請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/39373完整後設資料紀錄
| DC 欄位 | 值 | 語言 |
|---|---|---|
| dc.contributor.advisor | 陳永芳 | |
| dc.contributor.author | Jyong-Kuen Lian | en |
| dc.contributor.author | 連炯堃 | zh_TW |
| dc.date.accessioned | 2021-06-13T17:27:03Z | - |
| dc.date.available | 2021-07-13 | |
| dc.date.copyright | 2011-07-26 | |
| dc.date.issued | 2011 | |
| dc.date.submitted | 2011-07-13 | |
| dc.identifier.citation | 1. Visakhapatnam, Indian craftsmen, artisans used nanotech 2000 years ago,
DECCAN HERALD. 2. H. H. Wang, C. S. Xie, D. W. Zeng, J. Crystal Growth 277, 372 (2005). 3. M. Goano, F. Bertazzi, M. Penna, E. Bellotti, J. Appl. Phys. 102, 083709 (2007). 4. P. Gopal, and N. A. Spaldin, J. Electron. Mater. 35, 538 (2006). 5. M. Funato, D. Inoue, M. Ueda, Y. Kawakami, Y. Narukawa, and T. Mukai, J. Appl. Phys. 107, 1123501 (2010). 6. L. Wang, R. Li, Z. Yang, D. Li, T. Yu, N. Y. Liu, L. Liu, W. H. Chen, and X. D. Hu, Appl. Phys. Lett. 95, 211104 (2009). 7. Z. L. Wang, R. Yang, J. Zhou, Y. Qin, C. Xu, Y. F. Hu, S. Xu, Mater. Sci. Eng. R 70, 320 (2010). 1. Gerald B. Stringfellow, Organometallic Vapor-Phase Epitaxy: Theory and Practice (2nd ed.), Academic Press (1999) (ISBN 0-12-673842-4). 2. R. S. Wanger and W. C. Ellis, Appl. Phy. Lett. 4, 89 (1964). 3. M. Quirk and J. Serda, Semiconductor Manufacturing Technology, Prentice Hall (2000). 4. R. A. Stradling and P. C. Kilpstein, Growth and Characterisation of Semiconductors, Hilger (1990). 5. S. Perkowitz, Optical Characterization of semiconductors: Infrared, Raman, and Photoluminescence Spectroscopy, Academic Press (1993). 6. J. I. Pankove, Optical Processes in Semiconductors, Prentic-Hall, Inc. (1971). 7. G. D. Gilliland, Mater. Sci. Eng. R18, 99 (1997). 8. P. Y. Yu and M. Cardona, Fundamentals of semiconductors, Springer (2001). 9. C. V. Raman, Nature 121, 619 (1928). 1. H. Zhao, G. Liu, X. H. Li, G. S. Huang, J. D. Poplawsky, S. T. Penn, V. Dierolf, and N.Tansu, Appl. Phys. Lett. 95, 061104 (2009). 2. Y. K. Kuo, J. Y. Chang, M. C. Tsai, and S. H. Yen , Appl. Phys. Lett. 95, 011116 (2009). 3. S. M. Hwang, Y. G. Seo, K. H. Baik, I. S. Cho, J. H. Baek, S. Jung, T. G. Kim, and M. Cho, Appl. Phys. Lett. 95, 071101 (2009). 4. J. H. Zhu, S. M. Zhang, H. wang, D. G. Zhao, J. J. Zhu, Z. S. Liu D. S. Jiang, Y. X. Qiu, and H. Yang, J. Appl. Phys. 109, 093117 (2011). 5. S. H. Park, J. Appl. Phys. 91, 9904 (2002). 6. G. Namkoong, E. Trybus ,M. C. Cheung, W. A. Doolittle, A. N. Cartwright, L. Ferguson, T. Y. Seong, and J. Nause, Appl. Phys. Express 3 022101(2010). 7. M. Iwaya, S. Takanami, A. Miyazaki, Y. Watanabe, S. Kamiyama, H.Amano, and I. Akasaki, Jpn. J. Appl. Phys., Part 1 42, 400 (2003). 8. S. Malynych, H. Robuck, and G. Chumanov, Nano Lett., 1,647 (2001). 9. S. Malynych, and G. Chumanov, J. Am. Chem. Soc. 125, 2896 (2003). 10. X. Wang, J. Song, J. Lin, Z. L. Wang, Science 316,102 (2007). 11. Z. L. Wang, R. Yang, J. Zhou, Y. Qin, C. Xu, Y. F. Hu, S. Xu, Mater. Sci. Eng. R 70 (2010) 320. 12. H. C. Yang, P. F. Kuo, T. Y. Lin, and Y. F. Chen, Appl. Phys. Lett. 76, 3712 (2000). 13. T. Y. Lin, Appl. Phys. Lett. 82, 880 (2003). 14. C. H. Chen, W. H. Chen, Y. F. Chen, and T. Y. Lin, Appl. Phys. Lett. 83, 1770 (2003). 15. H. Siegle, G. Kaczmarczyk, L. Fillippidis, A. P. Litvinchuk, A. Hoffmann, and C. Thomsen, Phys. Rev. B55, 7000 (1997). 16. J. Wagner, A. Ramakrishnan, H. Obloh, and M. Maier, Appl. Phys. Lett. 74, 3863 (1999). 17. C. F. Kilingshirn, Semiconductor Optics (Springer, Berlin, 1995). 18. F. C. Wang, C. L. Cheng, Y. F. Chen, C. F. Huang, and C. C. Yang, Semicond. Sci. Technol. 22, 896 (2007). 19. A. G. Kontos, Y. S. Raptis, N. T. Pelekanos, A. Georgakilas, E. Bellet-Amalric, and D. Jalabert, Phys. Rev. B, 72, 155336 (2005). | |
| dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/39373 | - |
| dc.description.abstract | 在本論文中,我們討論兩種半導體複合材料的光學及壓電性質:氮化銦鎵/氮化鎵多重量子井、氧化鋅奈米柱。我們利用氧化鋅的壓電特性,當氧化鋅奈米柱在感測器表面產生形變時,其電偶極會影響氮化銦鎵/氮化鎵多層量子井的內電場,而因為量子侷限史塔克效應的關係,量子井的光致螢光光譜、拉曼散射光譜會有所改變。這些現象代表著氧化鋅與氮化銦鎵/氮化鎵多層量子井複合材料可開發成壓力感知器的可能性。 | zh_TW |
| dc.description.abstract | In this thesis, we will study a novel semiconductor composite consisting of InGaN/GaN multiple quantum well (MQW) and zinc oxide nanorods, we have found some interesting phenomena. Relying on the piezoelectric-potential created in zinc oxide under strain, which will alter the electric field in MQWs. It will induce the change of photoluminescence spectra and Raman spectra could be changed due to the quantum confined Stark effect. As a result, the composite consisting of InGaN/GaN MQWs and ZnO nanorods has a great opportunity in the development of pressure detectors or strain sensors. | en |
| dc.description.provenance | Made available in DSpace on 2021-06-13T17:27:03Z (GMT). No. of bitstreams: 1 ntu-100-R98245012-1.pdf: 4542201 bytes, checksum: 0029f0c2cedf89ec6cf49bdc3ba5dd8d (MD5) Previous issue date: 2011 | en |
| dc.description.tableofcontents | 致謝…………….………………………………………………………………… I
摘要…………….………………………………………………………………… II Abstract…………………………………………………………………………. . III Contents………………………………………………………………………….. IV Figure captions…………………………………………………………………... VI 1. Introduction…………………………………………………………………. 1 References……………………………………………………………………. 3 2. Theoretical background…………………………………………………….. 4 2.1 Growth methods ………….……….……………………………………... 4 2.1.1 Metal-organic vapor phase epitaxy……………………………..... 4 2.1.2 Vapor-liquid-solid growth……………………………………....... 8 2.1.3 DC sputtering deposition…………………………………………. 10 2.2 Photoluminescence……………………………………………………….. 11 2.3 Scanning electron microscopy…………………………………………..... 17 2.4 Raman scattering…………………………………………………………. 22 References………………………………………………………………… 29 3. Optical detection of strain induced effects in ZnO-nanorods-decorated InGaN/GaN multiple quantum wells……………………………………… 30 3.1 Introduction……………………………………………………………… 30 3.2 Experiment……………………………………………………………..... 31 3.3 Results and discussion……………………………………………..…..... 34 3.4 Summary………………………………………………………………… 38 References………………………………………………………………. 47 4. Conclusion………………………………………………………………….. 49 | |
| dc.language.iso | en | |
| dc.subject | 氮化鎵 | zh_TW |
| dc.subject | 壓電效應 | zh_TW |
| dc.subject | 氧化鋅 | zh_TW |
| dc.subject | 奈米柱 | zh_TW |
| dc.subject | 多層量子井 | zh_TW |
| dc.subject | 氮化銦鎵 | zh_TW |
| dc.subject | nanorods | en |
| dc.subject | GaN | en |
| dc.subject | InGaN | en |
| dc.subject | multiple quantum well | en |
| dc.subject | piezoelectric | en |
| dc.subject | piezotronic | en |
| dc.subject | ZnO | en |
| dc.title | 奈米壓電材料之研究與應用:
氧化鋅奈米柱與氮化銦鎵/氮化鎵多重量子井 | zh_TW |
| dc.title | Study and application of nano-piezoelectric materials:
ZnO nanorods and InGaN/GaN multiple quantum wells | en |
| dc.type | Thesis | |
| dc.date.schoolyear | 99-2 | |
| dc.description.degree | 碩士 | |
| dc.contributor.oralexamcommittee | 林泰源,梁啟德 | |
| dc.subject.keyword | 壓電效應,氧化鋅,奈米柱,多層量子井,氮化銦鎵,氮化鎵, | zh_TW |
| dc.subject.keyword | piezoelectric,piezotronic,ZnO,nanorods,multiple quantum well,InGaN,GaN, | en |
| dc.relation.page | 49 | |
| dc.rights.note | 有償授權 | |
| dc.date.accepted | 2011-07-13 | |
| dc.contributor.author-college | 理學院 | zh_TW |
| dc.contributor.author-dept | 應用物理所 | zh_TW |
| 顯示於系所單位: | 應用物理研究所 | |
文件中的檔案:
| 檔案 | 大小 | 格式 | |
|---|---|---|---|
| ntu-100-1.pdf 未授權公開取用 | 4.44 MB | Adobe PDF |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。
