Skip navigation

DSpace

機構典藏 DSpace 系統致力於保存各式數位資料(如:文字、圖片、PDF)並使其易於取用。

點此認識 DSpace
DSpace logo
English
中文
  • 瀏覽論文
    • 校院系所
    • 出版年
    • 作者
    • 標題
    • 關鍵字
    • 指導教授
  • 搜尋 TDR
  • 授權 Q&A
    • 我的頁面
    • 接受 E-mail 通知
    • 編輯個人資料
  1. NTU Theses and Dissertations Repository
  2. 電機資訊學院
  3. 電信工程學研究所
請用此 Handle URI 來引用此文件: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/39305
完整後設資料紀錄
DC 欄位值語言
dc.contributor.advisor吳靜雄(Jingshown Wu)
dc.contributor.authorShou-Kuo Shaoen
dc.contributor.author邵守國zh_TW
dc.date.accessioned2021-06-13T17:25:43Z-
dc.date.available2005-01-27
dc.date.copyright2005-01-27
dc.date.issued2005
dc.date.submitted2005-01-23
dc.identifier.citation[1] P. Bonenfant, A. R. Moral, J. Manchester, and A. McGuire, 'IP over WDM:The missing link,' Lucent Technology Bell Labs White Paper, http://www.lucent-optical.com/resources/whitepapers/WP010.pdf, Feb. 2000.
[2] ITU-T Recommendation G.709, Interfaces for The Optical Transport Network (OTN), International Telecommunication Union, Feb. 2001.
[3] ITU-T Recommendation G.7041, Generic Framing Procedure (GFP), International Telecommunication Union, Dec. 2003.
[4] ITU-T Recommendation G.8080, Architecture for The Automatically Switched Optical Network (ASON), International Telecommunication Union, Nov. 2001.
[5] ITU-T Recommendation G.7713.2, Distributed Call And Connection Management: Signalling Mechanism Using GMPLS RSVP-TE, International Telecommunication Union, Mar. 2003.
[6] ITU-T Recommendation G.7713.3, Distributed Call And Connection Management: Signalling Mechanism Using GMPLS CR-LDP, International Telecommunication Union, Mar. 2003.
[7] R. Callon, P. Doolan, N. Feldman, A. Fredette, G. Swallow, and A. Viswanathan, 'A framework for multiprotocol label switching,' Internet Draft, Work in Progress, Sep.
1999.
[8] E. C. Rosen, A. Viswanathan, and R. Callon, 'Multiprotocol label switching architec-
ture,' Internet Draft, Work in Progress, Aug. 1999.
[9] EURESCOM Project P918-GI, 'Integration of IP over optical networks: Networking and management,' Deliverable 1, Oct. 1999.
[10] S. Dixit, IP over WDM: Building the Next Generation Optical Internet, Wiley-Interscience, Mar. 2003.
[11] S. Yao, B. Mukherjee, and S. Dixit, 'Advances in photonic packet switching: An overview,' IEEE Commun. Mag., vol. 38, no. 2, pp. 84{94, Feb. 2000.
[12] W. E. Leland, M. S. Taqqu, W. Willinger, and D. V. Wilson, 'On the self-similar nature of Ethernet traffic (extended version),' IEEE/ACM Trans. Networking, vol. 2,
no. 1, pp. 1-15, Feb. 1994.
[13] M. E. Crovella and A. Bestavros, 'Self-similarity in world wide web traffic: evidence and possible causes,' IEEE/ACM Trans. Networking, vol. 5, no. 6, pp. 835-846, Dec.
1997.
[14] A. Erramilli, O. Narayan, and W. Willinger, 'Experimental queueing analysis with
long-range dependent packet traffic,' IEEE/ACM Trans. Networking, vol. 4, no. 2, pp. 209-223, Apr. 1996.
[15] I. Norros, 'A storage model with self-similar input,' Queueing Systems, vol. 16, pp. 387-396, 1994.
[16] S. K. Shao and J. Wu, 'An IP over WDM protocol with routing and transporting capabilities,' in Proc. HPSR'2000, Heidelberg, June 2000, pp. 33-39.

[17] S. L. Danielsen, B. Mikkelsen, C. Joergensen, T. Durhuus, and K. E. Stubkjaer, 'WDM packet switch architecture and analysis of the in°uence of tunable wavelength converters on the performance,' IEEE/OSA J. Lightwave Technol., vol. 15, no. 2, pp. 219-227,
Feb. 1997.
[18] J. Diao and P. L. Chu, 'Analysis of partially shared buffering for WDM optical packet switching,' IEEE/OSA J. Lightwave Technol., vol. 17, no. 12, pp. 2461-2469, Dec.
1999.
[19] L. Tancevski, A. Ge, and G. Castnon, 'Optical packet switch with partially shared buffers: Design principles,' in Proc. OFC'2001, Anaheim, Mar. 2001, paper TuK3.
[20] G. Shen, S. K. Bose, T. H. Cheng, C. Lu, and T. Y. Chai, 'Performance study on a WDM packet switch with limited-range wavelength converters,' IEEE Commun. Lett.,
vol. 5, no. 10, pp. 432-434, Oct. 2001.
[21] F. Callegati, G. Corazza, and C. Raffaelli, 'Exploitation of DWDM for optical packet
switching with quality of service guarantees,' IEEE J. Select. Areas Commun., vol. 20,
no. 1, pp. 190-201, Jan. 2002.
[22] L. Tancevski, S. Yegnanarayanan, G. Castanon, L. Tamil, F. Masetti, and T. McDermott, 'Optical routing of asynchronous, variable length packets,' IEEE J. Select.
Areas Commun., vol. 18, no. 10, pp. 2084-2093, Oct. 2000.
[23] S. K. Shao, M. G. Tsai, H. W. Tsao, P. Sreedevi, M. R. Perati, and J.Wu, 'Performance evaluation of feedback type WDM optical routers under asynchronous and variable
packet length self-similar traffic,' to be publised in IEICE. Trans. Commun., vol. E88-B, no. 3, Mar. 2005.
[24] T. Yoshihara, S. Kasahara, and Y. Takahashi, 'Practical time-scale ‾tting of self-
similar traffic with Markov-modulated Poisson process,' Telecommunication Systems, vol. 17, pp. 185-211, 2001.
[25] S. Kasahara, 'Internet traffic modeling : Markovian approach to self-similar traffic andprediction of loss probability for infinite queues,' IEICE Trans. Commun., vol. E84-B, No. 8, pp. 2134-2141, Aug. 2001.

[26] S. K. Shao, M. R. Perati, M. G. Tsai, H. W. Tsao, and J. Wu, 'Generalized variance-based Markovian fitting for self-similar traffic modelling,' to be publised in the Special Section on Internet Technology V, IEICE. Trans. Commun., Apr. 2005.
[27] P. Karn, A. Falk, and et al., 'Advice for Internet subnetwork designers,' Internet Draft, Work in Process, Mar. 2000.
[28] J. Crowcroft, 'IP over photons: How not to waste the waist of the hourglass,' in Proc.IWQoS'99, London, Apr. 1999, pp. 9-11.
[29] A. Kankkunen and U. Bendig, 'IP/MPLS Based BLES,' ADSLForum 99-311, Nov. 1999.
[30] A. Viswanathan, N. Feldman, Z. Wang, and R. Callon, 'Evolution of multiprotocol label switching,' IEEE Commun. Mag., vol. 36, no. 5, pp. 165-173, May 1998.
[31] G. K. Chang, G. Ellins, B. Meagher, W. Xin, S. J. Yoo, M. Z. Iqbal, W. Way, J. Young, H. Dai, Y. J. Chen, C. D. Lee, X. Yang, A. Chowdhury, and S. Chen, 'Low latency
packet forwarding in IP over WDM networks using optical label switching techniques,' in Proc. LEOS'99, vol. 1, San Francisco, Nov. 1999, pp. 17-18.
[32] C. Qiao and M. Yoo, 'Optical burst switching (OBS): A new paradigm for optical Internet,' J. High Speed Networks, vol. 8, no. 1, pp. 69-84, 1999.
[33] ITU-T Recommendation G.872, Architecture for Optical Transport Network, International Telecommunication Union, Feb. 1999.
[34] B. T. Doshi, S. M. Dravida, E. J. H. Valencia, W. A. Matragi, M. A. Qureshi, J.
Anderson, and J. S. Manchester, 'A simple data link (SDL) protocol for next generation packet networks,' IEEE J. Select. Areas Commun., vol. 18, no. 10, pp. 1825-1837, Oct.
2000.
[35] B. Raahemi, 'Comparison of frame delineation performance between 10GE WAN PHY and 8B/10B,' Nortel Networks' submission to IEEE802.3 HSSG, ver. 1.0, Nov. 1999.
[36] R. D. Doverspike, S. Phillips, and J. R. Westbrook, 'Future transport network architecture,' IEEE Commun. Mag., vol. 37, no. 8, pp. 96-101, Aug. 1999.
[37] N. Ghani, S. Dixit, and T. S. Wang, 'On IP-over-WDM integration,' IEEE Commun. Mag., vol. 38, no. 3, pp. 72-84, Mar. 2000.
[38] D. O. Awduche, Y. Rekhter, J. Drake, and R. Coltun, 'Multi-protocol lambda switching: Combining MPLS traffic engineering control with optical crossconnects,' Internet Draft, Work in Progress, Nov. 1999.
[39] K. Kompella, Y. Rekhter, D. O. Awduche, G. Hjalmtysson, J. Lawrence, S. Okamoto, D. Basak, G. Bernstein, J. Drake, N. Margalit, and E. Stern, 'Extension to IS-IS/OSPF and RSVP in support of MPL(ambda)S,' Internet Draft, Work in Progress, Feb. 2000.
[40] J. P. Lang, K. Mitra, and J. Drake, 'Extension to RSVP for optical networking,' Internet Draft, Work in Progress, Mar. 2000.
[41] D. Saha, B. Rajagopalan, and Z. B. Tang, 'RSVP extensions for signalling optical paths,' Internet Draft, Work in Progress, Mar. 2000.
[42] Z. B. Tang, D. Saha, and B. Rajagopalan, 'Extensions to CR-LDP for path establishment in optical networks,' Internet Draft, Work in Progress, Mar. 2000.
[43] Y. Fan, P. A. Smith, V. Sharma, K. Owens, G. R. Ash, M. Krishnaswamy, Y. Cao, M. K. Girish, H. M. Ruck, S. Bernstein, S. Ahluwalia, H. Sjostrand, K. Eriksson, L.
Wang, A. Doria, and H. Hummel, 'Extensions to CR-LDP and RSVP-TE for optical path set-up,' Internet Draft, Work in Progress, Mar. 2000.
[44] B. Rajagopalan, D. Saha, Z. B. Tang, and K. Bala, 'Signaling framework for automated provisioning and restoration of paths in optical mesh networks,' Internet Draft, Work in Progress, Mar. 2000.
[45] M. Krishnaswamy, G. Newsome, J. Gajewski, A. R. Moral, S. Shew, and M. Mayer, 'MPLS control plane for switched ptical networks,' Internet Draft, Work in Progress, Feb. 2000.
[46] S. Chaudhuri, G. Hjalmtysson, and J. Yates, 'Control of lightpath in an optical network,' Internet Draft, Work in Progress, Feb. 2000.
[47] J. Luciani, B. Rajagopalan, D. Awduche, B. Cain, and B. Jamoussi, 'IP over optical
networks - A framework,' Internet Draft, Work in Progress, Mar. 2000.
[48] G. Hjalmtysson, J. Yates, S. Chaudhuri, and A. Greenberg, 'Smart routers-simple optics: An architecture for the optical Internet,' IEEE J. Lightwave Technol., vol. 18, no. 12, pp. 1880-1891, Dec. 2000.
[49] J. Yates, M. Rumsewicz, and J. Lacey, 'Wavelength converters in dynamically reconfigurable WDM networks,' IEEE Commun. Surveys, 2nd Quarter, pp. 2-15, 1999.
[50] A. Doria, F. Hellstrand, K. Sundell, and T. Worster, 'General switch management protocol,' Internet Draft, Work in Progress, Mar. 2000.
[51] ITU-T Recommendation I.432, B-ISDN User-Network Interface - Physical Layer Specification: General Characteristics, Inernational Telecommunication Union, Aug. 1996.
[52] D. W. Choi, 'Frame alignment in a digital carrier system - a tutorial,' IEEE Commun. Mag., vol. 28, no. 2, pp. 47-54, Feb. 1990.
[53] R. W. Sitter, 'Systems analysis of discrete Markov processes,' IRE Trans. Circuit Theory, vol. CT{3, pp. 257-266, Dec. 1956.
[54] S. L. Danielsen, P. B. Hansen, and K. E. Stubkjaer, 'Wavelength conversion in optical packet switching,' IEEE/OSA J. Lightwave Technol., vol. 16, no. 12, pp. 2095-2108, Dec. 1998.
[55] M. C. Chia, D. K. Hunter, I. Andonovic, P. Ball, and I. Wright, 'Optical packet switches: A comparison of designs,' in Proc. ICON'2000, Singapore, Sept. 2000, pp. 365-369.
[56] D. K. Hunter, M. C. Chia, and I. Andonovic, 'Buffering in optical packet switches,' IEEE/OSA J. Lightwave Technol., vol. 16, no. 12, pp. 2081-2094, Dec. 1998.
[57] D. K. Hunter, M. C. Chia, and I. Andonovic, 'Approaches to optical Internet packet switching,' IEEE Commun. Mag., vol. 38, no. 9, pp. 116-122, Sept. 2000.
[58] D. K. Hunter, M. H. M. Nizam, M. C. Chia, I. Andonovic, K. M. Guild, A. Tzanakaki, M. J. O'Mahony, J. D. Bainbridge, M. F. C. Stephens, R. V. Penty, and I. H. White, 'WASPNET: A wavelength switched packet network,' IEEE Commun. Mag., vol. 37, no. 3, pp. 120-129, Mar. 1999.
[59] W. D. Zhong and R. S. Tucker, 'A new wavelength-routed photonic packet buffer combining traveling delay lines with delay-line loops,' IEEE/OSA J. Lightwave Technol., vol. 19, no. 8, pp. 1085-1092, Aug. 2001.
[60] P. Gambini, M. Renaud, C. Guillemot, F. Callegati, I. Andonovic, B. Bostica, D. Chiaroni, G. Corazza, S. L. Danielsen, P. Gravey, P. B. Hansen, M. Henry, C. Janz,
A. Kloch, R. Krahenbuhl, C. Ra®aelli, M. Schilling, A. Talneau, and L. Zucchelli, 'Transparent optical packet switching: Network architecture and demonstration in the
KEOPS project,' IEEE J. Select. Areas Commun., vol. 16, no. 7, pp. 1245-1259, Sept. 1998.
[61] G. Castanon, L. Tancevski, and L. Tamil, 'Optical packet switching with multiple path routing,' Computer Networks, vol. 32, no. 5, pp. 635-662, May 2000.
[62] R. Langenhorst, M. Eiselt, W. Pieper, G. Grosskopf, R. Ludwig, L. Kuller, E. Dietrich, and H. G. Weber, 'Fiber loop optical buffer,' IEEE/OSA J. Lightwave Technol.,
vol. 14, no. 3, pp. 324-335, Mar. 1996.
[63] A. Kushwaha, S. K. Bose, and Y. N. Singh, \Analytical modeling for performance studies of an FLBM-based all-optical packet switch,' IEEE Commun. Lett., vol. 5,
no. 5, pp. 227-229, May 2001.
[64] W. Willinger, M. S. Taqqu, R. Sherman, and D. V. Wilson, 'Self-similarity through high-variability: Statistical analysis of Ethernet LAN traffic at the source level,' IEEE/ACM Trans. Networking, vol. 5, no. 1, pp. 71-86, Feb. 1997.
[65] J. J. He, D. Simeonidou, and S. Chaudhry, 'Contention resolution in optical packet switching networks: under long-range dependent traffic,' in Proc. OFC'2000, Baltimore, Mar. 2001, paper ThU4-1.
[66] D. K. Hunter, D. Cornwell, T. H. Gilfedder, A. Franzen, and I. Andonovic, 'SLOB:A switch with large optical buffers for packet switching,' IEEE/OSA J. Lightwave
Technol., vol. 6, no. 10, pp. 1725-1736, Oct. 1998.
[67] D. Fiems, J. Walraevens, and H. Bruneel, 'Discrete-time queueing analysis of a fibre delay line
structure with granularity,' in Proc. ONDM'2004, Ghent, Belgium, Feb. 2004.
[68] V. Paxson and S. Floyd, Wide area traffic: The failure of Poisson modeling,' IEEE/ACM Trans. Networking, vol. 3, no. 3, pp. 226-244, June 1995.
[69] A. T. Andersen and B. F. Nielsen, 'A Markovian approach for modeling packet traffic with long-range dependence,' IEEE J. Select. Areas Commu., vol. 16, no. 5, pp. 719-732, June 1998.
[70] A. T. Andersen and B. F. Nielsen, 'On the use of second-order descriptors to predict queueing behavior of MAPs,' Naval Research Logistics, vol. 49, no. 4, pp. 391-409, Apr. 2002.
[71] W. Fischer and K. M. Hellstern, 'The Markov-modulated Poisson process (MMPP) cookbook,' Performance Evaluation, vol. 18, pp. 149-171, 1992.
[72] H. Heffes and D. M. Lucantoni, 'A Markov modulated characterization of packetized voice and data traffic and related statistical multiplexer performance,' IEEE J. Select. Areas Commu., vol. 4, no. 6, pp. 856-868, Sept. 1986.
[73] I. Norros, 'On the use of fractional Brownian motion in the theory of connectionless network,' IEEE J. Select. Areas Commu., vol. 13, no. 6, pp. 953-962, Aug. 1994.
[74] C. Blondia, 'The N/G/1 finite capacity queue,' Commum. Statist. Stochastic Models, vol. 5, pp. 273-294, 1989.
[75] A. N. Dudin, V. L. Klimenok, and G. V. Tsarenkov, 'Software Sirius++ for performance evaluation of modern communication networks,' in Proc. ESM'2002, Fachhochschule Darmstadt, Germany, June 2002, pp. 489-493.
dc.identifier.urihttp://tdr.lib.ntu.edu.tw/jspui/handle/123456789/39305-
dc.description.abstract現今,分波多工(Wavelength Division Multiplexing, WDM) 設備已經十分成熟。分波多工設備已經被廣泛地用來建設高容量的光網路,俾使能順利地傳送日益增加的網際網路訊務量。因此,分波多工光網路與網際網路通訊協定(Internet Protocol, IP)直接的整合便成為最重要的研究之一。其中,全光網際網路是IP與分波多工光網路整合最終要達到的目標。本論文探討了一部份有關全光網際網路傳送、交換及訊務之研究。在第二章中,我們首先提出一個新的分波多工光網路傳送IP訊務之通訊協定。該協定可以同時處理實體層與數據鏈路層的碼框同步與封包識別,並且可以扮演一部分第三層(網路層)交換的功能。我們同時亦在本章中詳細地分析該協定的碼框包裝的成效。在第三章中,我們先介紹兩種分波多工光路由器,並且比較他們在非同步、可變封包長度的自我相似性網際網路訊務(Self-Similar IP Traffic)下的封包遺失機率成效。我們發現當迴授埠數目大於四時,使用迴授型(Feedback Type)但未利用空隙填塞(Void Filling)排程演譯法的分波多工光路由器將較使用空隙填塞排程演譯法的前饋型(Feed-Forward Type)分波多工光路由器的封包遺失率成效佳。之後,我們在該章中詳細地分析迴授型分波多工光路由器的系統大小與迴授型緩衝器特性之間的關連與交互影響,俾使能達到最佳化的設計。在第四章中,我們延伸以變異常數為基礎(Variance-Based)的馬可夫式參數找尋法(Markovian Fitting),並且使用具有短程關連性(Short Range Dependence, SRD)的馬可夫模型作為模擬自我相似性網路的訊務。在該章中,我們詳細地介紹了如何找尋所需要的馬可夫模型參數,並且利用廣泛的數值結果證明該模型的二階統計特性與排隊模型成效之準確性與時間期間對其之影響。最後,我們將在第五章總結本篇論文,並且說明未來可延伸的研究方向與工作。zh_TW
dc.description.abstractNowadays, equipments and components of wavelength division
multiplexing (WDM) have matured enough to provide extremely
high-capacity networks that are required to transport the
ever-increasing amount of IP traffic. Dense WDM (DWDM) system has been conceived to be able to provide the extraordinarily additional bandwidth in fiber optic networks. At the present time, DWDM technologies doubtlessly are the means that can fully exploit
the tremendous bandwidth of optical fibers. Therefore, the direct integration of IP and WDM/DWDM has been the most popular research and development area for the next generation Internet. Among the research of IP over WDM networks, optical router based optical Internet is the ultimate goal of integrating IP with WDM directly.
In this thesis, we investigate three basic issues of optical
Internet. These issues are presented in the three major chapters in this thesis. We briefly describe them as follows.
In Chapter 2, we propose a framework for IP over WDM networks using a newly proposed IP over WDM protocol with routing and transport capabilities. This newly proposed protocol uses label and length information as the physical transport framing and data link delineation at the same time, and it can handle routing processes in the core networks. The proposed protocol performs physical framing, data link delineation, and part of layer 3 routing functions in one process. Thus, it can speed up the processes in future tera-bit networks. We present the analysis of framing encapsulation performance of this protocol in detail in Chapter 2.
In Chapter 3, we introduce two different types of WDM optical routers: one is feed-forward (FF) type and the other is feedback (FB) type or the so-called partially shared buffering (PSB) type WDM optical routers. When WDM optical routers operate under asynchronous and variable packet length mode, there will be voids induced in the fiber delay lines (FDLs). These voids make the channels idle and are unusable for storing newly arriving packets.
Thus, the performance in terms of probability of packet loss (PPL) is inferior to the routers operating under synchronous and fixed packet length mode. In this chapter, we first compare the packet loss performance of these two different types of WDM optical routers incorporating various contention resolution schemes and operating under asynchronous and variable packet length self-similar traffic input. we demonstrate that a 16X16 FB type WDM optical router employing more than 4 re-circulated ports without using void filling (VF) algorithm can provide better performance than that of FF type WDM optical
routers using VF algorithm under asynchronous and variable packet length self-similar traffic input. We then investigate the system dimensioning issues of FB type WDM optical routers under the same traffic by simulation in Chapter 3.
In Chapter 4, we investigate the possibility of using short range dependent (SRD) Markovian models as appropriate traffic models to emulate the second-order self-similar traffic. Research results have shown that self-similar or long-range dependent (LRD) traffic has severe impact on switch performance and network design. New traffic models such as chaotic maps, fractional Brownian motion (FBM) and fractional autoregressive integrated moving average
(FARIMA), etc., have been proposed to characterize the
self-similar and LRD behavior. Although these traffic models
characterize the self-similar process in a parsimonious way, most of them are asymptotic in nature, hence they are less effective in the context of queueing-based performance evaluation when the buffer sizes are small. In this chapter, we proposed a generalized variance-based Markovian fitting for self-similar traffic modelling. It is found from extensive numerical results that not only the proposed Markovian fitting retains the advantages of variance-based fitting, but also its accuracy is better than that of the original work. We present the performance comparison based
on the second-order statistics of counts and the queueing-based performance measures such as tail probability and loss probability in this chapter. The analysis of the time scale effect on the proposed model is also given in detail in this chapter.
At last, we conclude this thesis in Chapter 5, by summarizing the works that we have achieved. There are still several important issues regarding optical Internet that we have not been available to investigate. These issues will be presented in the future works in Chapter 5.
en
dc.description.provenanceMade available in DSpace on 2021-06-13T17:25:43Z (GMT). No. of bitstreams: 1
ntu-94-D88942006-1.pdf: 4142728 bytes, checksum: 32e20290dbf07e35b92bd58cc1597eca (MD5)
Previous issue date: 2005
en
dc.description.tableofcontentsContents
Chinese Abstract .........................................i
English Abstract .......................................iii
Acknowledgements .......................................vii
Contents ................................................ix
List of Tables ..........................................xi
List of Figures .......................................xiii
I Chinese Part ...........................................1
Chinese Chapter 1 ........................................3
Chinese Chapter 2 ........................................5
Chinese Chapter 3 ........................................7
Chinese Chapter 4 ........................................9
Chinese Chapter 5 .......................................11
II English Part .........................................13
1 Preliminary ...........................................15
1.1 Background ..........................................15
1.2 Research in this Thesis .............................23
2 A Framework of IP over WDM Using A Newly Proposed IP over WDM Protocol with Routing and Transport Capabilities ....27
2.1 Introduction ........................................27
2.2 Framework for IP over WDM Optical Networks ..........31
2.3 Transmission Format and Performance Analysis ........38
2.3.1 Encapsulation Format and Delineation Scheme .......39
2.3.2 Performance Analysis ..............................41
2.4 Discussion and Comparison ...........................53
2.5 Summary .............................................55
3 Performance Evaluation of Feedback Type WDM Optical Routers under Asynchronous and Variable Packet Length Self-Similar Traffic .........................................57
3.1 Introduction ........................................57
3.2 Architecture of FB Type WDM Optical Routers .........59
3.3 Performance Analysis of FB Type WDM Optical Routers .64
3.3.1 Performance Study of FF Type WDM Optical Routers using VF Algorithm ......................................64
3.3.2 Packet Loss of FB Type WDM Optical Routers ........69
3.4 Sensitivity of System Parameters and Dimensioning Issues ..................................................75
3.4.1 Sensitivity Analysis and Dimensioning Issues of Re-circulated Ports and Re-circulation Limits ..............76
3.4.2 Sensitivity Issues of Re-circulated Ports and Buffer Depth ...................................................80
3.5 Summary .............................................83
4 Generalized Variance-Based Markovian Fitting for SelfSimilar Traffic Modelling ...........................85
4.1 Introduction ........................................85
4.2 Characteristics of Self-Similar and MMPP Processes ..88
4.3 Generalized Variance-Based Fitting Procedure ........90
4.4 Performance Comparison ..............................95
4.4.1 Second-Order Statistics of Counts .................95
4.4.2 Tail Probability and Mean Waiting Time in Infinite Buffer Queues ...........................................97
4.4.3 Loss Probability in Finite Buffer Queues ..........99
4.4.4 Time Scale Effect on the Accuracy of Predicting Queueing-Based Performance Measures ....................102
4.5 Summary ............................................108
5 Conclusions and Future Works .........................111
5.1 Conclusions ........................................111
5.2 Future Works .......................................117
Bibliography ...........................................121
dc.language.isoen
dc.subject自我相似性話務zh_TW
dc.subject光交換zh_TW
dc.subject分波多工光網路zh_TW
dc.subject全光網際網路zh_TW
dc.subjectSelf-Similar Trafficen
dc.subjectWDM Networksen
dc.subjectOptical Packet Switchingen
dc.subjectOptical Interneten
dc.title全光網際網路傳送交換及訊務之研究zh_TW
dc.titleOptical Internet: Transporting, Switching and Traffic Fittingen
dc.typeThesis
dc.date.schoolyear93-1
dc.description.degree博士
dc.contributor.oralexamcommittee曹恆偉(Hen-Wai Tsao),張時中(Shi-Chung Chang),蔡志宏(Zsehong Tsa),廖婉君(Wanjiun Liao),陳金蓮(Jean-Lien Chen),李程輝(Tsern-Huei Lee),張仲儒(Chung-Ju Chang)
dc.subject.keyword全光網際網路,自我相似性話務,光交換,分波多工光網路,zh_TW
dc.subject.keywordOptical Internet,WDM Networks,Optical Packet Switching,Self-Similar Traffic,en
dc.relation.page128
dc.rights.note有償授權
dc.date.accepted2005-01-24
dc.contributor.author-college電機資訊學院zh_TW
dc.contributor.author-dept電信工程學研究所zh_TW
顯示於系所單位:電信工程學研究所

文件中的檔案:
檔案 大小格式 
ntu-94-1.pdf
  未授權公開取用
4.05 MBAdobe PDF
顯示文件簡單紀錄


系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved