請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/39390
完整後設資料紀錄
DC 欄位 | 值 | 語言 |
---|---|---|
dc.contributor.advisor | 孫志鴻(Chin-Hong Sun) | |
dc.contributor.author | Ming-Cheng Tsou | en |
dc.contributor.author | 鄒明城 | zh_TW |
dc.date.accessioned | 2021-06-13T17:27:25Z | - |
dc.date.available | 2004-12-28 | |
dc.date.copyright | 2004-12-28 | |
dc.date.issued | 2004 | |
dc.date.submitted | 2004-12-22 | |
dc.identifier.citation | 中文部份
工業技術研究院能源與資源研究所 1998,台灣省重要都會區環境 地質資料庫,能資所報告編號:063-88-L029 工業技術研究院能源與資源研究所 2000,九二一震災系列調查(一)崩塌地調查與治理規劃成果報告,行政院農業委員會水土保持局 王鑫 1986,中橫公路道路邊坡的地貌分析,行政院國家科學委員會防災科技研究報告; 72: 74-48 林傑斌、劉明德 2002,資料採擷與OLAP理論與實務, 台北: 文魁資訊 林祥偉 2003,地理資訊系統與人工智慧之整合研究,國立台灣大學地理環境資源研究所博士論文 戶松修、中野有美 1999,歧阜縣下における地震による土砂災害について,地震による林地の安定性と山地災害に關する總合的研究(基盤研究(A)(1))研究報告,17-26 李德仁、關澤群 2003,空间信息系统的集成与实现,武漢大學出版社,63 邸凱昌、李德仁 1996, KDD技术及其在GIS中的应用与扩展, 中国地理信息系统协会第二届年会论文集, 42-47 邸凱昌 1997, 空间数据发掘与知识发现的框架,武漢測繪科技大學學報, 22(4): 328-332 邸凱昌 2001, 空间数据发掘与知识发现,武漢大學出版社, 42-165 張石角 1987,山坡地潛在危險之預測及其在環境影響評估之應用,中華水土保持學報,18(2): 41-62 童啟哲 2001,應用地理資訊系統於地震引致坡地破壞多變量模式分析,國立台灣大學土木工程研究所碩士論文 許煜煌 2002,以不安定指數法進行地震引致坡地破壞模式分析,國立台灣大學土木工程研究所碩士論文 游中榮 1996,應用地理資訊系統於北橫地區山崩潛感之研究,國立中央大學應用地質研究所碩士論文 黃臺豐 1999,瑞里地震誘發之山崩,國立中央大學應用地質研究所碩士論文 洪如江、林美聆、陳天健、王國隆 2000,921集集大地震相關的坡地災害、坡地破壞特性、與案例分析,地工技術,81: 17-32 廖軒吾 2000,集集地震誘發之山崩,國立中央大學地球物理研究所碩士論文 經濟部中央地質調查所 1990,五十萬分之一台灣地區地質環境圖 徐鐵良 1983,台灣之地形分區,地質與工程,台北: 中國工程師學會,6-25 陳振華 1984,衛星與雷達影像之工程地質判釋,遙感探測,4: 86-96 何春蓀 1986,台灣地質概論,台北:經濟部中央地質調查所,1-106 許琦 1989,模糊集理論在山崩潛感性分析之應用,國立成功大學土木工程研究所碩士論文 簡李濱 1992,應用地理資訊系統建立坡地安定評估之計量方法,國立中興大學土木工程研究所碩士論文 鄭元振 1992,地理資訊系統在區域邊坡穩定分析之應用—中橫公路天祥至太魯閣段,國立成功大學礦冶及材料科學研究所碩士論文 陳時祖 1996,賀伯颱風造成山區道路嚴重受損之成因及減經未來災害之探討-以新中橫公路為例,國科會工程處工程科技推展中心,賀伯颱風災害調查研會論文集, 1-10 陳意璇 2002,溪頭地區山崩潛感圖製作,國立台灣大學土木工程研究所碩士論文 楊智光 2002,地震衍生重要山區道路護坡工程之破壞機制探討分析,國立屏東科技大學土木工程研究所碩士論文 盧育聘 2003,類神經網路於公路邊坡破壞潛能之評估,國立中山大學資源環境研究所 羅佳明 2003,GPS/GIS/RS應用於地震災區坡地災害防治工程調查及其風險評估模式之建置與應用,屏東科技大學土木工程研究所碩士論文 鄭傑銘 2003,應用GIS進行豪雨及地震引致山崩之潛感性分析,國立台灣大學土木工程研究所碩士論文 張子瑩、徐美玲 2004, 暴雨與地震觸發崩塌發生區位之比較—以陳有蘭西流域為例,國立台灣大學地理學報,35: 1-16 鄒明城、孫志鴻 2004, 資料探勘技術在集集大地震引致山崩之研究,國立台灣大學地理學報,36: 117-131 葉怡成 1993,類神經網路模式應用與實作,台北: 儒林圖書 彭文正譯 2001,資料採礦 – 顧客關係管理暨電子行銷之應用,台北: 速博網資訊 尹相志 2003,SQL 2000 Analysis Service 資料採礦服務,台北: 維科圖書 吳立新、史文中 2003, 地理信息系統原理與算法, 北京: 科學出版社 奧西一夫 1996, 六甲山地の斜面崩壞災害のぃくつかの特徵,兵庫縣南部地震と地形災害,日本:古今書院,127-142 郎煜華、中村浩之 1997,地震による崩壞之特徵とそのモデル斜面における理論的解析—中國永登地震な例とし,地すベり,34(3): 20-33 英文部分 Adbelmoty, A.I., Williams, M.H.and Paton, N.W. 1993, Deduction and deductive databases for geographic data handling, Advance in Spatial Databases. Lecture Notes in Computer Science, 692, Berlin: Springer-Verlag, 441-464 Aldridge C.H. and Benwell, G.L. 1995, Information loss: a hidden cost of digitising maps, Proc. of the 1995 New Zealand Conference on Geographical Information Systems and Spatial Information Research incorporating: The 7th Annual Colloquium of SIRC Aldridge C.H. 1999, Discerning landslide hazard using a rough set based geographic knowledge discovery methodology, SIRC 99 Allen, C.R., Brune, J.N., Cluff, L.S. and Barrows, A.G. Jr. 1998, Evidence for unusually strong near-field ground motion on the Hanging Wall of the San Fernando Fault during the 1971 earthquake, Seismological Research Letters, 69(6): 524-531. Arentze, T.A., Hofman, F., van Mourik, H., Timmermans, H.J.P. and Wets, G. 2000, Using decision tree induction systems for modeling space-time behavior, Geographical Analysis, 32(4): 52-72 Arias, A. 1970, A Measure of Earthquake Intensity, in R.J. Hansen, ed. Seismic Design for Nuclear Power Plants, Cambridge, Massachusetts: MIT Press, 438-483 Bailey, T.R. 1994, A review of statistical spatial analysis in geographical information systems, In: Fotheringham, S. and Rogerson, P. (eds.), Spatial analysis and GIS, London, U.K.: Taylor & Francis, 2: 13-44 Berry, M. and Linoff, G.S. 1997, Data Mining Techniques: for marketing, sales, and customersupport, New York: Wei Keg Publishing Co. Berry, M.J.A. and Linoff, G.S. 2000, Mastering Data Mining:The Art & Science of Customer Relationship Management, New York:Wiley Bezdec, J.C. and Pal, S.K. (eds.) 1992, Fuzzy Models for Pattern Recognition: Methods That Search for Structures in Data, New York.: Institute of Electrical and Electronics Engineers, Inc Burrough, P.A. 1986, Principles of Geographic Information Systems for Land Resource Assessment, Oxford, England: Clrendon Press Burrough, P.A. and Frank, A.U. 1995, Concepts and paradigm in spatial information: are current geographical information systems truly generic ?, International Journal of Geographical Information Systems, 9(2): 101-116 Chaudhuri, S. and Dayal, U. 1997, An overview of data warehousing and OLPA technology, SIGMOD Record, 26:65-74 Chen, M.-S., Han, J. and Yu, P.S. 1996, Data mining: an Overview from a database perspective, IEEE Transactions on Knowledge and Data Engineering, 8(6): 20-35 Cortes, C, Jackel, L.D. and Chiang, W.-P. 1995, Limits on learning machine accuracy imposed by data quality , In Proeedings of the International Conference on Knowledge Discovery and Data Mining, Canada, 57-62 Duntsch, I., and Gediga, G. 1997, Statisticfal evaluation of rough set dependency analysis, International Journal of Human Computer Studies, no46, 589-604 Dzeroski, S., Grbovic, J., Walley, W.J. and Kompare, B. 1997, Using machine learning techniques in the construction of models. II. Data analysis with rule induction, Ecological Modelling, 95: 95-111 Edelman, G.M. 1989, The Remembered Present: A Biological Theorey of Consciousness, New York, U.S.A. Egenhofer, M.J. 1991, Reasoning about binary topolgical relations, Proceedings of 2nd Symp. Spatial Database Handling (SSD’91), 161-182 Eklund, P. W., Kirkby, S. D. and Salim, A. 1998, Data mining and soil salinity analysis, International Journal Of Geographical Information Science, 12: 247-268 Ester, M., Kriegel, H.-P. and Sander, J. 1997, Spatial data mining: a database approach, Proceedings of 5th International Symp. On Spatial Database (SSD’97), 47-66 Famili, A. 1995, The role of data pre-processing in intelligent data analysis, In Lasker, G. E., Liu, X. editors, Advances in Intelligent Data Analysis, 1(1): 54-58 Frawley, W., Piatesky-Shapiro, G. and Matheus, C. 1991, Knowledge discovery in database: an overview, In Fayyad, U. M., Piatestky-Shaprio, G., Smyth, P. and Ulthurusamy, R. (eds.), Knowledge Discovery in Database, Cambridge, Massachusetts: MIT Press Fayyad, U.M., Piateysky-Shapiro, G.and Smyth, P. 1996, The KDD Processfor extracting useful knowledge from volumes of data, Communication s of the ACM, 39(11): 27-34 Geli, L., Bard, P.Y. and Jullien, B. 1988, The effect of topographyon earthquake ground motion: a review and new results, Bulletin of Seismological Society of America, 78(1): 42-63 Glymour, C., Madigan, D., Pregibon, D. and Symth, P. 1996, Statistical inference and data mining, Communications of the ACM, 39(11): 35-41 Goodchild, M.F. 1992, Geographical information science, International Journal of Information Systems, 6(1): 31-45 Groth, R. 2000, Data Mining – Building Competitive Advantage, Prentice Hal Guting, R.H. 1994, An introduction to spatial database, VLDB Journal, 3(4): 357-400 Han, J. 1996, Data mining techniques, ACM-SIGMOD’96 Conf. Tutorial Han, J. 1999, Data mining ?, Int. J. Urban and P., Encyclopedia of Distributed Computing, Kuwer Academic Publisher Han, J. and Kamber, M. 2000, Data Mining: Concepts and Techniques, New York: Morgan Kaufmann Publisher Hagan, M.T., Demuth, H.B. and Beale, M. 1995, Neural Network Design, New York: PWS Publishing Company Hansen, J. (eds.) 1995, Seismic Design for Nuclear Power Plants, Cambridge, MA: MIT Press, 438-483 Jarke, M., Lenzerini, M., Vassiliou, Y. and Vassiliadis, P. 2000, Fundemental of Data Warehouses, Berlin: Springer Jenks, G.F. and Coulson, M.R. 1963, Class intervals for statistical maps, International Yearbook of Cartography, 3: 119-134 Jones, C. 1997, Geographical Information Systems and Computer Cartography, UK: Addison Wesley Logman, 174 Jolliffe, I.T. 1986, Principal Component Analysis, Springer Texts in Statistics, New York: Springer Kangkachit, T. and Waiyamai, K. 2002, A business-oriented spatial association rule mining system prototype (BoSARM), Proceedings of Information and Computer Engineering Postgraduate Workshop (IECP 2002), Thailand Keefer, D.K. 1984, Landslides caused by earthquakes, Geological Society of America Bulletin , 95: 406-421 Keefer, D.K. 2000, Statistical analysis of an earthquake-induced landslide distribution – the 1989 Loma Prieta, California Event, Engineering Geology, 58: 231-249 Klösgen, W. and Żytkow, J.M. 1996, Knowledge discovery in database terminology, In Fayyad, U. M., Piatestky-Shaprio, G., Smyth, P. and Ulthurusamy, R. (eds.), Advances in Knowledge Discovery and Data Mining, Cambridge, MA: MIT Press, 573-592 Koperski, K., Adhihary, J. and Han, J. 1996, Spatial data mining: progress and challenges survey paper, SIGMOD’96 Workshop on Ressearch Issues on Data Mining and Knowledge Discovery Koperski, K., Adhihary, J. and Han, J. 1998, Mining knowledge in geographical data, Communication of ACM, http://db.cs.sfu.ca/sections/publication/kdd/kdd.html Koperski, K. 1999, A Progressive Refinement Approach To Spatial Data Mining, Phd. Dissertation, Vancouver, Canada: Simon Fraser University Khun, T.S. 1970, The Structure of Scientific Revolutions. International Encyclopedia of Unified Science,Chicago, USA: The University of Chicago Press, 1(2) Lees, B.G. and Ritman, K. 1991, Decision-tree and rule induction approach to integration of remotely sensed and GIS data in mapping vegetation in distributed or hilly environments, Environmental Management, 15: 823-831 Li, D.R. 1994, KDG: knowledge discovery from GIS-propositions on the use of KDD in an intelligent GIS, Proceedings of ACTES, the Canadian Conference On GIS Li, D.R. 1997, A framework of spatial data mining and knowledge discovery, In Proceedings of International Workshop on Image Analysis and Information Fusion (IAIF;97), Adelaide, Australia Lu, W., Han, J. and Ooi, B.C. 1993, Discovery of general knowledge in large spatial database”, Proceedings of Far East Workshop on Geographic Information Systems, 275-289 Maguire, D.J. 1991, An overview and definition of GIS, In Maguire, D. J. Goodchild, M. F. and Rhind, D. W., editors, Geographical Information Systems: Princlples and Applications (Volume 1: Principles) (Harlow, U.K.: LongMan Scientific and Technical), 1(1): 9-20 Mauth, R. 1995, Endless search, Bytes, 20(11): 13-18 Marlerba, D., Esposito, E., Lanza, A. and Lisi, F. 2001, Geographic data mining and knowledge: an overview, In: Miller, H. J. and Han, J. (eds.), Geographic Data Mining and Knowledge Discover, New York: Taylor & Francis, 291-314 Mennis, J. and Liu, J.W. 2003, Mining association rules in spatio-temporal data, Proceedings of GeoComputation 2003 Miller, H.J. and Han, J. (eds.) 2001, Geographic data mining and knowledge: an overview, Geographic Data Mining and Knowledge Discover, New York: Taylor & Francis, 3-33 Murakami, E. and Wagner, D.P. 1999, Can using global positioning system (GPS) improve trip reporting ?, Transporation Research C, 7: 149-165 Openshaw, S. 1992, Modelling spatial interaction using a neuro net, Geographic Information Systems, Spatial Modelling and Policy Evaluation, Berlin, Germany: Springer-Verlag, 147-164 Openshaw, S. 1994, Two exploratory space-time attribute pattern analyzers relevant to GIS, Spatial Analysis and GIS, London: Taylor & Francis, 83-104 Openshaw, S. 1995, Developing automated and smart spatial pattern exploration tools for geographical information systems application, The Statisticians, 44(1): 3-16 Openshaw, S. and Openshaw, C. 1997, Artificial Intelligence in Geography, New York: John Wiley & Sons O’Rourke, J. 1994, Computational Geometry in C, Cambridge: University press Parsaye, K. and Chingnell, M. 1993, Intelligent Database Tools and Applications: Hyperinformation Access, Data Quality, Visualization, Automatic Discovery, New York, John Wiley & Sons, Inc. Poe, V., Klauer, P. and Brobst, S. 1998, Building A Data Warehouse for Decision Support, 2nd edition, New Jersey: Prentice-Hall Inc. Qi, F. and Zhu, A-X. 2003, Knowledge discovery from soil maps using inductive learning, International Journal of Geographical Information Science, 17(8): 771-795 Quinlan, J.R. 1986, Induction of decision tree, Machine Learning, 1: 81-106 Quinlan, J.R. 1993, C4.5: Programs for Machine Learning, New York; Morgan Kaufmann Refice, A. 2002, Probabilistic modeling of uncentainties in earthquake-infuced landslide hazard assesment, Computer & Geoscience, 28: 735-749 Rodriguez, C.F., Bommer, J.J. and Chandler, R.J. 1999, Earthquake-induced landslides: 1980-1987, Soil Dynamics and Earthquake Engineering, 18:325-346. Roiger, R.J. and Geatz, M.W. 2002, Data Mining – A Tutorial-Based Primer, New York: Addison Wesley Sester, M. 2000, Knowledge acquisition for the automatic interpretation of spatial data, International Journal of Geographical Information Science, 14(1): 1-24 Shekhar, S., Lu, C.T., Tan, X., Chawla, S. and Vatsavai, R.R. 2002, Map cube: a visualization tool for spatial data warehouses, In: Miller, H. J. and Han, J. (eds.) Geographic Data Mining and Knowledge Discover, New York: Taylor & Francis, 74-109 Simoudis, E., John, G., Kereber, R., Livezey, B. and Miller, P. 1995, Developing customer vulnerability models using data mining techniques, In Lasker, G. E. and Liu, X. editors, Advances in Intelligent Data Analysis, 1(6): 77-93 Smyth, C.S. 2001, Mining mobile trajectories, In: Miller, H. J. and Han, J. (eds.), Geographic Data Mining and Knowledge Discover, New York: Taylor & Francis, 337-361 Spencer, B. 1996, Spatial data warehousing, In Zwart, P. editors, Proceedings of the 24th Annual International Conference and Technical Exihibition of AURISA, 25 – 29 November, 1996, Hobart, Australia, 1: 185-194 Stefanovic, N. 1997, Design and Implementation of On-Line Analytical Processing (OLAP) of Spatial Data, M. Sc. Thesis, Vancouver, Canada: Simon Fraser University Computing Science Tang, H. and McDonald, S. 2001, Spatial data mining and university courses marketing, Proceedings of GeoComputation 2001 Tibaldi, A., Ferrari, L. and Pasquare, G. 1995, Landslides triggered by earthquakes and their relations with faults and mountain slope geometry – an example from Ecuador, Geomorphology, 11(3): 215-226 Tobler, W.R. 1970, A computer model simulating unban growth in the Detroit region, Economic Geography, 46: 234-240 Wang, K. and Tay, S.H. 1998, Interestingness-based interval merger for numerical association rules, Proceedings of the 4th International Conference on Knowledge Discovery and Data Mining, 121-127 Weiss, S.M. and Indurkhya, N. 1998, Predictive Data Mining – A Pratical Guide, New York: Morgan Kaufmann Zhao, L. 2000, Integrating rank correlation techniques with GIS for marketing analysis, Proceedings of GeoComputation 2000 | |
dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/39390 | - |
dc.description.abstract | 隨著資訊科技的進步,資料的收集紛紛邁入自動化與電腦化,造成空間資料的迅速累積,衛星遙測影像、GPS的資料收集、行動通訊裝備以及各種與位置相關的交易(Transaction),提供我們大量具有空間參考的資料,坐擁如此龐大的資料,其中包含了許多寶貴的資訊與知識,如何從這些資料中提煉出有價值的知識,是當前面臨的一大課題。目前越來越受重視的資料探勘技術可以協助決策者從大量資料中找出有價值的知識,但是大部分的應用仍只限於屬性資料的分析,對於空間資料的處理分析少有著墨,而地理資訊系統雖然具有強大的空間資料處理能力,但缺乏對於屬性資料的進階處理。
有鑒於台灣地處地震帶,部分地區每年均要歷經多次的地震以及周期性的大地震,往往帶來嚴重的山崩以及土石鬆動的現象,若再歷經豪雨後,將帶來嚴重的土石流,造成生命財產的重大損失。民國88年9月21日於台灣中部地區發生芮氏規模7.3的地震,此次強震造成2000多人死亡,難以估計的財產損失,以及數量龐大的坡地災害。而在此次強震中亦獲得大量的坡地破壞資料及地震記錄,可供專家學者進行地震對山崩影響的研究,得以對地震引致山崩的行為有進一步的認識。 本研究嘗試以九二一大地震所累積的大批地理資料,結合地理資訊系統空間資料分析與處理的功能,建立資料倉儲作為資料探勘的基礎,分別以預測型資料探勘技術與描述型資料探技術,對地震山崩空間資料庫作全面性的知識探索。其中預測型資料探勘技術包含有類神經網路模式、決策樹模式、案例式概念學習及貝氏分類器等多個具互補性之資料探勘技術,分別探討各模式效能並評估其整合預測模式的建立。而描述型資料探勘則包含有線上分析處理(OLAP)、關聯法則及等級相關分析,用以找出引致地震山崩的推論法則及關聯樣式(association pattern)。所使用的資料素材則包含了向量式以及網格式資料,藉以探討各種資料探勘技術在空間資料庫知識發掘的適用性以及其整合研究,獲得良好的結果。期望透過此研究了解 引發地震山崩的機制,建立山崩災害機率的潛感圖以及知識庫和模式庫,並且探討各種資料探勘技術在空間資料庫知識探索上之應用性,提供防災決策支援上的參考。 | zh_TW |
dc.description.abstract | With the progress of information science and technology, the data collection march toward the automation and computerization. The fast accumulation of the spatial data, such as satellite image, GPS data recorder, mobile communication equipment and various kinds of location-based transaction, offer a large number of geo-referenced data. There include a lot of valuable information and knowledge among these data. How to refine out valuable knowledge from these data is a great subject faced at present. Data mining can help the policymaker to find out valuable knowledge from a large amount of data, but most application are still only limited to the analysis of the attribute data. It is difficult to deal with the spatial data. And though geographical information system is powerful in analyzing spatial data, but it lack the advanced ability to deal with sophisticated attribute data analysis. Because Taiwan is located in the earthquake zone, some areas go through a lot of earthquakes and periodic heavy earthquakes every year and cause serious landslide. If after going through the torrential rain again, will bring serious debris flow and cause great losses of the lives and properties. An earthquake of magnitude 7.3 on Richter scale occurred in the middle region of Taiwan on September 21, 1999. This earthquake caused more than two thousand people died, severe property loss, and a large number of landslides. A large number of landslide data and earthquake strong motion records were obtained for the experts and scholars to carry on the research of landslide influence of the earthquake. This research collects data of landslides triggered by Chi-Chi earthquake, and with the powerful data-processing function and spatial analysis ability of Geographic Information System (GIS), Data Mining modeling, the basic data of research region, and Chi-Chi earthquake strong motion records to establish the landslide database and data warehouse. A new strategy, which
combines several models based on different philosophy, not only reduce the uncertainty of predictive modeling, but also improve the accuracy. In our study, a Decision Tree, Artificial Neural Network, Bayes Classfier, and Exemplar-based Concept Learning were individually applied to a spatial data warehouse. The result of each model and two kinds of modeling-integration methods, including horizontal integration and vertical integration, were then evaluated. Furthermore, the spatial association patterns are typically not encoded in database, but are rather embedded within the spatial framework of the geo-referenced data. The analysis of the association pattern between the occurrence of Chi-Chi earthquake-induced landslide and background environmental characteristics is used as a case study to demonstrate the potential of spatial data mining techniques, like OLAP, association rule mining and Spearman rank correlation. With the analysis results, we derived a suspecious potential map and build the knowledge base and model base. Verification proofed the result to be good. So the analysis methods mentioned by this research are suitable for the risk assessment of landslide hazard triggered by earthquake and can be used as the tool for disaster mitigation decision support. | en |
dc.description.provenance | Made available in DSpace on 2021-06-13T17:27:25Z (GMT). No. of bitstreams: 1 ntu-93-D86228006-1.pdf: 2175452 bytes, checksum: ff79193d7f4c849a4238a575e23c7bc3 (MD5) Previous issue date: 2004 | en |
dc.description.tableofcontents | 第一章 緒 論 1
第一節 前 言 1 第二節 研究動機 3 第三節 研究目的 5 一、建立究區域自然環境之空間資料倉儲 5 二、建立資料探勘模式庫 5 三、比較與整合各資料探勘模式 5 四、建立防災知識庫、災害潛勢圖,提供決策支援參考 5 第四節 研究流程 7 一、文獻回顧 7 二、研究區域空間資料蒐集與建立 7 三、空間資料之分析處理 7 四、模式的選用與建立 7 五、模式驗證評估 8 六、模式庫與知識庫的建立 8 七、結論與建議 8 第二章 文獻回顧 9 第一節 知識探索(knowledge discovery)與資料探勘(data mining) 9 一、知識的定義 9 二、資料庫知識探索與資料探勘 10 三、資料倉儲 11 四、可發現的知識類型 13 五、資料庫知識探索的流程 16 第二節 空間資料探勘 23 一、地理資訊系統 23 二、資料探勘與地理資訊系統 23 三、空間資料庫知識探索 25 四、資料探勘與空間資料分析 26 五、空間資料探勘之目標 27 六、空間資料探勘架構 30 第三節 空間資料探勘之應用與研究 33 一、空間資料探勘的應用 33 二、空間資料探勘之未來研究需求 34 第四節 地震引致山崩影響因子研究 36 一、山崩與地質分佈狀況關係 36 二、山崩與地形因子的關係 37 三、山崩與斷層的關係 39 四、山崩與震央距離的關係 40 五、山崩與區位因子的關係 40 六、山崩與地震規模的關係 41 第五節 山崩發生可能性之研究 43 一、定性分析法 43 二、定量分析法 43 第三章 研究方法 48 第一節 研究架構 48 第二節 線上分析處理技術(On-line Analysis Process)─建模前分析 51 第三節 描述型資料探勘模式 58 一、關聯法則 58 二、Spearman 等级相關分析(Spearman Rank Correlation) 67 第四節 預測型資料探勘模式 69 一、決策樹演算法(Decision Tree) 69 二、類神經網路技術(Neural Network) 73 三、案例式概念學習(Exemplar-Based Concept Learning) 76 四、貝式分類器(Bayes Classfier) 78 五、預測型模式之整合 79 第四章 空間資料庫與資料倉儲之建立 90 第一節 山崩影響因子的選取 90 一、地形因子 91 二、地質因子 92 三、區位因子 92 四、地震影響因子 92 第二節 研究區域概述 93 一、地理位置 93 二、地形 94 三、地質 94 四、氣候 97 第三節 資料蒐集及處理 98 一、地震崩塌地資料之蒐集 98 二、數值地形模型之蒐集 99 三、車籠埔斷層分佈圖 99 四、集集大地震震央位置圖 99 五、道路分佈圖 100 六、活動斷層圖 100 七、水系分佈圖 100 八、數值地質圖 100 九、集集大地震地震紀錄 100 第四節 空間資料倉儲的建立 102 第五節 資料化簡與採樣 102 第五章 模式的評估 104 第一節 評估標準 104 一、錯差矩陣(confusion matrix) 104 二、累積增益圖(gain chart) 105 第二節 預測型模式之結果比較 109 第三節 預測型模式之整合比較 111 一、水平整合效能評估 111 二、垂直整合效能評估 111 第四節 空間背景(Spatial Context)資料的加入對於模式的影響 113 第六章 模式結果與應用 115 第一節 OLAP於向量資料的分析 115 一、從個別維度來分析 115 二、從多個維度來分析 115 第二節 Spearman等級相關分析 117 第三節 關聯法則之結果分析 130 第四節 決策樹演算法於網格式資料之分析 135 一、影響因子之分析 135 二、法則的產生 135 第五節 山崩潛感圖的製作 138 一、預測型模式之山崩潛感圖製作 138 二、關聯法則之山崩潛感圖製作 138 第七章 結論與建議 141 第一節 結論 141 一、方法論部份 141 二、地震引致山崩部份 143 第二節 後續研究建議 145 參考文獻 146 中文部份 146 英文部分 149 | |
dc.language.iso | zh-TW | |
dc.title | 空間資料庫知識探索之研究─以集集大地震引致之山崩為例 | zh_TW |
dc.title | The Study of Knowledge Discovery from Spatial Database
Chi-Chi Earthquake-Induced Landslide As A Case Study | en |
dc.type | Thesis | |
dc.date.schoolyear | 93-1 | |
dc.description.degree | 博士 | |
dc.contributor.oralexamcommittee | 周天穎(Tien-yin Chou),朱子豪(Tzu-How Chu),賴進貴(Jinn-Guey Lay),周學政(Hse-Cheng Chou) | |
dc.subject.keyword | 地理資訊系統,資料庫知識探索,資料探勘,地震引致山崩, | zh_TW |
dc.subject.keyword | earthquake-induced landslid,knowledge discovery from database (KDD),data mining,geographic information system, | en |
dc.relation.page | 156 | |
dc.rights.note | 有償授權 | |
dc.date.accepted | 2004-12-22 | |
dc.contributor.author-college | 理學院 | zh_TW |
dc.contributor.author-dept | 地理環境資源學研究所 | zh_TW |
顯示於系所單位: | 地理環境資源學系 |
文件中的檔案:
檔案 | 大小 | 格式 | |
---|---|---|---|
ntu-93-1.pdf 目前未授權公開取用 | 2.12 MB | Adobe PDF |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。