Skip navigation

DSpace

機構典藏 DSpace 系統致力於保存各式數位資料(如:文字、圖片、PDF)並使其易於取用。

點此認識 DSpace
DSpace logo
English
中文
  • 瀏覽論文
    • 校院系所
    • 出版年
    • 作者
    • 標題
    • 關鍵字
    • 指導教授
  • 搜尋 TDR
  • 授權 Q&A
    • 我的頁面
    • 接受 E-mail 通知
    • 編輯個人資料
  1. NTU Theses and Dissertations Repository
  2. 管理學院
  3. 資訊管理學系
請用此 Handle URI 來引用此文件: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/3931
完整後設資料紀錄
DC 欄位值語言
dc.contributor.advisor陳建錦(Chien Chin Chen)
dc.contributor.authorZhong-Yong Chenen
dc.contributor.author陳仲詠zh_TW
dc.date.accessioned2021-05-13T08:38:46Z-
dc.date.available2016-07-04
dc.date.available2021-05-13T08:38:46Z-
dc.date.copyright2016-07-04
dc.date.issued2016
dc.date.submitted2016-06-20
dc.identifier.citationAnchuri, Pranay, & Magdon-Ismai, Malik. (2012). Communities and Balance in Signed Networks: A Spectral Approach. Paper presented at the ASONAM '12 Proceedings of the 2012 International Conference on Advances in Social Networks Analysis and Mining.
Antonellis, Ioannis, Molina, Hector Garcia, & Chang, Chi Chao. (2008). Simrank++: query rewriting through link analysis of the click graph. Proceedings of the VLDB Endowment, 1, 408-421.
Baccianella, Stefano, Esuli, Andrea, & Sebastiani, Fabrizio, (2010). SentiWordNet 3.0: An Enhanced Lexical Resource for Sentiment Analysis and Opinion Mining. Paper presented at the Proceedings of the Seventh conference on International Language Resources and Evaluation (LREC’10), European Language Resources Association (ELRA), Valletta, Malta, pp. 2200-2204.
Barber, David. (2012). Bayesian Reasoning and Machine Learning. New York: Cambridge University Press.
Bartoszynski, Robert, & Niewiadomska-Bugaj, Magdalena. (1996). Probability and Statistical Inference. New York, U.S.: John Wiley & Sons.
Chen, Chein Chin, & Wu, Chen-Yuan. (2010). Bipolar person name identification of topic documents using principal component analysis. Paper presented at the Proceeding of the 23rd International Conference on Computational Linguistics.
Chen, Chien Chin, & Chen, Meng Chang. (2008). TSCAN: a novel method for topic summarization and content anatomy. Paper presented at the Proceedings of the 31st annual international ACM SIGIR conference on Research and development in information retrieval.
Chen, Chien Chin, & Chen, Meng Chang. (2012). TSCAN: A Content Anatomy Approach to Temporal Topic Summarization. IEEE Transactions on Knowledge and Data Engineering 24, 170-183.
Chen, Chien Chin, Chen, Zhong-Yong, & Wu, Chen-Yuan. (2012). An Unsupervised Approach for Person Name Bipolarization Using Principal Component Analysis. IEEE Transactions on Knowledge and Data Engineering, 24, 1963-1976.
Chen, Jiyang, Zaiane, Osmar R., & Goebel, Randy. (2009a). Detecting communities in social networks using max-min modularity. Paper presented at the SIAM International Conference on Data Mining.
Chen, Jiyang, Zaiane, Osmar R., & Goebel, Randy. (2009b). Local Community Identification in Social Networks. Paper presented at the International Conference on Advances in Social Network Analysis and Mining.
Clauset, Aaron, Newman, M. E. J., & Moore, Cristopher. (2004). Finding community structure in very large networks. Physical Review E, 70, 066111.
Ding, C.H.Q., He, Xiaofeng, Zha, Hongyuan, Gu, Ming, & Simon, H.D. (2001). A min-max cut algorithm for graph partitioning and data clustering Paper presented at the Proceedings IEEE International Conference on Data Mining.
Ding, Xiaowen, Liu, Bing, & Yu, Philip S. (2008). A holistic lexicon-based approach to opinion mining. Paper presented at the Proceedings of the international conference on Web search and web data mining (WSDM).
Donath, W. E., & Hoffman, A. J. (1973). Lower Bounds for the Partitioning of Graphs. IBM Journal of Research and Development, 17, 420-425.
Esuli, Andrea, & Sebastiani, Fabrizio, (2006). SentiWordNet: A Publicly Available Lexical Resource for Opinion Mining. Paper presented at the Proceedings of LREC-06, 5th Conference on Language Resources and Evaluation, Genova, IT, 2006. European Language Resources Association (ELRA), Paris, FR, pp. 417-422.
Feng, Ao, & Allan, James. (2007). Finding and linking incidents in news. Paper presented at the Proceedings of the sixteenth Conference on information and knowledge management.
Figueiredo, M., & Jain, A. (2002). Unsupervised learning of finite mixture models. IEEE Transaction on Pattern Analysis and Machine Intelligence, 24, 381-396.
Ganapathibhotla, Murthy, & Liu, Bing. (2008). Mining opinions in comparative sentences. Paper presented at the Proceedings of the 22nd International Conference on Computational Linguistics
Gao, Jing, Liang, Feng, Fan, Wei, Wang, Chi, Sun, Yizhou, & Han, Jiawei. (2010). On community outliers and their efficient detection in information networks. Paper presented at the Proceedings of the 16th ACM SIGKDD international conference on Knowledge discovery and data mining.
Girvan, M., & Newman, M. E. J. (2002). Community structure in social and biological networks. Proceedings of the National Academy of Sciences 99, 7821-7826.
Godbole, Namrata, Srinivasaiah, Manjunath, & Skiena, Steve. (2007). Large-Scale Sentiment Analysis for News and Blogs. Paper presented at the International Conference on Weblogs and Social Media.
Harris, Zellig. (1954). Distributional structure. Word, 10, 146-162.
Hatzivassiloglou, Vasileios, & McKeown, Kathleen R. (1997). Predicting the semantic orientation of adjectives. Paper presented at the Proceedings of the eighth conference on European chapter of the Association for Computational Linguistics
Hofmann, Thomas. (1999). Probabilistic latent semantic indexing. Paper presented at the Proceedings of the 22nd annual international ACM SIGIR conference on Research and development in information retrieval
Hu, Minqing, & Liu, Bing. (2004). Mining Opinion Features in Customer Reviews. Paper presented at the Proceedings of the 19th national conference on Artificial Intelligence.
Jeh, Glen, & Widom, Jennifer. (2002). SimRank: a measure of structural-context similarity. Paper presented at the Proceedings of the eighth ACM SIGKDD international conference on Knowledge discovery and data mining.
Kanayama, Hiroshi, & Nasukawa, Tetsuya. (2006). Fully Automatic Lexicon Expansion for Domain-oriented Sentiment Analysis. Paper presented at the Proceedings of the 2006 Conference on Empirical Methods in Natural Language Processing.
Keller, Gerald. (2008). Statistics for Management and Economics: Cengage Learning.
Kim, Soo-Min, & Hovy, Eduard. (2004). Determining the sentiment of opinions. Paper presented at the Proceedings of the 20th international conference on Computational Linguistics
Ku, Lun-Wei, Liang, Yu-Ting, & Chen, Hsin-Hsi. (2006). Opinion Extraction, Summarization and Tracking in News and Blog Corpora. Paper presented at the Proceedings of the AAAI Spring Symposium on Computational Approaches to Analyzing Weblogs.
Lee, H., Chang, A., Peirsman, Y., Chambers, N., Surdeanu, M., & Jurafsky, D. (2013). Deterministic Coreference Resolution Based on Entity-Centric, Precision-Ranked Rules. Computational Linguistics, 39(4), pp. 885-916.
Liu, Bing. (2012). Sentiment Analysis and Opinion Mining. Synthesis Lectures on Human Language Technologies, 5(1), pp. 1-167.
Manning, Christopher D., Raghavan, Prabhakar, & Schütze, Hinrich. (2008). Introduction to Information Retrieval. New York: Cambridge University Press.
Manning, Christopher D., & Schütze, Hinrich. (1999). Foundations of Statistical Natural Language Processing: The MIT Press.
Miller, George A., Beckwith, Richard, Fellbaum, Christiane, Gross, Derek, & Miller, Katherine J. (1990). Introduction to WordNet : An On-line Lexical Database. International Journal of Lexicography, 3, 235-244.
Mitchell, Tom. (1997). Machine Learning. Maidenhead: McGraw-Hall.
Nallapati, Ramesh, Feng, Ao, Peng, Fuchun, & Allan, James. (2004). Event threading within news topics. Paper presented at the Proceedings of the thirteenth ACM international conference on Information and knowledge management.
Newman, M. E. J. (2001). Scientific collaboration networks: I. Network construction and fundamental results. Physical Review E, 64, 016131.
Newman, M. E. J. (2004). Fast algorithm for detecting community structure in networks. Physical Review E, 69, 066133.
Newman, M. E. J. (2006). Finding community structure in networks using the eigenvectors of matrices. Physical Review E, 74, 036104.
Newman, M. E. J., & Girvan, M. (2004). Finding and evaluating community structure in networks. Physical Review E, 69, 026113.
Ohana, B., & Tierney, B., (2009). Sentiment Classification of Reviews Using SentiWordNet. IT&T Conference.
Papadopoulos, Symeon, Kompatsiaris, Yiannis, Vakali, Athena, & Spyridonos, Ploutarchos. (2012). Community detection in Social Media. Data Mining and Knowledge Discovery, 24, 515-554.
Pernkopf, F., & Bouchaffra, D. (2005). Genetic-based EM algorithm for learning Gaussian mixture models. IEEE Transactions on Pattern Analysis and Machine Intelligence 27, 1344-1348.
Rand, William M. (1971). Objective Criteria for the Evaluation of Clustering Methods. Journal of the American Statistical Association, 66, 846-850.
Shi, Jianbo, & Malik, J. (2000). Normalized cuts and image segmentation. IEEE Transactions on Pattern Analysis and Machine Intelligence, 22, 888-905.
Stone, Philip J., Dunphy, Dexter C., Smith, Marshall S., & Ogilvie, Daniel M. (1966). The General Inquirer: A Computer Approach to Content Analysis: The MIT Press.
Traag, V. A., & Bruggeman, Jeroen. (2009). Community detection in networks with positive and negative links. Physical Review E, 80, 036115.
Turney, Peter D., & Littman, Michael L. (2003). Measuring Praise and Criticism: Inference of Semantic Orientation from Association. ACM Transactions on Information Systems, 21, 315-346.
White, Scott, & Smyth, Padhraic. (2005). A Spectral Clustering Approach To Finding Communities in Graphs. Paper presented at the Proceedings of SIAM International Conference on Data Mining.
Wu, Chien-Fu Jeff. (1983). On the convergence properties of the EM algorithm. The Annals of Statistics, 11, 95-103.
Wu, Fa-Yueh. (1982). The Potts model. Review of Modern Physics, 54, 235-268.
Xu, Xiaowei, Yuruk, Nurcan, Feng, Zhidan, & Schweiger, Thomas A. J. (2007). SCAN: a structural clustering algorithm for networks. Paper presented at the Proceedings of the 13th ACM SIGKDD international conference on Knowledge discovery and data mining.
Yang, Bo, Cheung, William, & Liu, Jiming. (2007). Community Mining from Signed Social Networks. IEEE Transactions on Knowledge and Data Engineering, 19, 1333-1348.
Yang, Tianbao, Jin, Rong, Chi, Yun, & Zhu, Shenghuo. (2009). Combining link and content for community detection: a discriminative approach. Paper presented at the Proceedings of the 15th ACM SIGKDD international conference on Knowledge discovery and data mining.
Zipf, George Kingsley. (1949). Human Behavior and the Principle of Least Effort. Cambridge MA: Addison-Wesley.
dc.identifier.urihttp://tdr.lib.ntu.edu.tw/jspui/handle/123456789/3931-
dc.description.abstract隨著網路的爆炸性成長,人們能夠輕易地從網路獲得龐大的資訊,而且人們可能會被網路上的多媒體所提供的資訊所掩沒,像是新聞、網路評論、論壇文章或是從社群媒體來的資訊。為了協助人們消化這些資訊,在此博士論文中,我們探究一個新穎的主題,稱為主題人物立場辨識,這個主題的目地是辨識主題文件中人物的立場。我們提出了兩套方法來解決這個問題。首先,我們提出一套叫做模式基礎EM的方法,利用人物名字共同出現在文件中的模式來辨識主題人物的立場。此外,文件中人名共同出現與不共同出現的程度被考量用以加權人名共同出現的模式。甚至,我們發展一個初始化演算法來穩定辨識人物立場社群,這是因為模式基礎的EM方法對於初始化是頗敏感的。第二套方法稱做使用友誼網路分析的主題人物立場社群辨識,這套方法考量文件的友善(敵對)傾向自動地從主題文件建構友誼網路。此外,我們提出立場擴展與立場修正演算法基於友誼網路來辨識立場社群。實驗結果驗證這兩套方法都比過去知名的分群演算法效能來得好。zh_TW
dc.description.abstractWith the explosive growth of the Internet, people can easily receive astronomical information from the Web, and could be overwhelming by the online medium, e.g. news, review comments, forum posts or information from the social medium. For facilitating the people digest the enormous information, we investigate a novel problem named “topic person stance identification,” which is to identify the stances of the topic persons from topic documents, in this dissertation. We proposed two methodologies to copy with the problem. First, we proposed a methodology named model-based EM method to identify the stances of the topic persons by leveraging the pattern of person name co-occurrence in the documents. In addition, the level of co-occurrence and non-co-occurrence of the person names in the documents are considered to weight the pattern of the person name co-occurrence. Moreover, we developed an initialization algorithm to stable the results of identifying the stance communities because the EM method is sensitive to the initialization. The second methodology is called stance community identification of topic persons using friendship network analysis. This method is to take the friendly (opposing) orientation of the documents into consideration to construct the friendship network automatically from the topic documents. For identifying the stance community, we proposed stance community expansion and stance community refinement algorithms to identify the stance communities based on the network. The experimental results of two methodologies demonstrated our methods are outperformed other well-known clustering approach, and can effectively identify the stances of the topic persons.en
dc.description.provenanceMade available in DSpace on 2021-05-13T08:38:46Z (GMT). No. of bitstreams: 1
ntu-105-D98725003-1.pdf: 2309488 bytes, checksum: 814cab70da2d9e9ecee900176749be78 (MD5)
Previous issue date: 2016
en
dc.description.tableofcontents口試委員會審定書 i
謝辭 ii
中文摘要 iii
Abstract iv
1. Introduction 1
2. Literature review 4
2.1 Opinion mining 4
2.2 Community detection 6
2.2.1 Eigen-based community detection approach 6
2.2.2 Iterative clustering approach 8
3. A model-based EM method for stance identification of topic persons 11
3.1 Definition of topic person stance identification 11
3.2 A model-based EM method for stance identification of topic persons 12
3.2.1 Model-based stance identification of topic persons 12
3.2.2 MaxMin initialization algorithm 17
3.2.3 Off-topic block elimination 18
3.2.4 Weighted correlation coefficient 19
3.2.5 Convergence of the EM method 20
3.3 Experimental results of EM method 21
3.3.1 Data corpus and evaluation metric 21
3.3.2 Effect of system components 25
3.3.3 Comparison with other clustering methods 31
3.3.4 Person stance identification examples 35
3.4 Conclusions of the EM method 37
4. A topic person stance identification method based on friendship network analysis 38
4.1 Friendship network construction 39
4.2 The objective function of SCIFNET 44
4.3 Stance expansion 44
4.4 Stance refinement 49
4.5 Stance-irrelevant topic person detection 52
4.6 Experimental results of the SCIFNET 54
4.6.1 Dataset 54
4.6.2 System component analysis 58
4.6.2.1 Friendship orientation threshold……………………...…….………...58
4.6.2.2 Friendship Orientation Threshold using different perspective……….63
4.6.2.3 Edge weight evaluation…………………………….…………………66
4.6.2.4 Stance-oriented correlation coefficient evaluation...............................68
4.6.2.5 The effect of the adoption all the extracted topic persons………...….70
4.6.2.6 The effect of the adoption of the other named entities…………...…..71
4.6.3 Comparison with other methods 72
4.6.3.1 Stance identification evaluation…………………..………..…………72
4.6.3.2 Stance-irrelevant topic person detection evaluation………………….77
4.6.4 An example of topic person stance identification 78
4.7 Conclusions of the SCIFNET 80
5 Conclusions 81
6. References 82
dc.language.isoen
dc.subject文字探勘zh_TW
dc.subject主題人物立場分析zh_TW
dc.subject人物立場zh_TW
dc.subject資訊檢索zh_TW
dc.subjectperson stanceen
dc.subjectTopic person stance analysisen
dc.subjectinformation retrievalen
dc.subjecttext miningen
dc.title主題人物立場分析研究zh_TW
dc.titleA Study of Topic Person Stance Analysisen
dc.typeThesis
dc.date.schoolyear104-2
dc.description.degree博士
dc.contributor.oralexamcommittee陳孟彰(Meng Chang Chen),陳信希(Hsin-Hsi Chen),張嘉惠(Chia-Hui Chang),蔡銘峰(Ming-Feng Tsai)
dc.subject.keyword主題人物立場分析,人物立場,文字探勘,資訊檢索,zh_TW
dc.subject.keywordTopic person stance analysis,person stance,text mining,information retrieval,en
dc.relation.page84
dc.identifier.doi10.6342/NTU201600371
dc.rights.note同意授權(全球公開)
dc.date.accepted2016-06-20
dc.contributor.author-college管理學院zh_TW
dc.contributor.author-dept資訊管理學研究所zh_TW
顯示於系所單位:資訊管理學系

文件中的檔案:
檔案 大小格式 
ntu-105-1.pdf2.26 MBAdobe PDF檢視/開啟
顯示文件簡單紀錄


系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved