Skip navigation

DSpace

機構典藏 DSpace 系統致力於保存各式數位資料(如:文字、圖片、PDF)並使其易於取用。

點此認識 DSpace
DSpace logo
English
中文
  • 瀏覽論文
    • 校院系所
    • 出版年
    • 作者
    • 標題
    • 關鍵字
    • 指導教授
  • 搜尋 TDR
  • 授權 Q&A
    • 我的頁面
    • 接受 E-mail 通知
    • 編輯個人資料
  1. NTU Theses and Dissertations Repository
  2. 理學院
  3. 數學系
請用此 Handle URI 來引用此文件: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/3937
完整後設資料紀錄
DC 欄位值語言
dc.contributor.advisor陳其誠(Ki-Seng Tan)
dc.contributor.authorJian-Sin Jhuen
dc.contributor.author朱建鑫zh_TW
dc.date.accessioned2021-05-13T08:38:52Z-
dc.date.available2016-07-06
dc.date.available2021-05-13T08:38:52Z-
dc.date.copyright2016-07-06
dc.date.issued2016
dc.date.submitted2016-06-04
dc.identifier.citation[1] Cassels J.W.S.Cassels, Rational quadratic forms, Academic Press, London, 1978.
[2] G.L.Watson, Integral quadratic forms, Cambridge University Press, 1960.
[3] Jonathan Hanke, local densities and explicit bounds for representatability by a quadratic form, Duke Math. J.124(2004), no 2, 351-388.
[4] Jean-Pierre Serre, A course in arithmetic, Graduate Texts in Mathematics 7. Springer-Verlag, New York, 1973.
[5] Larry J.Gerstein, Basic quadratic forms, American Mathematical Society, 2008.
[6] Manjul Bhargava and Jonathan Hanke, Universal quadratic forms and 290 theorem, Invent. Math.,2005.
[7] P. Delign, La conjecture de Weil, I, Inst. Hautes Etudes Sci. Publ. Math. 43(1974), 273-307. MR 0340258.
[8] C. L. Siegel, ぴUber die Analytische Theorie der quadratischen Formen. Ann. of Math. 36 (1935), 527–606; Gestammelte Abhandlungen, band I, 1966, pp. 326–405.
[9] [Ram16] S. Ramanujan, On the expression of a number in the form ax2 + by2 + cz2 + du2. Proc. Camb. Phil. Soc. 19 (1916), 11?21.
[10] Z. I. Borevich and T.R. Shafarevich, Number Thory, Academic Press, 1966.
dc.identifier.urihttp://tdr.lib.ntu.edu.tw/jspui/handle/123456789/3937-
dc.description.abstract這篇文章中,我們研究 Manjul Bhargava 與 Jonathan Hanke 的 290 定理。主要是透過分類一些被稱作上升子的特殊基本二次形,建立起決定任一正定整係數二次形是否為宇態二次形的準則。zh_TW
dc.description.abstractIn this thesis, we study the 290-theorem of Manjul Bhargava and Jonathan Hanke. Via the classification of certain basic quadratic forms called escalators, we can establish an efficient criterion to determine whether a positive integral quadratic form is universal.en
dc.description.provenanceMade available in DSpace on 2021-05-13T08:38:52Z (GMT). No. of bitstreams: 1
ntu-105-R03221005-1.pdf: 537911 bytes, checksum: d1611676dfc981112df78d23ba4f4cee (MD5)
Previous issue date: 2016
en
dc.description.tableofcontents1 Introduction 1
2 Notation and setting 3
2.1 The Gram matrix 3
2.2 Integrally equivalence class 4
2.3 The Minkowski-reduced forms 4
2.4 The corresponding lattices 4
3 Escalation 5
4 The Zp-theory 7
4.1 The normalized form 8
4.2 The reduction maps 10
4.2.1 The reduction map of good type 11
4.2.2 The reduction map of zero type 11
4.2.3 The reduction map of bad type 11
4.2.4 The depth 12
4.3 The representability 12
5 The local-global principle 15
5.1 Basic results 15
5.2 The approximation of Zp-forms 16
5.3 The proofs of Theorem 5.3 20
5.4 Example and conclusion 22
6 Analytic method 23
6.1 The theta function associated to 4-dimensional escalators 23
6.2 Fourier coefficients of Eisenstein series E(z) 24
6.3 Fourier coefficients of the cusp form f(z) 30
6.4 The criterion of representability 30
7 Proofs of the main theorems 32
7.1 Summary 32
7.2 The 10-14 switch 32
7.3 The proof of Theorem 1 33
7.4 The proof of Theorem 2 34
8 References 35
dc.language.isoen
dc.subject表現zh_TW
dc.subject二次形zh_TW
dc.subject整係數zh_TW
dc.subjectrepresentationen
dc.subjectquadratic formsen
dc.subjectintegral-coefficienten
dc.title論290-定理zh_TW
dc.titleOn the 290-theoremen
dc.typeThesis
dc.date.schoolyear104-2
dc.description.degree碩士
dc.contributor.oralexamcommittee余正道(Jeng-Daw Yu),謝銘倫(Ming-Lun Hsieh),陳君明(Jun-Ming Chen)
dc.subject.keyword二次形,整係數,表現,zh_TW
dc.subject.keywordquadratic forms,integral-coefficient,representation,en
dc.relation.page36
dc.identifier.doi10.6342/NTU201600288
dc.rights.note同意授權(全球公開)
dc.date.accepted2016-06-06
dc.contributor.author-college理學院zh_TW
dc.contributor.author-dept數學研究所zh_TW
顯示於系所單位:數學系

文件中的檔案:
檔案 大小格式 
ntu-105-1.pdf525.3 kBAdobe PDF檢視/開啟
顯示文件簡單紀錄


系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved