASSP Magazine, 4-22, 1987. 63. Littlewood, I.G. and Jakeman, A.J., “A new method of rainfall-runoff modelling and its applications in catchment hydrology,” In: Environmental Modelling, P. Zannetti (Ed.), Computational Mechanics Publications, Southampton, 2, 143-171, 1994. 64. Liu, C. L. and Lin, S. C., “Artificial neural network forecasting for chaotic dynamical process in hydrology,” Hydroinformatics’ 98, Rotterdam, 1998. 65. Luk, K. C., Ball, J. E., and Sharma, A., “A study of optimal model lag and spatial inputs to artificial neural network for rainfall forecasting,” Journal of Hydrology, 227, 56-65, 2000. 66. Luk, K. C., Ball, J. E., and Sharma, A., “An application of artificial neural networks for rainfall forecasting,” Mathematical and Computer Modelling, 33, 683-693, 2001. 67. Mak, M. W., Ku, K. W., and Lu, Y. L., “On the improvement of the real time recurrent learning algorithm for recurrent neural networks,” Neurocomputing, 24, 13-36, 1999. 68. Mandic, D. P. and Chambers, J. A., “A normalized real time recurrent learning algorithm,” Signal Processing, 80, 1909-1916, 2000. 69. Moonen, M., Moor, B. D., Vandenberghe, L., and Vandewalle, J., “On- and off-line identification of linear state-space models,” International Journal of Control, 49(1), 219-232, 1989. 70. Narendra, K. S. and Parthasarathy, K., “Identification and control of dynamical systems using neural networks,” IEEE Transactions on Neural Networks, 1(1), 4-27, 1990. 71. Nash, J. E., “The form of the instantaneous unit hydrograph,” IAHS Publications, 45, 112-121, 1957. 72. Parlos, A. G., Rais, O. T., and Atiya, A. F., “Multi-step-ahead prediction using dynamic recurrent neural networks,” Neural Networks, 13, 765-786, 2000. 73. Pham, D. T. and Karaboga, D., “Training Elman and Jordan networks for system identification using genetic algorithms,” Artificial Intelligence in Engineering, 13, 107-117, 1999. 74. Pham, D. T. and Oh, S. J., “Identification of plant inverse dynamics using neural networks,” Artificial Intelligence in Engineering, 13, 309-320, 1999. 75. Pool, M. H. and Meuwissen, T. H. E., “Reduction of the number of parameters needed for a polynomial random regression test day model,” Livestock Production Science, 64, 133-145, 2000. 76. Purves, D., et al., Neuroscience, Sinauer Associates, 2001. 77. Qian, S. S., “Water quality model structure identification using dynamic linear modeling: river cam case study revisited,” Water Science and Technology, 36(5), 27-34, 1997. 78. Qin, S. Z., Su, H. T., and McAvoy, T. J., “Comparison of four neural net learning methods for dynamic system identification,” IEEE Transactions on Neural Networks, 3(1), 122-130, 1992. 79. Ramos, J., Mallants, D., and Feyen, J., “State space identification of linear deterministic rainfall-runoff models,” Water Resources Research, 31(6), 1516-1531, 1995. 80. Sugawara, M., Ozaki, E., Watanabe, I., and Katsuyama, Y., “Tank model and its application to Bird Creek, Wollombi Brook, Bihin River, Sanaga River, and Nam Mune,” Research Note, 11, National Center for Disaster Prevention, Tokyo, Japan, 1976. 81. Szöllösi-Nagy, A., “The discretization of the continuous linear cascade by means of state space analysis,” Journal of Hydrology, 58, 223-236, 1982. 82. Timm, L. C., Reichardt, K., Oliveira, J. C. M., Cassaro, F. A. M., Tominaga, T. T., Bacchi, O. O. B., and Dourado-Neto, D., “Sugarcane production evaluated by the state-space approach,” Journal of Hydrology, 272, 226-237, 2003. 83.Tingsanchali, T. and Gautam, M. R., “Application of tank, NAM, ARMA and neural network models to flood forecasting,” Hydrological Processes, 14, 2473-2487, 2000. 84. Toth, E., Brath, A., and Montanari, A., “Comparison of short-term rainfall prediction models for real-time flood forecasting,” Journal of Hydrology, 239, 132-147, 2000. 85. Tsai, C. P. and Lee, T. L., “Back-propagation neural network in tidal-level forecasting,” Journal of Waterway Port Coastal and Ocean Enginggeing, July/August, 195-202, 1999. 86. Tsoi, A. C. and Back A. D., “Locally recurrent globally feedforward networks: a critical review of architectures,” IEEE Transaction on Neural Networks, 5(2), 229-239, 1994. 87. Tsoi, A. C. and Tan, S., “Recurrent neural networks: a constructive algorithm, and its properties,” Neurocomputing, 15, 309-326, 1997. 88. Watkins, D. S., Fundamentals of Matrix Computations, John Wiley, 2002. 89. Wen, C. G. and Lee, C. S., “A neural network approach to multiobjective optimization for water quality management in a river basin,” Water Resources Research, 34(3), 427-436, 1998. 90. Wendroth, O., Reuter, H. I., and Kersebaum, K. C., “Predicting yield of barley across a landscape: a state-space modeling approach,” Journal of Hydrology, 272, 250-163, 2003. 91. Whitley, R., “Approximate confidence intervals for design floods for a single site using a neural network,” Water Resources Research, 35(1), 203-209, 1999. 92. Williams, R. J. and Zipser, D., “A learning algorithm for continually running fully recurrent neural networks,” Neural Computation, 1, 270-280, 1989. 93. Williams, R. J., “Adaptive state representation and estimation using recurrent connectionist networks,” Neural Networks for Control, MIT Press/Bradford Books Co., 1990. 94. Xu, Z. X. and Li, J. Y., “Short-term inflow forecasting using an artificial neural network model,” Hydrological Processes, 16, 2423-2439, 2002. 95. Young, P., “Top-down and data-based mechanistic modeling of rainfall-flow dynamics at the catchment scale,” Hydrological Processes, 17, 2195-2217, 2003. 96. Zamarreño, J. M. and Vega, P., “State space neural network. properties and application,” Neural Networks, 11, 1099-1112, 1998. 97. Zamarreño, J. M., Vega, P., García, L. D., and Francisco, M., “State-space neural network for modeling, prediction and control,” Control Engineering Practice, 8, 1063-1075, 2000. 98. Zealand, C. M., Burn, D. H., and Simonovic, S. P., “Short term streamflow forecasting using artificial neural networks,” Journal of Hydrology, 214, 32-48, 1999. 99. Zhang, J. Morris, A. J., and Martin, E. B., “Long-term prediction models based on mixed order locally recurrent neural networks,” Computers & Chemical Engineering, 22(7-8), 1051-1063, 1998. | |
| dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/39422 | - |
| dc.description.abstract | 本研究之目的係探討狀態空間降雨–逕流模式之系統識別,並結合線性動態理論與智慧型控制理論發展狀態空間類神經網路降雨–逕流預報模式。最後研析合適之狀態空間類神經網路生成法,並應用於流域之洪水預報。
模擬水文循環系統中之降雨–逕流歷程為一相當困難之工作。為考量精簡演算過程及增進模式之適用性,本研究應用動態系統理論以研析水文模式之轉換系統,並採用間接系統檢定方法,對水文歷程作深入之探討。文中進一步結合類神經網路發展出具狀態空間特性之狀態空間類神經網路模式,採用整合多種遞迴式類神經網路演算法後所得之統合演算法進行模式參數訓練學習之工作,以期即時更新、校正模式,並對模式參數之變化作深入之探討。一般水文模擬結果之好壞端賴模式之架構及參數之正確性,因此狀態空間類神經網路之生成法有其研究之重要性。本研究研析間接系統檢定法與子空間檢定法之優劣,並深入探討架構模式之過程,期冀能提高模擬降雨–逕流歷程之精確度。 研究中選取基隆河中上游五堵集水區民國55年至86年間颱洪事件之記錄降雨與逕流資料,分析定率性降雨–逕流模式之機制。間接系統檢定法乃依據最佳化理論求得系統之單位歷線,進一步估算狀態空間方程式與觀測方程式之參數矩陣,以確知系統之轉換過程。最後,狀態空間類神經網路生成法之研析過程中,考慮間接系統檢定法與直接子空間檢定法進行系統識別。兩種系統檢定法皆採用奇異值分解之數值運算。而藉由有系統之測試瞭解間接系統檢定法與直接子空間檢定法之優缺點後,本研究提出結合兩種檢定法優點之狀態空間類神經網路生成法。研究中選取部分歷年來颱洪事件之記錄降雨與逕流資料,訓練檢定生成之狀態空間類神經網路並進行模式之驗證。本研究所採用之狀態空間類神經網路生成法及獲致之成果,期冀可提供臺灣集水區防洪規劃及水土保持研析之參考應用。 | zh_TW |
| dc.description.abstract | The purposes of this study are to discuss the system identification of a state space rainfall-runoff model, and to integrate linear dynamic theory with intelligent control theory to develop a state space neural network rainfall-runoff forecasting model. Finally, an appropriate generation of state space neural network is established, and the model is applied to the flood forecasting of a river basin.
Modeling the rainfall-runoff process is always a difficult task in whole hydrological cycle. For the purpose of simplifying calculation and enhancing the adaptability, dynamic systems theory is adopted to explore the transformation system of the hydrological model. The hydrological process is analyzed by using the indirect system identification. Furthermore, dynamic systems theory is integrated with neural netoworks to develop a state space neural network model, and a unification of the algorithms for recursive neural networks was applied to update the parameters of the model by training and learning process. However, the performance of simulation depends on the model’s correct structure and its accurate parameters. Therefore, it is important to study the approach to generate state space neural network. Finally, a comparison between indirect system identification and subspace identification is achieved, and the process of constructing the model is also discussed in this study. The deterministic model is calibrated and validated by the rainfall-runoff records of selected typhoon events occurred at the upstream watershed of Wutu, Keelung River Basin between 1966 and 1997 via indirect system identification that estimates the parameters of state space model based on the unit hydrograph derived from the constrained deconvolution step. Finally, a new approach that combines indirect system identification with direct subspace identification to generate state space neural networks is proposed in this study and results achieved herein can play a referential role on the planning of flood mitigation in Taiwan. | en |
| dc.description.provenance | Made available in DSpace on 2021-06-13T17:28:09Z (GMT). No. of bitstreams: 1 ntu-93-F87622003-1.pdf: 3998806 bytes, checksum: f76d4b40adf50129420835a6c4360ec6 (MD5) Previous issue date: 2004 | en |
| dc.description.tableofcontents | 摘 要 Ⅰ
ABSTRACT Ⅱ 目 錄 Ⅲ 圖 錄 Ⅵ 表 錄 ⅩⅦ 第一章 緒 論 1 一、研究動機 1 二、研究目的與方法 3 三、文獻回顧 5 第二章 線性動態系統理論 10 一、線性非時變因果系統 10 二、狀態變數與狀態空間 12 三、狀態空間表示式 13 四、漢克矩陣 15 五、線性動態系統之實現理論 16 第三章 類神經網路 20 一、生物神經網路 20 二、類神經網路之定義與架構 22 三、類神經網路分類 24 四、類神經網路之特質 26 第四章 遞迴式類神經網路 28 一、遞迴式類神經網路架構 28 二、狀態空間類神經網路與線性系統 39 三、修正型狀態空間類神經網路 39 四、狀態空間類神經網路降雨–逕流預報機制 41 第五章 即時學習演算法 42 一、學習演算法 42 二、統合演算法 51 第六章 狀態空間類神經網路生成法 56 一、奇異值分解 56 二、間接系統檢定法 57 三、子空間演算法 62 第七章 研析資料處理與模式檢定及驗證 65 一、研究流域簡介 65 二、資料整理與蒐集 66 三、平均雨量之估計 66 四、研析步驟 69 五、模式合適性之校驗 71 第八章 結果與討論 73 一、以單場颱洪事件建構狀態空間降雨–逕流模式 73 二、以多場颱洪事件建構狀態空間降雨–逕流模式 76 三、狀態空間類神經網路降雨–逕流模式之研析 78 四、直接子空間之適用性評估 81 五、狀態空間類神經網路生成法之研析 81 六、降雨–逕流預報模式之驗證 82 七、單位歷線之推估 84 第九章 結論與建議 86 一、結論 86 二、建議 88 參考文獻 90 謝 誌 100 附 圖 101 附 表 193 簡 歷 199 相關著作 201 | |
| dc.language.iso | zh-TW | |
| dc.subject | 降雨-逕流預報 | zh_TW |
| dc.subject | 動態系統 | zh_TW |
| dc.subject | 類神經網路 | zh_TW |
| dc.subject | artificial neural network | en |
| dc.subject | dynamic system | en |
| dc.subject | rainfall-runoff forecasting | en |
| dc.title | 動態系統與類神經網路之研究及其應用於降雨–逕流預報模式之整合 | zh_TW |
| dc.title | Study on Dynamic Systems and Artificial Neural Networks and Its Integrated Application to Rainfall-Runoff Forecasting Model | en |
| dc.type | Thesis | |
| dc.date.schoolyear | 93-1 | |
| dc.description.degree | 博士 | |
| dc.contributor.oralexamcommittee | 許銘熙,鄭克聲,虞國興,李光敦 | |
| dc.subject.keyword | 動態系統,類神經網路,降雨-逕流預報, | zh_TW |
| dc.subject.keyword | dynamic system,rainfall-runoff forecasting,artificial neural network, | en |
| dc.relation.page | 205 | |
| dc.rights.note | 有償授權 | |
| dc.date.accepted | 2004-11-01 | |
| dc.contributor.author-college | 生物資源暨農學院 | zh_TW |
| dc.contributor.author-dept | 生物環境系統工程學研究所 | zh_TW |
| 顯示於系所單位: | 生物環境系統工程學系 | |
文件中的檔案:
| 檔案 | 大小 | 格式 | |
|---|---|---|---|
| ntu-93-1.pdf 未授權公開取用 | 3.91 MB | Adobe PDF |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。
