請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/39349完整後設資料紀錄
| DC 欄位 | 值 | 語言 |
|---|---|---|
| dc.contributor.advisor | 張斐章 | |
| dc.contributor.author | Han-Chung Yang | en |
| dc.contributor.author | 楊翰宗 | zh_TW |
| dc.date.accessioned | 2021-06-13T17:26:34Z | - |
| dc.date.available | 2008-01-21 | |
| dc.date.copyright | 2005-01-21 | |
| dc.date.issued | 2005 | |
| dc.date.submitted | 2005-01-15 | |
| dc.identifier.citation | 王傳益(2000),“湍流水力特性之研究”,中興大學土木工程學系博士論文。
胡春宏、惠遇甲(1995),“明渠挾沙水流運動的力學和統計規律”,科學出版社。 張斐章、張麗秋、黃浩倫(2003),“類神經網路:理論與實務”,東華書局,臺北。 楊翰宗(1998),“陡坡光滑渠流水力特性之研究”,中興大學土木工程研究所碩士論文。 竇國仁(1980),“明渠和管道紊流結構”,中國科學,第11期。 Cardoso, A. H., Graf, W. H., and Gust, G. (1989). “Uniform flow in a smooth open channel.” J. Hydr. Res., 27(5), 603-616. Chang, F. J., and Hwang, Y. Y. (1999). “A self-organization algorithm for real-time flood forecast.” Hydrol. Process., 13, 123-138. Chang, F. J., and Chen, Y. C. (2001). “A counterpropagation fuzzy-neural network modeling approach to real time streamflow prediction.” J. Hydrol., 245, 153-164. Chang, F. J., Hu, H. F. and Chen, Y. C. (2001a). “Counterpropagation fuzzy-neural network for streamflow reconstructing.” Hydrol. Process., 15, 219-232. Chang, F. J., Liang, J. M., and Chen, Y. C. (2001b). “Flood forecasting using Radial Basis Function Neural Network.” IEEE Trans. On Systems, Man and Cybernetics Part C: Appl. And Rev., 31(4), 530-535. Chang, L. C., and Chang, F. J. (2001). “Intelligent control for modeling of real time reservoir operation.” Hydrol. Process., 15, 1621-1634. Chang, Y. T., Chang, L. C., and Chang, F. J. (2004). “Intelligent control for modeling of real time reservoir operation: Part II ANN with operating curves.” Hydrol. Process., (in press). Champagne, F. H., Sleicher C. A., and Wehrmann O. H. (1976). “Turbulence measurements with inclined hot-wires.” J. Fluid Mech., 28, 153-176. Chiang, Y. M., Chang, L.C. and Chang, F. J. (2004). “Comparison of static-feedforward and dynamic-feedback neural networks for rainfall-runoff modeling.” J. Hydrol., 290, 297-311. Hsu, K.L., Gupta, H.V., and Sorooshian, S. (1995). “Artificial neural network modeling of the rainfall–runoff process.” Water Resour. Res., 31 (10), 2517-2530. Karman, TH. von (1934). “Turbulence and skin friction.” J. Aeronaut. Sci., 1(1). Keulegan, G. H. (1938). “Laws of turbulent flow in open channels.” Journal of Research, National Bureau of Standards, Vol. 121. Kirkgöz, M. S. (1989). “Turbulent velocity profiles for smooth and rough open channel flow.” J. Hydr. Engrg., ASCE, 115(11), 1543-1561. Krans, N.C., Lohrmann, A., and Cabrera, R. (1994). “New acoustic meter for measuring 3D Laboratory flow.” J. Hydr. Engrg., ASCE, 120(3), 406-412. Lu, J. Y., Hong, J. H., Lee, K. Z., Wang, C. Y., and Yang, H. C. (2003). “Measurement and simulation of turbulent flow in a steep open-channel with smooth boundary.” Journal of the Chinese Institute of Engineers, 26(2), 201-210. Nezu, I., and Nakagawa, H. (1984). “Cellular secondary currents in straight conduit.” J. Hydr. Engrg., ASCE, 110(2), 173-193. Nezu, I., and Rodi, W. (1986).“Open-channel flow measurements with a laser Doppler anemometer.” J. Hydr. Engrg., ASCE, 112(5), 335-355. Nezu, I., and Nakagawa, H. (1993). “Turbulence in open channel flows.” A. A. Balkema Publishers. Oberg, K.A., and Mueller, D.S. (1994). “Recent applications of acoustic Doppler current profilers.” Buffalo, NY, August 1-5, 1994, American Society of Civil Engineers Proceedings from Symposium on Fundamentals and Advancements in Hydraulic Measurements and Experimentation, 341-350. Rolland, T., and Lemmin, U. (1997). “A two-component acoustic velocity profiler for use in turbulent open-channel flow.” J. Hydraulic Research, 35(4), 545-561. Rosenblatt, F. (1958). “The Perceptron: A probabilistic model for information storage and organization in the brain.” Psychological Review, 65, 386-408. Rumelhart, D. E., and McClelland, J. L., (1986). “Parallel distributed processing.” MIT Press and the PDP Research Group, Cambridge. Rumelhart, D. E., Hinton, G. E., and Williams, R. J. (1986). “Learning internal representation by error propagation.” Parallel distributed processing, 1, 318-362. Schlichting, H. (1979). “Boundary layer theory.” Seventh Edition, McGraw-Hill Book Company. Sarma, K. V. N., Lakshminaraynan, P., and Rao, N. S. L. (1983). “Velocity distribution in smooth rectangular open channels.” J. Hydr. Engrg., ASCE, 109(2), 270-289. Steffler, P. M., Rajaratnam, N., and Peterson, A. W. (1985). “LDA measurements in open channel.” J. Hydr. Engrg., ASCE, 111(1), 119-130. Tracy, H. J., and Lester, C. M. (1961). “Resistance coefficients and velocity distribution smooth rectangular channel.” Water Supply Paper 1592-A, U. S. Geological Survey. Toffaleti, F.B. (1969). “A procedure for computation of the total river sand discharge and detailed distribution, bed to surface.” Technical Report No.5, Committee on Cannel Stabilization, Corps of Engineers, U.S. Army, Vicksburg, Miss. Tominaga, A., and Nezu, I. (1992). “Velocity profiles in steep open channel flows.” J. Hydr. Engrg., ASCE, 118(1), 73-90. Yang, H. C., and Chang, F. J. (2004). “Modelling the combined open channel flow by artificial neural network”, Hydrol. Process., (accept). | |
| dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/39349 | - |
| dc.description.abstract | 研究複雜水流流場的水力特性首重平均流速剖面之研析,因而,本論文透過於臺北自來水事業處直潭淨水場內流量量測資料蒐集,以及楊(1998)的實驗成果,試圖以具有強大學習能力及歸納推演的類神經網路(Artificial Neural Networks,簡稱ANN),應用於所蒐集的實驗量測資料,進行平均流速剖面的模擬分析與推估比對。以期對複雜水流紊動現象能有進一步的掌握,從而能更精確的推判輸水設備之流量及大幅減輕日後相同檢測實驗上所需花費的經費。
直潭淨水場內淨水設備的檢測實驗係採用聲波杜卜勒測速儀(Acoustic Doppler Velocimeter,簡稱ADV),進行八組不同定量流之平均速度資料蒐集,每組流量於量測斷面共測取八條不同位置之平均速度剖面,每條剖面量取十個不同位置之速度值,全部實驗共含640個平均速度值。實驗寬深比介於1.388與1.438之間;渠道為混凝土邊壁,且底床坡度固定為0.1%;雷諾數涵蓋4000005與800000之範圍;福祿數則介於0.068與0.118,所有實驗流況均屬於亞臨界流況(subcritical flow)。楊(1998)的實驗則使用光纖雷射杜卜勒測速儀(Fiber-optic Laser Doppler Velocimetry,簡稱FLDV)進行陡坡光滑床面的明渠流流場特性之研究。實驗寬深比介於3.79與11.36之間;光滑底床坡度變化分別為0.3%、1%及2%;雷諾數涵蓋10000與80000之範圍;福祿數則介於0.96與2.72,大部份實驗流況屬於超臨界流況(supercritical flow)。 研究中,類神經網路選擇最具代表性與應用最為廣泛之倒傳遞網路(Back-Propagation Network)進行平均速度剖面模式之建構與應用。倒傳遞神經網路則使用三層架構之網路,分別為輸入層、隱藏層以及輸出層。輸入項主要有寬深比、坡度及速度剖面量測位置等;輸出層為平均速度值。模式建構之過程,將資料分為訓練、驗證與測試三階段,以分別獲得最佳訓練模擬與推估的情形。研究結果顯示,倒傳遞神經網路對於模擬與推估陡坡光滑實驗水槽及淨水場實驗輸水幹渠之平均速度剖面,皆具有相當良好之成效。由實驗之成果可知,應用類神經網路模式,可有效降低日後實驗檢測之花費,成果值得推廣。除此之外,倒傳遞神經網路所模擬與推估之平均速度剖面與斷面積相乘後累加,可推求相對應的流量,進而建立水深-流量關係曲線,日後藉由水深的量測即可迅速精確得知渠道之流水量。此結果對於灌溉排水等固定渠道之流量量測,提供一便利且精確之方法。 | zh_TW |
| dc.description.abstract | The Artificial Neural Network (ANN) has great capability for solving various complex problems, such as function approximation. The main objective of this study was to evaluate the applicability of the ANN for simulating and estimating mean velocity profiles and the discharges accordingly. The data obtained from the open channel of the Chihtan purification plant, Taipei and experimental on steep open channel flow (Yang, 1998) were used to train and verify the proposed ANN.
An Acoustic Doppler Velocimeter (ADV) was adopted in this experimental study to measure the mean velocity profiles in the open channel of the Chihtan purification plant, Taipei, at fixed measuring section with eight different discharges and ten different depths. The total number of experimental data sets was 640. In this study, the aspect ratio varied from 1.388 to 1.438, the Reynolds number varied from 400000 to 800000, and the channel bed slope of 0.1% was selected. The Froude number ranged from 0.068 to 0.118, and all of the experiments belonged to subcritical flow. Yang (1998) used the Fiber-optic Laser Doppler Velocimetry (FLDV) to investigate the characteristics of the steep open channel flow over a smooth boundary, that the aspect ratio varied from 3.79 to 11.36, the Reynolds number varied from 10000 to 80000, and the channel bed slope of 0.3%, 1% and 2% were selected. The Froude number ranged from 0.96 to 2.72, and most of the experiments belonged to supercritical flow. The backpropagation (BP) algorithm was applied to construct the neural network. The structure of the BP neural network included input, hidden, and output layers. The input layer contained B/H, S, and Z, while the output layer has only one node representing the velocity value in the specific location of y/H on the vertical. The experimental data were split into three sub-sets, training, validation and testing sets to train and to verify the built ANN. The results demonstrated that the constructed neural network models could be embedded as a module for estimating or generating the profiles of mean velocity for turbulent open channel flows. The model could be used as a powerful tool to simulate and estimate the flow profiles for the similar flow conditions to reduce the cost of the experimental work. The trained model could also be used to provide the flow profiles for missing data, and estimated the discharge for a given specific depth. | en |
| dc.description.provenance | Made available in DSpace on 2021-06-13T17:26:34Z (GMT). No. of bitstreams: 1 ntu-94-D89622004-1.pdf: 1487937 bytes, checksum: 33b801637831d41a9aac5c6ead667f8b (MD5) Previous issue date: 2005 | en |
| dc.description.tableofcontents | 中文摘要 1
ABSTRACT III 圖錄 VII 表錄 X 符號說明 XI 第一章 緒言 1 1-1 研究背景 1 1-2 研究目的 4 1-3 內文組織 5 第二章 文獻回顧與理論概述 6 2-1 倒傳遞神經網路 6 2-1.1 網路架構 7 2-1.2 網路原理 7 2-1.3 網路演算法與流程 9 2-2 平均流速剖面理論 17 2-2.1 壁定理(law of the wall) 17 2-2.1 速度欠損律(velocity-defect law) 18 2-2.2 冪次定理(power law) 20 2-2.3 明渠水流流速剖面 20 2-3 水流流速量測方法 22 2-3.1 實驗室流速量測法 22 2-3.2 野外流速量測法 23 第三章 實驗資料蒐集 27 3-1 室內水槽實驗資料 27 3-2 直潭淨水廠實驗資料 30 3-2.1 環境介紹 30 3-2.2 設備與佈置 32 3-2.3 實驗條件 36 3-2.4 實驗過程 37 第四章 實驗結果與分析 38 4-1 平均速度分析 39 4-1.1 平均速度剖面 39 4-1.2 等流速線圖 40 4-2 流場分析 41 第五章 類神經網路模式與應用 55 5-1 室內水槽實驗資料模擬與應用結果 55 5-1.1 流速剖面神經網路模式架構 55 5-1.2 模式檢定與驗證 57 5-1.3 實驗效益探討 65 5-2 直潭淨水場實驗資料模擬與應用 78 5-2.1 神經網路架構 78 5-2.2 模式檢定與驗證 79 5-2.3 模式結果評估 87 5-2.4 水深-流量關係建立 93 第六章 結論與建議 97 6-1結論 97 6-2 建議 98 參考文獻 100 學術著作 104 | |
| dc.language.iso | zh-TW | |
| dc.subject | 聲波杜卜勒測速儀 | zh_TW |
| dc.subject | 光纖雷射杜卜勒測速儀 | zh_TW |
| dc.subject | 倒傳遞網路 | zh_TW |
| dc.subject | 類神經網路 | zh_TW |
| dc.subject | Fiber-optic Laser Doppler Velocimetry | en |
| dc.subject | Artificial Neural Network | en |
| dc.subject | Back-Propagation Network | en |
| dc.subject | AcousticDoppler Velocimeter | en |
| dc.title | 類神經網路應用於光纖雷射與聲波杜卜勒測速儀渠流速度剖面量測之研究 | zh_TW |
| dc.title | A Study of Artificial Neural Network for Constructing Channel Velocity Profiles Measured with FLDV and ADV | en |
| dc.type | Thesis | |
| dc.date.schoolyear | 93-1 | |
| dc.description.degree | 博士 | |
| dc.contributor.oralexamcommittee | 陳正炎,蔡長泰,黃文政,盧昭堯 | |
| dc.subject.keyword | 光纖雷射杜卜勒測速儀,倒傳遞網路,類神經網路,聲波杜卜勒測速儀, | zh_TW |
| dc.subject.keyword | AcousticDoppler Velocimeter,Fiber-optic Laser Doppler Velocimetry,Back-Propagation Network,Artificial Neural Network, | en |
| dc.relation.page | 105 | |
| dc.rights.note | 有償授權 | |
| dc.date.accepted | 2005-01-17 | |
| dc.contributor.author-college | 生物資源暨農學院 | zh_TW |
| dc.contributor.author-dept | 生物環境系統工程學研究所 | zh_TW |
| 顯示於系所單位: | 生物環境系統工程學系 | |
文件中的檔案:
| 檔案 | 大小 | 格式 | |
|---|---|---|---|
| ntu-94-1.pdf 未授權公開取用 | 1.45 MB | Adobe PDF |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。
