Skip navigation

DSpace

機構典藏 DSpace 系統致力於保存各式數位資料(如:文字、圖片、PDF)並使其易於取用。

點此認識 DSpace
DSpace logo
English
中文
  • 瀏覽論文
    • 校院系所
    • 出版年
    • 作者
    • 標題
    • 關鍵字
    • 指導教授
  • 搜尋 TDR
  • 授權 Q&A
    • 我的頁面
    • 接受 E-mail 通知
    • 編輯個人資料
  1. NTU Theses and Dissertations Repository
  2. 生物資源暨農學院
  3. 獸醫專業學院
  4. 獸醫學系
請用此 Handle URI 來引用此文件: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/39328
完整後設資料紀錄
DC 欄位值語言
dc.contributor.advisor朱瑞民
dc.contributor.authorTien-Fu Chuangen
dc.contributor.author莊添富zh_TW
dc.date.accessioned2021-06-13T17:26:07Z-
dc.date.available2007-02-02
dc.date.copyright2005-02-02
dc.date.issued2005
dc.date.submitted2005-01-20
dc.identifier.citation1. Trinchieri, G. Interleukin-12 and the regulation of innate resistance and adaptive immunity. Nat Rev Immunol, 3: 133-146, 2003.
2. Kobayashi, M., Fitz, L., Ryan, M., Hewick, R. M., Clark, S. C., Chan, S., Loudon, R., Sherman, F., Perussia, B., and Trinchieri, G. Identification and purification of natural killer cell stimulatory factor (NKSF), a cytokine with multiple biologic effects on human lymphocytes. J Exp Med, 170: 827-845, 1989.
3. Chan, S. H., Perussia, B., Gupta, J. W., Kobayashi, M., Pospisil, M., Young, H. A., Wolf, S. F., Young, D., Clark, S. C., and Trinchieri, G. Induction of interferon gamma production by natural killer cell stimulatory factor: characterization of the responder cells and synergy with other inducers. J Exp Med, 173: 869-879, 1991.
4. Wolf, S. F., Temple, P. A., Kobayashi, M., Young, D., Dicig, M., Lowe, L., Dzialo, R., Fitz, L., Ferenz, C., Hewick, R. M., and et al. Cloning of cDNA for natural killer cell stimulatory factor, a heterodimeric cytokine with multiple biologic effects on T and natural killer cells. J Immunol, 146: 3074-3081, 1991.
5. Decken, K., Kohler, G., Palmer-Lehmann, K., Wunderlin, A., Mattner, F., Magram, J., Gately, M. K., and Alber, G. Interleukin-12 is essential for a protective Th1 response in mice infected with Cryptococcus neoformans. Infect Immun, 66: 4994-5000, 1998.
6. Kovarik, J., Martinez, X., Pihlgren, M., Bozzotti, P., Tao, M. H., Kipps, T. J., Wild, T. F., Lambert, P. H., and Siegrist, C. A. Limitations of in vivo IL-12 supplementation strategies to induce Th1 early life responses to model viral and bacterial vaccine antigens. Virology, 268: 122-131, 2000.
7. Germann, T., Gately, M. K., Schoenhaut, D. S., Lohoff, M., Mattner, F., Fischer, S., Jin, S. C., Schmitt, E., and Rude, E. Interleukin-12/T cell stimulating factor, a cytokine with multiple effects on T helper type 1 (Th1) but not on Th2 cells. Eur J Immunol, 23: 1762-1770, 1993.
8. Manetti, R., Parronchi, P., Giudizi, M. G., Piccinni, M. P., Maggi, E., Trinchieri, G., and Romagnani, S. Natural killer cell stimulatory factor (interleukin 12 [IL-12]) induces T helper type 1 (Th1)-specific immune responses and inhibits the development of IL-4-producing Th cells. J Exp Med, 177: 1199-1204, 1993.
9. Coughlin, C. M., Salhany, K. E., Wysocka, M., Aruga, E., Kurzawa, H., Chang, A. E., Hunter, C. A., Fox, J. C., Trinchieri, G., and Lee, W. M. Interleukin-12 and interleukin-18 synergistically induce murine tumor regression which involves inhibition of angiogenesis. J Clin Invest, 101: 1441-1452, 1998.
10. Voest, E. E., Kenyon, B. M., O'Reilly, M. S., Truitt, G., D'Amato, R. J., and Folkman, J. Inhibition of angiogenesis in vivo by interleukin 12. J Natl Cancer Inst, 87: 581-586, 1995.
11. Kobayashi, T., Shiiba, K., Satoh, M., Hashimoto, W., Mizoi, T., Matsuno, S., and Takeda, K. Interleukin-12 administration is more effective for preventing metastasis than for inhibiting primary established tumors in a murine model of spontaneous hepatic metastasis. Surg Today, 32: 236-242, 2002.
12. Zhang, R. and DeGroot, L. J. Gene therapy of a rat follicular thyroid carcinoma model with adenoviral vectors transducing murine interleukin-12. Endocrinology, 144: 1393-1398, 2003.
13. Zanten Jv, J., Meer, B. D., Audouy, S., Kok, R. J., and Leij Ld, L. A nonviral carrier for targeted gene delivery to tumor cells. Cancer Gene Ther, 2003.
14. Mazzolini, G., Prieto, J., and Melero, I. Gene therapy of cancer with interleukin-12. Curr Pharm Des, 9: 1981-1991, 2003.
15. Muramatsu, T., Mizutani, Y., Ohmori, Y., and Okumura, J. Comparison of three nonviral transfection methods for foreign gene expression in early chicken embryos in ovo. Biochem Biophys Res Commun, 230: 376-380, 1997.
16. Wells, J. M., Li, L. H., Sen, A., Jahreis, G. P., and Hui, S. W. Electroporation-enhanced gene delivery in mammary tumors. Gene Ther, 7: 541-547, 2000.
17. Somiari, S., Glasspool-Malone, J., Drabick, J. J., Gilbert, R. A., Heller, R., Jaroszeski, M. J., and Malone, R. W. Theory and in vivo application of electroporative gene delivery. Mol Ther, 2: 178-187, 2000.
18. Mir, L. M. Therapeutic perspectives of in vivo cell electropermeabilization. Bioelectrochemistry, 53: 1-10, 2001.
19. Dev, S. B. and Hofmann, G. A. Electrochemotherapy--a novel method of cancer treatment. Cancer Treat Rev, 20: 105-115, 1994.
20. Li, S., Zhang, X., and Xia, X. Regression of tumor growth and induction of long-term antitumor memory by interleukin 12 electro-gene therapy. J Natl Cancer Inst, 94: 762-768, 2002.
21. Yamashita, Y. I., Shimada, M., Hasegawa, H., Minagawa, R., Rikimaru, T., Hamatsu, T., Tanaka, S., Shirabe, K., Miyazaki, J. I., and Sugimachi, K. Electroporation-mediated interleukin-12 gene therapy for hepatocellular carcinoma in the mice model. Cancer Res, 61: 1005-1012, 2001.
22. Lo, C. H., Lee, S. C., Wu, P. Y., Pan, W. Y., Su, J., Cheng, C. W., Roffler, S. R., Chiang, B. L., Lee, C. N., Wu, C. W., and Tao, M. H. Antitumor and antimetastatic activity of IL-23. J Immunol, 171: 600-607, 2003.
23. Di Carlo, E., Comes, A., Orengo, A. M., Rosso, O., Meazza, R., Musiani, P., Colombo, M. P., and Ferrini, S. IL-21 induces tumor rejection by specific CTL and IFN-gamma-dependent CXC chemokines in syngeneic mice. J Immunol, 172: 1540-1547, 2004.
24. Tirapu, I., Rodriguez-Calvillo, M., Qian, C., Duarte, M., Smerdou, C., Palencia, B., Mazzolini, G., Prieto, J., and Melero, I. Cytokine gene transfer into dendritic cells for cancer treatment. Curr Gene Ther, 2: 79-89, 2002.
25. de Vos, S., Kohn, D. B., Cho, S. K., McBride, W. H., Said, J. W., and Koeffler, H. P. Immunotherapy against murine leukemia. Leukemia, 12: 401-405, 1998.
26. Chada, S., Ramesh, R., and Mhashilkar, A. M. Cytokine- and chemokine-based gene therapy for cancer. Curr Opin Mol Ther, 5: 463-474, 2003.
27. Hanna, E., Zhang, X., Woodlis, J., Breau, R., Suen, J., and Li, S. Intramuscular electroporation delivery of IL-12 gene for treatment of squamous cell carcinoma located at distant site. Cancer Gene Ther, 8: 151-157, 2001.
28. Yao, L., Pike, S. E., Setsuda, J., Parekh, J., Gupta, G., Raffeld, M., Jaffe, E. S., and Tosato, G. Effective targeting of tumor vasculature by the angiogenesis inhibitors vasostatin and interleukin-12. Blood, 96: 1900-1905, 2000.
29. Sunamura, M., Sun, L., Lozonschi, L., Duda, D. G., Kodama, T., Matsumoto, G., Shimamura, H., Takeda, K., Kobari, M., Hamada, H., and Matsuno, S. The antiangiogenesis effect of interleukin 12 during early growth of human pancreatic cancer in SCID mice. Pancreas, 20: 227-233, 2000.
30. Trinchieri, G. Interleukin-12: a proinflammatory cytokine with immunoregulatory functions that bridge innate resistance and antigen-specific adaptive immunity. Annu Rev Immunol, 13: 251-276, 1995.
31. Trinchieri, G. and Scott, P. Interleukin-12: a proinflammatory cytokine with immunoregulatory functions. Res Immunol, 146: 423-431, 1995.
32. Ma, X., D'Andrea, A., Kubin, M., Aste-Amezaga, M., Sartori, A., Monteiro, J., Showe, L., Wysocka, M., and Trinchieri, G. Production of interleukin-12. Res Immunol, 146: 432-438, 1995.
33. Cella, M., Scheidegger, D., Palmer-Lehmann, K., Lane, P., Lanzavecchia, A., and Alber, G. Ligation of CD40 on dendritic cells triggers production of high levels of interleukin-12 and enhances T cell stimulatory capacity: T-T help via APC activation. J Exp Med, 184: 747-752, 1996.
34. Koch, F., Stanzl, U., Jennewein, P., Janke, K., Heufler, C., Kampgen, E., Romani, N., and Schuler, G. High level IL-12 production by murine dendritic cells: upregulation via MHC class II and CD40 molecules and downregulation by IL-4 and IL-10. J Exp Med, 184: 741-746, 1996.
35. Heufler, C., Koch, F., Stanzl, U., Topar, G., Wysocka, M., Trinchieri, G., Enk, A., Steinman, R. M., Romani, N., and Schuler, G. Interleukin-12 is produced by dendritic cells and mediates T helper 1 development as well as interferon-gamma production by T helper 1 cells. Eur J Immunol, 26: 659-668, 1996.
36. Rabinowich, H., Herberman, R. B., and Whiteside, T. L. Differential effects of IL12 and IL2 on expression and function of cellular adhesion molecules on purified human natural killer cells. Cell Immunol, 152: 481-498, 1993.
37. Xu, D., Chan, W. L., Leung, B. P., Hunter, D., Schulz, K., Carter, R. W., McInnes, I. B., Robinson, J. H., and Liew, F. Y. Selective expression and functions of interleukin 18 receptor on T helper (Th) type 1 but not Th2 cells. J Exp Med, 188: 1485-1492, 1998.
38. Trinchieri, G. The two faces of interleukin 12: a pro-inflammatory cytokine and a key immunoregulatory molecule produced by antigen-presenting cells. Ciba Found Symp, 195: 203-214; discussion 214-220, 1995.
39. Aste-Amezaga, M., D'Andrea, A., Kubin, M., and Trinchieri, G. Cooperation of natural killer cell stimulatory factor/interleukin-12 with other stimuli in the induction of cytokines and cytotoxic cell-associated molecules in human T and NK cells. Cell Immunol, 156: 480-492, 1994.
40. Trinchieri, G. Interleukin-12: a cytokine produced by antigen-presenting cells with immunoregulatory functions in the generation of T-helper cells type 1 and cytotoxic lymphocytes. Blood, 84: 4008-4027, 1994.
41. dos Santos, L. R., Barrouin-Melo, S. M., Chang, Y. F., Olsen, J., McDonough, S. P., Quimby, F., dos Santos, W. L., Pontes-de-Carvalho, L. C., and Oliveira, G. G. Recombinant single-chain canine interleukin 12 induces interferon gamma mRNA expression in peripheral blood mononuclear cells of dogs with visceral leishmaniasis. Vet Immunol Immunopathol, 98: 43-48, 2004.
42. Houghton, A. N., Thomson, T. M., Gross, D., Oettgen, H. F., and Old, L. J. Surface antigens of melanoma and melanocytes. Specificity of induction of Ia antigens by human gamma-interferon. J Exp Med, 160: 255-269, 1984.
43. Sgadari, C., Angiolillo, A. L., and Tosato, G. Inhibition of angiogenesis by interleukin-12 is mediated by the interferon-inducible protein 10. Blood, 87: 3877-3882, 1996.
44. Gerber, S. A., Moran, J. P., Frelinger, J. G., Frelinger, J. A., Fenton, B. M., and Lord, E. M. Mechanism of IL-12 mediated alterations in tumour blood vessel morphology: analysis using whole-tissue mounts. Br J Cancer, 88: 1453-1461, 2003.
45. Yao, L., Sgadari, C., Furuke, K., Bloom, E. T., Teruya-Feldstein, J., and Tosato, G. Contribution of natural killer cells to inhibition of angiogenesis by interleukin-12. Blood, 93: 1612-1621, 1999.
46. Perussia, B., Chan, S. H., D'Andrea, A., Tsuji, K., Santoli, D., Pospisil, M., Young, D., Wolf, S. F., and Trinchieri, G. Natural killer (NK) cell stimulatory factor or IL-12 has differential effects on the proliferation of TCR-alpha beta+, TCR-gamma delta+ T lymphocytes, and NK cells. J Immunol, 149: 3495-3502, 1992.
47. Naume, B., Gately, M., and Espevik, T. A comparative study of IL-12 (cytotoxic lymphocyte maturation factor)-, IL-2-, and IL-7-induced effects on immunomagnetically purified CD56+ NK cells. J Immunol, 148: 2429-2436, 1992.
48. Naume, B., Johnsen, A. C., Espevik, T., and Sundan, A. Gene expression and secretion of cytokines and cytokine receptors from highly purified CD56+ natural killer cells stimulated with interleukin-2, interleukin-7 and interleukin-12. Eur J Immunol, 23: 1831-1838, 1993.
49. Li, L., Young, D., Wolf, S. F., and Choi, Y. S. Interleukin-12 stimulates B cell growth by inducing IFN-gamma. Cell Immunol, 168: 133-140, 1996.
50. Jones, B. M. Effect of 12 neutralizing anti-cytokine antibodies on in vitro activation of B-cells. Interleukin-12 is required by B1a but not B2 cells. Scand J Immunol, 43: 64-72, 1996.
51. Dubois, B., Barthelemy, C., Durand, I., Liu, Y. J., Caux, C., and Briere, F. Toward a role of dendritic cells in the germinal center reaction: triggering of B cell proliferation and isotype switching. J Immunol, 162: 3428-3436, 1999.
52. Dubois, B., Massacrier, C., Vanbervliet, B., Fayette, J., Briere, F., Banchereau, J., and Caux, C. Critical role of IL-12 in dendritic cell-induced differentiation of naive B lymphocytes. J Immunol, 161: 2223-2231, 1998.
53. Vogel, L. A., Lester, T. L., Van Cleave, V. H., and Metzger, D. W. Inhibition of murine B1 lymphocytes by interleukin-12. Eur J Immunol, 26: 219-223, 1996.
54. Morris, S. C., Madden, K. B., Adamovicz, J. J., Gause, W. C., Hubbard, B. R., Gately, M. K., and Finkelman, F. D. Effects of IL-12 on in vivo cytokine gene expression and Ig isotype selection. J Immunol, 152: 1047-1056, 1994.
55. Kiniwa, M., Gately, M., Gubler, U., Chizzonite, R., Fargeas, C., and Delespesse, G. Recombinant interleukin-12 suppresses the synthesis of immunoglobulin E by interleukin-4 stimulated human lymphocytes. J Clin Invest, 90: 262-266, 1992.
56. King, C. L., Hakimi, J., Shata, M. T., and Medhat, A. IL-12 regulation of parasite antigen-driven IgE production in human helminth infections. J Immunol, 155: 454-461, 1995.
57. Metzger, D. W., Vogel, L. A., Van Cleave, V. H., Lester, T. L., and Buchanan, J. M. The effects of IL12 on B-cell subset function. Res Immunol, 146: 499-505, 1995.
58. Seder, R. A., Gazzinelli, R., Sher, A., and Paul, W. E. Interleukin 12 acts directly on CD4+ T cells to enhance priming for interferon gamma production and diminishes interleukin 4 inhibition of such priming. Proc Natl Acad Sci U S A, 90: 10188-10192, 1993.
59. Wu, C. Y., Demeure, C., Kiniwa, M., Gately, M., and Delespesse, G. IL-12 induces the production of IFN-gamma by neonatal human CD4 T cells. J Immunol, 151: 1938-1949, 1993.
60. Ma, X., Chow, J. M., Gri, G., Carra, G., Gerosa, F., Wolf, S. F., Dzialo, R., and Trinchieri, G. The interleukin 12 p40 gene promoter is primed by interferon gamma in monocytic cells. J Exp Med, 183: 147-157, 1996.
61. Afonso, L. C., Scharton, T. M., Vieira, L. Q., Wysocka, M., Trinchieri, G., and Scott, P. The adjuvant effect of interleukin-12 in a vaccine against Leishmania major. Science, 263: 235-237, 1994.
62. Miller, M. A., Skeen, M. J., and Ziegler, H. K. Nonviable bacterial antigens administered with IL-12 generate antigen-specific T cell responses and protective immunity against Listeria monocytogenes. J Immunol, 155: 4817-4828, 1995.
63. Kim, J. J., Ayyavoo, V., Bagarazzi, M. L., Chattergoon, M. A., Dang, K., Wang, B., Boyer, J. D., and Weiner, D. B. In vivo engineering of a cellular immune response by coadministration of IL-12 expression vector with a DNA immunogen. J Immunol, 158: 816-826, 1997.
64. Gavett, S. H., O'Hearn, D. J., Li, X., Huang, S. K., Finkelman, F. D., and Wills-Karp, M. Interleukin 12 inhibits antigen-induced airway hyperresponsiveness, inflammation, and Th2 cytokine expression in mice. J Exp Med, 182: 1527-1536, 1995.
65. Heinzel, F. P., Schoenhaut, D. S., Rerko, R. M., Rosser, L. E., and Gately, M. K. Recombinant interleukin 12 cures mice infected with Leishmania major. J Exp Med, 177: 1505-1509, 1993.
66. Gazzinelli, R. T., Giese, N. A., and Morse, H. C., 3rd In vivo treatment with interleukin 12 protects mice from immune abnormalities observed during murine acquired immunodeficiency syndrome (MAIDS). J Exp Med, 180: 2199-2208, 1994.
67. Trinchieri, G. Interleukin-12: a cytokine at the interface of inflammation and immunity. Adv Immunol, 70: 83-243, 1998.
68. D'Andrea, A., Rengaraju, M., Valiante, N. M., Chehimi, J., Kubin, M., Aste, M., Chan, S. H., Kobayashi, M., Young, D., Nickbarg, E., and et al. Production of natural killer cell stimulatory factor (interleukin 12) by peripheral blood mononuclear cells. J Exp Med, 176: 1387-1398, 1992.
69. Gillessen, S., Carvajal, D., Ling, P., Podlaski, F. J., Stremlo, D. L., Familletti, P. C., Gubler, U., Presky, D. H., Stern, A. S., and Gately, M. K. Mouse interleukin-12 (IL-12) p40 homodimer: a potent IL-12 antagonist. Eur J Immunol, 25: 200-206, 1995.
70. Ling, P., Gately, M. K., Gubler, U., Stern, A. S., Lin, P., Hollfelder, K., Su, C., Pan, Y. C., and Hakimi, J. Human IL-12 p40 homodimer binds to the IL-12 receptor but does not mediate biologic activity. J Immunol, 154: 116-127, 1995.
71. Carra, G., Gerosa, F., and Trinchieri, G. Biosynthesis and posttranslational regulation of human IL-12. J Immunol, 164: 4752-4761, 2000.
72. Schoenhaut, D. S., Chua, A. O., Wolitzky, A. G., Quinn, P. M., Dwyer, C. M., McComas, W., Familletti, P. C., Gately, M. K., and Gubler, U. Cloning and expression of murine IL-12. J Immunol, 148: 3433-3440, 1992.
73. Gately, M. K., Renzetti, L. M., Magram, J., Stern, A. S., Adorini, L., Gubler, U., and Presky, D. H. The interleukin-12/interleukin-12-receptor system: role in normal and pathologic immune responses. Annu Rev Immunol, 16: 495-521, 1998.
74. Presky, D. H., Yang, H., Minetti, L. J., Chua, A. O., Nabavi, N., Wu, C. Y., Gately, M. K., and Gubler, U. A functional interleukin 12 receptor complex is composed of two beta-type cytokine receptor subunits. Proc Natl Acad Sci U S A, 93: 14002-14007, 1996.
75. Cho, S. S., Bacon, C. M., Sudarshan, C., Rees, R. C., Finbloom, D., Pine, R., and O'Shea, J. J. Activation of STAT4 by IL-12 and IFN-alpha: evidence for the involvement of ligand-induced tyrosine and serine phosphorylation. J Immunol, 157: 4781-4789, 1996.
76. Bacon, C. M., Petricoin, E. F., 3rd, Ortaldo, J. R., Rees, R. C., Larner, A. C., Johnston, J. A., and O'Shea, J. J. Interleukin 12 induces tyrosine phosphorylation and activation of STAT4 in human lymphocytes. Proc Natl Acad Sci U S A, 92: 7307-7311, 1995.
77. Brunda, M. J., Luistro, L., Warrier, R. R., Wright, R. B., Hubbard, B. R., Murphy, M., Wolf, S. F., and Gately, M. K. Antitumor and antimetastatic activity of interleukin 12 against murine tumors. J Exp Med, 178: 1223-1230, 1993.
78. Nanni, P., Rossi, I., De Giovanni, C., Landuzzi, L., Nicoletti, G., Stoppacciaro, A., Parenza, M., Colombo, M. P., and Lollini, P. L. Interleukin 12 gene therapy of MHC-negative murine melanoma metastases. Cancer Res, 58: 1225-1230, 1998.
79. Kodama, T., Takeda, K., Shimozato, O., Hayakawa, Y., Atsuta, M., Kobayashi, K., Ito, M., Yagita, H., and Okumura, K. Perforin-dependent NK cell cytotoxicity is sufficient for anti-metastatic effect of IL-12. Eur J Immunol, 29: 1390-1396, 1999.
80. Smyth, M. J., Taniguchi, M., and Street, S. E. The anti-tumor activity of IL-12: mechanisms of innate immunity that are model and dose dependent. J Immunol, 165: 2665-2670, 2000.
81. Cui, J., Shin, T., Kawano, T., Sato, H., Kondo, E., Toura, I., Kaneko, Y., Koseki, H., Kanno, M., and Taniguchi, M. Requirement for Valpha14 NKT cells in IL-12-mediated rejection of tumors. Science, 278: 1623-1626, 1997.
82. Lucas, M. L. and Heller, R. IL-12 gene therapy using an electrically mediated nonviral approach reduces metastatic growth of melanoma. DNA Cell Biol, 22: 755-763, 2003.
83. Lohr, F., Lo, D. Y., Zaharoff, D. A., Hu, K., Zhang, X., Li, Y., Zhao, Y., Dewhirst, M. W., Yuan, F., and Li, C. Y. Effective tumor therapy with plasmid-encoded cytokines combined with in vivo electroporation. Cancer Res, 61: 3281-3284, 2001.
84. Lucas, M. L., Heller, L., Coppola, D., and Heller, R. IL-12 plasmid delivery by in vivo electroporation for the successful treatment of established subcutaneous B16.F10 melanoma. Mol Ther, 5: 668-675, 2002.
85. Chiodoni, C., Stoppacciaro, A., Sangaletti, S., Gri, G., Cappetti, B., Koezuka, Y., and Colombo, M. P. Different requirements for alpha-galactosylceramide and recombinant IL-12 antitumor activity in the treatment of C-26 colon carcinoma hepatic metastases. Eur J Immunol, 31: 3101-3110, 2001.
86. Vagliani, M., Rodolfo, M., Cavallo, F., Parenza, M., Melani, C., Parmiani, G., Forni, G., and Colombo, M. P. Interleukin 12 potentiates the curative effect of a vaccine based on interleukin 2-transduced tumor cells. Cancer Res, 56: 467-470, 1996.
87. Colombo, M. P., Vagliani, M., Spreafico, F., Parenza, M., Chiodoni, C., Melani, C., and Stoppacciaro, A. Amount of interleukin 12 available at the tumor site is critical for tumor regression. Cancer Res, 56: 2531-2534, 1996.
88. Martinotti, A., Stoppacciaro, A., Vagliani, M., Melani, C., Spreafico, F., Wysocka, M., Parmiani, G., Trinchieri, G., and Colombo, M. P. CD4 T cells inhibit in vivo the CD8-mediated immune response against murine colon carcinoma cells transduced with interleukin-12 genes. Eur J Immunol, 25: 137-146, 1995.
89. Szabo, S. J., Dighe, A. S., Gubler, U., and Murphy, K. M. Regulation of the interleukin (IL)-12R beta 2 subunit expression in developing T helper 1 (Th1) and Th2 cells. J Exp Med, 185: 817-824, 1997.
90. Zilocchi, C., Stoppacciaro, A., Chiodoni, C., Parenza, M., Terrazzini, N., and Colombo, M. P. Interferon gamma-independent rejection of interleukin 12-transduced carcinoma cells requires CD4+ T cells and Granulocyte/Macrophage colony-stimulating factor. J Exp Med, 188: 133-143, 1998.
91. Colombo, M. P., Modesti, A., Parmiani, G., and Forni, G. Local cytokine availability elicits tumor rejection and systemic immunity through granulocyte-T-lymphocyte cross-talk. Cancer Res, 52: 4853-4857, 1992.
92. Rodolfo, M., Melani, C., Zilocchi, C., Cappetti, B., Luison, E., Arioli, I., Parenza, M., Canevari, S., and Colombo, M. P. IgG2a induced by interleukin (IL) 12-producing tumor cell vaccines but not IgG1 induced by IL-4 vaccine is associated with the eradication of experimental metastases. Cancer Res, 58: 5812-5817, 1998.
93. Musiani, P., Allione, A., Modica, A., Lollini, P. L., Giovarelli, M., Cavallo, F., Belardelli, F., Forni, G., and Modesti, A. Role of neutrophils and lymphocytes in inhibition of a mouse mammary adenocarcinoma engineered to release IL-2, IL-4, IL-7, IL-10, IFN-alpha, IFN-gamma, and TNF-alpha. Lab Invest, 74: 146-157, 1996.
94. Musiani, P., Modesti, A., Giovarelli, M., Cavallo, F., Colombo, M. P., Lollini, P. L., and Forni, G. Cytokines, tumour-cell death and immunogenicity: a question of choice. Immunol Today, 18: 32-36, 1997.
95. Cavallo, F., Signorelli, P., Giovarelli, M., Musiani, P., Modesti, A., Brunda, M. J., Colombo, M. P., and Forni, G. Antitumor efficacy of adenocarcinoma cells engineered to produce interleukin 12 (IL-12) or other cytokines compared with exogenous IL-12. J Natl Cancer Inst, 89: 1049-1058, 1997.
96. Di Carlo, E., Rovero, S., Boggio, K., Quaglino, E., Amici, A., Smorlesi, A., Forni, G., and Musiani, P. Inhibition of mammary carcinogenesis by systemic interleukin 12 or p185neu DNA vaccination in Her-2/neu transgenic BALB/c mice. Clin Cancer Res, 7: 830s-837s, 2001.
97. Kubin, M., Kamoun, M., and Trinchieri, G. Interleukin 12 synergizes with B7/CD28 interaction in inducing efficient proliferation and cytokine production of human T cells. J Exp Med, 180: 211-222, 1994.
98. Murphy, E. E., Terres, G., Macatonia, S. E., Hsieh, C. S., Mattson, J., Lanier, L., Wysocka, M., Trinchieri, G., Murphy, K., and O'Garra, A. B7 and interleukin 12 cooperate for proliferation and interferon gamma production by mouse T helper clones that are unresponsive to B7 costimulation. J Exp Med, 180: 223-231, 1994.
99. Coughlin, C. M., Wysocka, M., Kurzawa, H. L., Lee, W. M., Trinchieri, G., and Eck, S. L. B7-1 and interleukin 12 synergistically induce effective antitumor immunity. Cancer Res, 55: 4980-4987, 1995.
100. Yang, J., Qian, Q., Xue, H., Cao, H., Cui, Z., Shi, W., Yang, G., and Wu, M. [IL-12 gene treatment of hepatocellular carcinoma: experimental study]. Zhonghua Wai Ke Za Zhi, 37: 202-204, 1999.
101. Qian, C., Idoate, M., Bilbao, R., Sangro, B., Bruna, O., Vazquez, J., and Prieto, J. Gene transfer and therapy with adenoviral vector in rats with diethylnitrosamine-induced hepatocellular carcinoma. Hum Gene Ther, 8: 349-358, 1997.
102. Harada, N., Shimada, M., Okano, S., Suehiro, T., Soejima, Y., Tomita, Y., and Maehara, Y. IL-12 gene therapy is an effective therapeutic strategy for hepatocellular carcinoma in immunosuppressed mice. J Immunol, 173: 6635-6644, 2004.
103. Jia, S. F., Worth, L. L., Densmore, C. L., Xu, B., Zhou, Z., and Kleinerman, E. S. Eradication of osteosarcoma lung metastases following intranasal interleukin-12 gene therapy using a nonviral polyethylenimine vector. Cancer Gene Ther, 9: 260-266, 2002.
104. Lafleur, E. A., Jia, S. F., Worth, L. L., Zhou, Z., Owen-Schaub, L. B., and Kleinerman, E. S. Interleukin (IL)-12 and IL-12 gene transfer up-regulate Fas expression in human osteosarcoma and breast cancer cells. Cancer Res, 61: 4066-4071, 2001.
105. Duan, X., Zhou, Z., Jia, S. F., Colvin, M., Lafleur, E. A., and Kleinerman, E. S. Interleukin-12 enhances the sensitivity of human osteosarcoma cells to 4-hydroperoxycyclophosphamide by a mechanism involving the Fas/Fas-ligand pathway. Clin Cancer Res, 10: 777-783, 2004.
106. Addison, C. L., Bramson, J. L., Hitt, M. M., Muller, W. J., Gauldie, J., and Graham, F. L. Intratumoral coinjection of adenoviral vectors expressing IL-2 and IL-12 results in enhanced frequency of regression of injected and untreated distal tumors. Gene Ther, 5: 1400-1409, 1998.
107. Masztalerz, A., Van Rooijen, N., Den Otter, W., and Everse, L. A. Mechanisms of macrophage cytotoxicity in IL-2 and IL-12 mediated tumour regression. Cancer Immunol Immunother, 52: 235-242, 2003.
108. Orengo, A. M., Di Carlo, E., Comes, A., Fabbi, M., Piazza, T., Cilli, M., Musiani, P., and Ferrini, S. Tumor cells engineered with IL-12 and IL-15 genes induce protective antibody responses in nude mice. J Immunol, 171: 569-575, 2003.
109. Lasek, W., Basak, G., Switaj, T., Jakubowska, A. B., Wysocki, P. J., Mackiewicz, A., Drela, N., Jalili, A., Kaminski, R., Kozar, K., and Jakobisiak, M. Complete tumour regressions induced by vaccination with IL-12 gene-transduced tumour cells in combination with IL-15 in a melanoma model in mice. Cancer Immunol Immunother, 2003.
110. Tamura, T., Nishi, T., Goto, T., Takeshima, H., Ushio, Y., and Sakata, T. Combination of IL-12 and IL-18 of electro-gene therapy synergistically inhibits tumor growth. Anticancer Res, 23: 1173-1179, 2003.
111. Mendiratta, S. K., Quezada, A., Matar, M., Thull, N. M., Bishop, J. S., Nordstrom, J. L., and Pericle, F. Combination of interleukin 12 and interferon alpha gene therapy induces a synergistic antitumor response against colon and renal cell carcinoma. Hum Gene Ther, 11: 1851-1862, 2000.
112. Emtage, P. C., Wan, Y., Hitt, M., Graham, F. L., Muller, W. J., Zlotnik, A., and Gauldie, J. Adenoviral vectors expressing lymphotactin and interleukin 2 or lymphotactin and interleukin 12 synergize to facilitate tumor regression in murine breast cancer models. Hum Gene Ther, 10: 697-709, 1999.
113. Narvaiza, I., Mazzolini, G., Barajas, M., Duarte, M., Zaratiegui, M., Qian, C., Melero, I., and Prieto, J. Intratumoral coinjection of two adenoviruses, one encoding the chemokine IFN-gamma-inducible protein-10 and another encoding IL-12, results in marked antitumoral synergy. J Immunol, 164: 3112-3122, 2000.
114. Zitvogel, L., Robbins, P. D., Storkus, W. J., Clarke, M. R., Maeurer, M. J., Campbell, R. L., Davis, C. G., Tahara, H., Schreiber, R. D., and Lotze, M. T. Interleukin-12 and B7.1 co-stimulation cooperate in the induction of effective antitumor immunity and therapy of established tumors. Eur J Immunol, 26: 1335-1341, 1996.
115. Sun, Y., Qian, C., Peng, D., and Prieto, J. Gene transfer to liver cancer cells of B7-1 plus interleukin 12 changes immunoeffector mechanisms and suppresses helper T cell type 1 cytokine production induced by interleukin 12 alone. Hum Gene Ther, 11: 127-138, 2000.
116. Martinet, O., Ermekova, V., Qiao, J. Q., Sauter, B., Mandeli, J., Chen, L., and Chen, S. H. Immunomodulatory gene therapy with interleukin 12 and 4-1BB ligand: long- term remission of liver metastases in a mouse model. J Natl Cancer Inst, 92: 931-936, 2000.
117. Chen, S. H., Pham-Nguyen, K. B., Martinet, O., Huang, Y., Yang, W., Thung, S. N., Chen, L., Mittler, R., and Woo, S. L. Rejection of disseminated metastases of colon carcinoma by synergism of IL-12 gene therapy and 4-1BB costimulation. Mol Ther, 2: 39-46, 2000.
118. Martinet, O., Divino, C. M., Zang, Y., Gan, Y., Mandeli, J., Thung, S., Pan, P. Y., and Chen, S. H. T cell activation with systemic agonistic antibody versus local 4-1BB ligand gene delivery combined with interleukin-12 eradicate liver metastases of breast cancer. Gene Ther, 9: 786-792, 2002.
119. Mazzolini, G., Qian, C., Narvaiza, I., Barajas, M., Borras-Cuesta, F., Xie, X., Duarte, M., Melero, I., and Prieto, J. Adenoviral gene transfer of interleukin 12 into tumors synergizes with adoptive T cell therapy both at the induction and effector level. Hum Gene Ther, 11: 113-125, 2000.
120. Nishimura, N., Nishioka, Y., Shinohara, T., and Sone, S. Enhanced efficiency by centrifugal manipulation of adenovirus-mediated interleukin 12 gene transduction into human monocyte-derived dendritic cells. Hum Gene Ther, 12: 333-346, 2001.
121. Melero, I., Duarte, M., Ruiz, J., Sangro, B., Galofre, J., Mazzolini, G., Bustos, M., Qian, C., and Prieto, J. Intratumoral injection of bone-marrow derived dendritic cells engineered to produce interleukin-12 induces complete regression of established murine transplantable colon adenocarcinomas. Gene Ther, 6: 1779-1784, 1999.
122. Nishioka, Y., Hirao, M., Robbins, P. D., Lotze, M. T., and Tahara, H. Induction of systemic and therapeutic antitumor immunity using intratumoral injection of dendritic cells genetically modified to express interleukin 12. Cancer Res, 59: 4035-4041, 1999.
123. Tatsumi, T., Huang, J., Gooding, W. E., Gambotto, A., Robbins, P. D., Vujanovic, N. L., Alber, S. M., Watkins, S. C., Okada, H., and Storkus, W. J. Intratumoral Delivery of Dendritic Cells Engineered to Secrete Both Interleukin (IL)-12 and IL-18 Effectively Treats Local and Distant Disease in Association with Broadly Reactive Tc1-type Immunity. Cancer Res, 63: 6378-6386, 2003.
124. Nishikawa, M., Hayashi, Y., Yamamoto, N., Fukui, T., Fukuhara, H., Mitsudo, K., Tohnai, I., Ueda, M., Mizuno, M., and Yoshida, J. Cell death of human oral squamous cell carcinoma cell line induced by herpes simplex virus thymidine kinase gene and ganciclovir. Nagoya J Med Sci, 66: 129-137, 2003.
125. Gerolami, R., Uch, R., Faivre, J., Garcia, S., Hardwigsen, J., Cardoso, J., Mathieu, S., Bagnis, C., Brechot, C., and Mannoni, P. Herpes simplex virus thymidine kinase-mediated suicide gene therapy for hepatocellular carcinoma using HIV-1-derived lentiviral vectors. J Hepatol, 40: 291-297, 2004.
126. Wang, J., Lu, X. X., Chen, D. Z., Li, S. F., and Zhang, L. S. Herpes simplex virus thymidine kinase and ganciclovir suicide gene therapy for human pancreatic cancer. World J Gastroenterol, 10: 400-403, 2004.
127. Drozdzik, M., Qian, C., Xie, X., Peng, D., Bilbao, R., Mazzolini, G., and Prieto, J. Combined gene therapy with suicide gene and interleukin-12 is more efficient than therapy with one gene alone in a murine model of hepatocellular carcinoma. J Hepatol, 32: 279-286, 2000.
128. Melero, I., Mazzolini, G., Narvaiza, I., Qian, C., Chen, L., and Prieto, J. IL-12 gene therapy for cancer: in synergy with other immunotherapies. Trends Immunol, 22: 113-115, 2001.
129. Zou, J. P., Yamamoto, N., Fujii, T., Takenaka, H., Kobayashi, M., Herrmann, S. H., Wolf, S. F., Fujiwara, H., and Hamaoka, T. Systemic administration of rIL-12 induces complete tumor regression and protective immunity: response is correlated with a striking reversal of suppressed IFN-gamma production by anti-tumor T cells. Int Immunol, 7: 1135-1145, 1995.
130. Nastala, C. L., Edington, H. D., McKinney, T. G., Tahara, H., Nalesnik, M. A., Brunda, M. J., Gately, M. K., Wolf, S. F., Schreiber, R. D., Storkus, W. J., and et al. Recombinant IL-12 administration induces tumor regression in association with IFN-gamma production. J Immunol, 153: 1697-1706, 1994.
131. Bree, A. G., Schlerman, F. J., Kaviani, M. D., Hastings, R. C., Hitz, S. L., and Goldman, S. J. Multiple effects on peripheral hematology following administration of recombinant human interleukin 12 to nonhuman primates. Biochem Biophys Res Commun, 204: 1150-11
dc.identifier.urihttp://tdr.lib.ntu.edu.tw/jspui/handle/123456789/39328-
dc.description.abstract在近幾年的文獻指出,IL-12基因治療可以引起腫瘤消退,抑制遠端轉移,產生抗腫瘤反應,不過都是在實驗小鼠模式,無文獻報告IL-12在較大型動物的抗腫瘤效果,基因治療在小鼠模式的結果並不總是適用於人類,較大型動物的臨床前模式對於人類應用是較有意義的,因為較大型動物的生物特性與人類相近,例如實驗犬的體重與器官大小與人類差異較小,以實驗犬的研究結果,在人類臨床反應上的差異較接近,對於人類腫瘤的基因治療是很適當的臨床前模式。因此本篇研究以構築IL-12基因的質體,利用腫瘤內電衝方式治療犬傳染性花柳性腫瘤,報告此基因治療的效果與抗腫瘤機制。首先,我們發現在CTVT模式中,最適當的電衝條件如下:電壓為200 V、 電衝10次、每次持續50毫秒且使用2針之針狀電極進行基因治療。此外我們更進一步證實,電衝本身並不會影響腫瘤的生長;另外當phIL-12質量固定,腫瘤的治療效果與電衝次數無關。完成以上基因治療前的測試後,我們利用構築人類IL-12基因的質體,以腫瘤內電衝治療CTVT。結果顯示進行治療後,可以有效抑制腫瘤生長,使腫瘤完全消退或呈現液化狀態,並且持續產生抗腫瘤的保護力,對遠端已發展但未治療腫瘤的生長產生抑制效果;對再次接種的腫瘤也能抑制其生長。電衝後腫瘤與血液中IL-12的濃度增加,在腫瘤內也測得IFN-γ的RNA產生。同時發現腫瘤內浸潤淋巴球增加,包括CD4+T和CD8+T細胞。除此之外腫瘤細胞的MHC大為增加,大量的腫瘤細胞產生凋亡;此外我們發現以0.3mg之IL-12質體治療的效果與1mg之IL-12質體相近;在整個研究過程中,實驗犬並無任何毒性產生。以上這些結果顯示使用腫瘤內電衝,進行IL-12基因治療,在實驗犬模式,治療CTVT的效果是非常明顯,期望對於人類臨床之腫瘤治療是有所助益。zh_TW
dc.description.abstractInterleukin-12(IL-12)has recently been demonstrated that local or systemic treatment mediates profound antitumor effects, causing regression of established tumors and their distant metastases in small laboratory animals. But, there is lack of data that IL-12 on tumor effect in larger animal models than mice. Gene therapy studies performed with small-inbred laboratory animals are not always as transferable to humans as investigators would like. Larger animal preclinical models have the potential of being useful intermediate steps between rodent studies and human applications. Biological similarities such as body weight and organ size between dogs and humans make the dog an appropriate preclinical model for gene therapy of human tumors. Therefore, we reported here the effectiveness of gene therapy with plasmid encoded IL-12 through in vivo electroporation to treat canine transmissible venereal tumor (CTVT). The optimal conditions of electroporation for gene transfer into CTVT by luciferase activity were as follows: voltage at 200 V; duration at 50 ms; the number of shocks at 10 pulses and electrode with 2 needles. Electroporation only without IL-12 gene did not affect the growth of CTVT. Different injection frequencies with same amount of IL-12 plasmid made no difference for the growth of CTVT. Intratumoral administration of the phIL-12 significantly inhibited the growth of CTVT and suppressed the growth of distant CTVT. This treatment elevated IL-12 in tumors and serum. The expression of IFN-γ RNA was also observed in these tumors. In addition, the IL-12 gene therapy induced more infiltrating lymphocytes in the tumors. The lymphocytes were identified as CD4+ and CD8+T cells. The surface expression of MHC molecules on CTVT cells was significantly increased after gene therapy. More apoptotic tumor cells were also found. The inhibition of tumor growth was similar with either dosage of 0.3mg and 1 mg IL-12 plasmid delivered by electroporation. The treatment did not result in any toxicity in the dogs. We concluded that gene therapy with electroporation to treat CTVT in vivo using IL-12 is very efficient and is thus promising for further clinical trial.en
dc.description.provenanceMade available in DSpace on 2021-06-13T17:26:07Z (GMT). No. of bitstreams: 1
ntu-94-R90629008-1.pdf: 2432545 bytes, checksum: bc93782b614c63fb4b990a7c7a2fb84a (MD5)
Previous issue date: 2005
en
dc.description.tableofcontents中文摘要••••••••••••••••••••••••VI英文摘要•••••••••••••••••••••••• IX圖次•••••••••••••••••••••••••• XI
表次••••••••••••••••••••••••• XIII
縮寫符號••••••••••••••••••••••••• XIV
第一章 緒言•••••••••••••••••••••••1
第二章 文獻探討•••••••••••••••••••••3
第一節 介白素-12(Interleukin-12, IL-12)••••••• 4
一、IL-12的功能••••••••••••••••••••5
二、IL-12的構造與接受器••••••••••• 9
三、IL-12治療之腫瘤•••••••••••• 11
1.黑色素瘤•••••••••••••••• 11
2.結腸癌••••••••••••••••• 12
3.乳腺癌••••••••••••••••• 15
4.SCK mammary carcinoma與K1765 melanoma• 17
5.其他腫瘤•••••••••••••••• 18
四、IL-12治療合併其他免疫相關因子之療法•• 20
1. 細胞激素、化學趨化素與IL-12合用進行治療• 20
2.膜結合刺激分子與IL-12合用進行治療••• 22
3.移植細胞與IL-12合用進行治療•••••• 24
4.自殺基因策略與IL-12合用進行治療•••• 25
五、IL-12的毒性•••••••••••••• 27
第二節 IL-12基因給予之途徑•••••••••••• 31
一、 基因轉移之方法••••••••••••• 31
1. 病毒性載體•••••••••••••• 31
2. 非病毒性載體•••••••••••••33
二、基因活體電衝•••••••••••••• 34
1.原理••••••••••••••••• 34
2.電衝條件與作用機制•••••••••••36
3.影響因子••••••••••••••••38
第三節 犬傳染性花柳性腫瘤•••••••••••••41
一、臨床特性•••••••••••••••• 41
二、病理特徵•••••••••••••••• 42
三、細胞特性•••••••••••••••• 43
四、遺傳物質特性•••••••••••••• 44
五、與免疫系統的關係•••••••••••• 45
第三章 研究策略與內容••••••••••••••••• 49
第四章 材料與法•••••••••••••••••••• 51
第一節 CTVT的建立••••••••••••••••51
一、實驗動物•••••••••••••••• 51
二、CTVT的分離與接種•••••••••••• 51
第二節 IL-12質體DNA的純化•••••••••••53
一、質體來源•••••••••••••••• 53
二、質體大量純化製備•••••••••••• 53
三、質體少量純化製備•••••••••••• 56
四、電衝前質體之準備•••••••••••• 57
第三節 電衝條件之測試•••••••••••••58
一、Luciferase質體於CTVT之表現•••••• 58
二、Luciferase活性測試••••••••••• 59
三、「電衝」本身對腫瘤生長的影響•••••• 59
四、兩階段電衝對治療效果的影響••••••• 60
第四節 以電衝轉染IL-12質體治療CTVT•••••• 63
一、質體DNA的腫瘤注射與電衝•••••••• 63
二、腫瘤體積的測量••••••••••••• 63
三、其他質體劑量對IL-12基因治療的效果••• 64
四、以電衝轉染IL-12質體治療遠端CTVT•••• 65
1.基因治療對已發展腫瘤的影響•••••• 65
2.基因治療對尚未發展腫瘤的影響••••• 65
第五節 IL-12基因治療CTVT之機制•••••••• 66
一、血清樣品•••••••••••••••• 66
二、腫瘤樣品•••••••••••••••• 67
三、反轉錄聚合脢連鎖反應•••••••••• 67
1. 腫瘤內IFN-γ之偵測•••••••••• 67
2. 腫瘤內CD8+ T細胞之偵測•••••••• 69
四、腫瘤組織學分析••••••••••••• 70
五、CTVT細胞與TIL的分離•••••••••• 70
六、Flow cytometry之染色試劑配製•••••• 71
七、CTVT細胞表面MHC之表現••••••••• 71
八、腫瘤浸潤淋巴球次族群分析•••••••• 72
九、腫瘤細胞凋亡之分析••••••••••• 73
第六節 IL-12基因電衝治療之毒性測試•••••••• 74
一、實驗犬之存活率••••••••••••• 74
二、實驗犬之臨床症狀•••••••••••• 74
三、血液生化學檢查••••••••••••• 74
第七節 實驗犬處理••••••••••••••••• 75
第八節 統計分析•••••••••••••••••• 75
第五章 結果•••••••••••••••••••••• 76
第一節 人類IL-12質體••••••••••••••• 76
第二節 CTVT模式之電衝條件的建立•••••••••• 77
第三節 電衝本身對腫瘤生長的影響•••••••••• 81
第四節 兩階段電衝對治療效果的影響••••••••• 83
第五節 IL-12基因治療對CTVT生長之抑制••••••• 85
第六節 其他質體劑量對IL-12基因治療的效果••••• 90
第七節 以電衝轉染IL-12質體治療遠端CTVT•••••• 92
一、基因治療對遠端已發展腫瘤的影響••••• 92
二、基因治療對遠端未發展腫瘤的影響••••• 92
第八節 腫瘤與血清中IL-12濃度之消長•••••••• 95
第九節 腫瘤內表現IFN-γ之RNA••••••••••• 97
第十節 腫瘤組織學••••••••••••••••• 99
第十一節 腫瘤浸潤淋巴球次族群染色分析••••••• 102
第十二節 CTVT細胞表面MHC之表現••••••••• 104
第十三節 腫瘤細胞凋亡之分析•••••••••••• 107
第十四節 腫瘤內基因電衝之毒性測試••••••••• 110
一、實驗犬之存活率••••••••••••• 110
二、實驗犬之臨床症狀•••••••••••• 110
三、血液生化學檢查••••••••••••• 110
第六章 討論•••••••••••••••••••••• 113
第七章 參考文獻•••••••••••••••••••• 130
dc.language.isozh-TW
dc.subject腫瘤內電衝zh_TW
dc.subject介白素12zh_TW
dc.subject基因治療zh_TW
dc.subject犬傳染性花柳性腫瘤zh_TW
dc.subjectgene therapyen
dc.subjectintratumoral electroporationen
dc.subjectCTVTen
dc.subjectIL-12en
dc.title使用腫瘤內電衝法轉染人類IL-12基因治療犬傳染性花柳性腫瘤zh_TW
dc.titleIntratumoral electroporation-mediated human Interleukin-12 gene therapy for canine transmissible venereal tumor in the canine modelen
dc.typeThesis
dc.date.schoolyear93-1
dc.description.degree碩士
dc.contributor.coadvisor陶秘華
dc.contributor.oralexamcommittee廖光文,王汎熒,季匡華
dc.subject.keyword介白素12,基因治療,犬傳染性花柳性腫瘤,腫瘤內電衝,zh_TW
dc.subject.keywordgene therapy,intratumoral electroporation,CTVT,IL-12,en
dc.relation.page156
dc.rights.note有償授權
dc.date.accepted2005-01-20
dc.contributor.author-college生物資源暨農學院zh_TW
dc.contributor.author-dept獸醫學研究所zh_TW
顯示於系所單位:獸醫學系

文件中的檔案:
檔案 大小格式 
ntu-94-1.pdf
  未授權公開取用
2.38 MBAdobe PDF
顯示文件簡單紀錄


系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved