Skip navigation

DSpace

機構典藏 DSpace 系統致力於保存各式數位資料(如:文字、圖片、PDF)並使其易於取用。

點此認識 DSpace
DSpace logo
English
中文
  • 瀏覽論文
    • 校院系所
    • 出版年
    • 作者
    • 標題
    • 關鍵字
  • 搜尋 TDR
  • 授權 Q&A
    • 我的頁面
    • 接受 E-mail 通知
    • 編輯個人資料
  1. NTU Theses and Dissertations Repository
  2. 理學院
  3. 化學系
請用此 Handle URI 來引用此文件: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/39296
完整後設資料紀錄
DC 欄位值語言
dc.contributor.advisor牟中原(Chung-Yuan Mou)
dc.contributor.authorYi-Qi Yehen
dc.contributor.author葉奕琪zh_TW
dc.date.accessioned2021-06-13T17:25:34Z-
dc.date.available2014-07-26
dc.date.copyright2011-07-26
dc.date.issued2011
dc.date.submitted2011-07-13
dc.identifier.citationReference
1. Zhao, D. Y.; Feng, J. L.; Huo, Q. S.; Melosh, N.; Fredrickson, G. H.; Chmelka, B. F.; Stucky, G. D., Science 1998, 279 (5350), 548.
2. Zhao, D. Y.; Huo, Q. S.; Feng, J. L.; Chmelka, B. F.; Stucky, G. D., J. Am. Chem. Soc. 1998, 120 (24), 6024.
3. Du, G.; Lim, S.; Pinault, M.; Wang, C.; Fang, F.; Pfefferle, L.; Haller, G. L., J. Catal. 2008, 253 (1), 74.
4. Ikemoto, H.; Chi, Q. J.; Ulstrup, J., J. Phys. Chem. C 2010, 114 (39), 16174.
5. Tao, Z. M.; Xie, Y. W.; Goodisman, J.; Asefa, T., Langmuir 2010, 26 (11), 8914.
6. Zhang, H. D.; Wang, Y. M.; Zhang, L.; Gerritsen, G.; Abbenhuis, H. C. L.; van Santen, R. A.; Li, C., J. Catal. 2008, 256 (2), 226.
7. Prieto, G.; Martinez, A.; Murciano, R.; Arribas, M. A., Appl. Catal. A-Gen. 2009, 367 (1-2), 146.
8. Sayari, A.; Han, B. H.; Yang, Y., J. Am. Chem. Soc. 2004, 126 (44), 14348.
9. Kosuge, K.; Sato, T.; Kikukawa, N.; Takemori, M., Chem. Mater. 2004, 16 (5), 899.
10. Chao, M. C.; Chang, C. H.; Lin, H. P.; Tang, C. Y.; Lin, C. Y., J. Mater. Sci. 2009, 44 (24), 6453.
11. Lee, H. I.; Kim, J. H.; Stucky, G. D.; Shi, Y. F.; Pak, C.; Kim, J. M., J. Mater. Chem. 2010, 20 (39), 8483.
12. Ballem, M. A.; Cordoba, J. M.; Oden, M., Micropor. Mesopor. Mater. 2010, 129 (1-2), 106.
13. Jin, Z. W.; Wang, X. D.; Cui, X. G., Colloids and Surfaces a-Physicochemical and Engineering Aspects 2008, 316 (1-3), 27.
14. Chen, S. Y.; Tang, C. Y.; Chuang, W. T.; Lee, J. J.; Tsai, Y. L.; Chan, J. C. C.; Lin, C. Y.; Liu, Y. C.; Cheng, S. F., Chem. Mater. 2008, 20 (12), 3906.
15. Sujandi; Park, S. E.; Han, D. S.; Han, S. C.; Jin, M. J.; Ohsuna, T., Chem. Commun. 2006, (39), 4131.
16. Cui, X. G.; Moon, S. W.; Zin, W. C., Mater. Lett. 2006, 60 (29-30), 3857.
17. Johansson, E. M.; Cordoba, J. M.; Oden, M., Mater. Lett. 2009, 63 (24-25), 2129.
18. Johansson, E. M.; Cordoba, J. M.; Oden, M., Micropor. Mesopor. Mater. 2010, 133 (1-3), 66.
19. Sujandi; Prasetyanto, E. A.; Park, S. E., Appl. Catal. A-Gen. 2008, 350 (2), 244.
20. Saravanamurugan, S.; Sujandi; Han, D. S.; Koo, J. B.; Park, S. E., Catal. Commun. 2008, 9 (1), 158.
21. Cheng, S. F.; Wang, X. G.; Chen, S. Y., Top. Catal. 2009, 52 (6-7), 681.
22. Che, S. N.; Lund, K.; Tatsumi, T.; Iijima, S.; Joo, S. H.; Ryoo, R.; Terasaki, O., Angew. Chem.-Int. Edit. 2003, 42 (19), 2182.
23. Chen, S. Y.; Chen, Y. T.; Lee, J. J.; Cheng, S., J. Mater. Chem. 2011, 21 (15), 5693.
24. Beck, J. S.; Vartuli, J. C.; Roth, W. J.; Leonowicz, M. E.; Kresge, C. T.; Schmitt, K. D.; Chu, C. T. W.; Olson, D. H.; Sheppard, E. W.; McCullen, S. B.; Higgins, J. B.; Schlenker, J. L., J. Am. Chem. Soc. 1992, 114 (27), 10834.
25. Kresge, C. T.; Leonowicz, M. E.; Roth, W. J.; Vartuli, J. C.; Beck, J. S., Nature 1992, 359 (6397), 710.
26. Beck, J. S.; Vartuli, J. C.; Kennedy, G. J.; Kresge, C. T.; Roth, W. J.; Schramm, S. E., Chem. Mater. 1994, 6 (10), 1816.
27. Selvam, P.; Bhatia, S. K.; Sonwane, C. G., Ind. Eng. Chem. Res. 2001, 40 (15), 3237.
28. Wang, X. G.; Chen, C. C.; Chen, S. Y.; Mou, Y.; Cheng, S. F., Applied Catalysis a-General 2005, 281 (1-2), 47.
29. Han, Y.; Lee, S. S.; Ying, J. Y., Chem. Mater. 2006, 18 (3), 643.
30. Tian, R. J.; Zhang, H.; Ye, M. L.; Jiang, X. G.; Hu, L. H.; Li, X.; Bao, X. H.; Zou, H. F., Angew. Chem.-Int. Edit. 2007, 46 (6), 962.
31. Tanev, P. T.; Chibwe, M.; Pinnavaia, T. J., Nature 1994, 368 (6469), 321.
32. Tanev, P. T.; Pinnavaia, T. J., Science 1995, 267 (5199), 865.
33. Inagaki, S.; Fukushima, Y.; Kuroda, K., J . Chem. Soc., Chem. Commun. 1993, (8), 680.
34. Galarneau, A.; Barodawalla, A.; Pinnavaia, T. J., Nature 1995, 374 (6522), 529.
35. Bagshaw, S. A.; Prouzet, E.; Pinnavaia, T. J., Science 1995, 269 (5228), 1242.
36. Ryoo, R.; Kim, J. M.; Ko, C. H.; Shin, C. H., J. Phys. Chem. 1996, 100 (45), 17718.
37. Patarin, J.; Lebeau, B.; Zana, R., Curr. Opin. Colloid Interface Sci. 2002, 7 (1-2), 107.
38. Firouzi, A.; Kumar, D.; Bull, L. M.; Besier, T.; Sieger, P.; Huo, Q.; Walker, S. A.; Zasadzinski, J. A.; Glinka, C.; Nicol, J.; Margolese, D.; Stucky, G. D.; Chmelka, B. F., Science 1995, 267 (5201), 1138.
39. Bagshaw, S. A.; Pinnavaia, T. J., Angew. Chem.-Int. Edit. 1996, 35 (10), 1102.
40. Yang, P. D.; Zhao, D. Y.; Margolese, D. I.; Chmelka, B. F.; Stucky, G. D., Chem. Mater. 1999, 11 (10), 2813.
41. Flodstrom, K.; Alfredsson, V., Micropor. Mesopor. Mater. 2003, 59 (2-3), 167.
42. Li, Y.; Xu, R.; Couderc, S.; Bloor, D. M.; Wyn-Jones, E.; Holzwarth, J. F., Langmuir 2001, 17 (1), 183.
43. Flodstrom, K.; Alfredsson, V.; Kallrot, N., J. Am. Chem. Soc. 2003, 125 (15), 4402.
44. Yu, C. Z.; Fan, J.; Tian, B. Z.; Zhao, D. Y., Chem. Mater. 2004, 16 (5), 889.
45. Zhang, H.; Sun, J. M.; Ma, D.; Weinberg, G.; Su, D. S.; Bao, X. H., J. Phys. Chem. B 2006, 110 (51), 25908.
46. Edler, K. J.; Wasbrough, M. J.; Holdaway, J. A.; O'Driscoll, B. M. D., Langmuir 2009, 25 (7), 4047.
47. Ruthstein, S.; Schmidt, J.; Kesselman, E.; Talmon, Y.; Goldfarb, D., J. Am. Chem. Soc. 2006, 128 (10), 3366.
48. Lin, H. P.; Mou, C. Y., Acc. Chem. Res. 2002, 35 (11), 927.
49. Nan, Z. D.; Wang, M. Y.; Yang, B. Q., J. Chem. Eng. Data 2009, 54 (1), 83.
50. Monnier, A.; Schuth, F.; Huo, Q.; Kumar, D.; Margolese, D.; Maxwell, R. S.; Stucky, G. D.; Krishnamurty, M.; Petroff, P.; Firouzi, A.; Janicke, M.; Chmelka, B. F., Science 1993, 261 (5126), 1299.
51. Huo, Q. S.; Margolese, D. I.; Ciesla, U.; Demuth, D. G.; Feng, P. Y.; Gier, T. E.; Sieger, P.; Firouzi, A.; Chmelka, B. F.; Schuth, F.; Stucky, G. D., Chem. Mater. 1994, 6 (8), 1176.
52. Linden, M.; Schunk, S. A.; Schuth, F., Angew. Chem.-Int. Edit. 1998, 37 (6), 821.
53. Agren, P.; Linden, M.; Rosenholm, J. B.; Schwarzenbacher, R.; Kriechbaum, M.; Amenitsch, H.; Laggner, P.; Blanchard, J.; Schuth, F., J. Phys. Chem. B 1999, 103 (29), 5943.
54. Calabro, D. C.; Valyocsik, E. W.; Ryan, F. X., Microporous Mater. 1996, 7 (5), 243.
55. Brown, A. S.; Holt, S. A.; Dam, T.; Trau, M.; White, J. W., Langmuir 1997, 13 (24), 6363.
56. Holt, S. A.; Foran, G. J.; White, J. W., Langmuir 1999, 15 (7), 2540.
57. Zhang, J. Y.; Luz, Z.; Goldfarb, D., J. Phys. Chem. B 1997, 101 (36), 7087.
58. Zhang, J. Y.; Luz, Z.; Zimmermann, H.; Goldfarb, D., J. Phys. Chem. B 2000, 104 (2), 279.
59. Galarneau, A.; Di Renzo, F.; Fajula, F.; Mollo, L.; Fubini, B.; Ottaviani, M. F., J. Colloid Interface Sci. 1998, 201 (2), 105.
60. Li, Y.; Xu, R.; Bloor, D. M.; Holzwarth, J. F.; Wyn-Jones, E., Langmuir 2000, 16 (26), 10515.
61. Chan, H. B. S.; Budd, P. M.; Naylor, T. D., J. Mater. Chem. 2001, 11 (3), 951.
62. Yano, K.; Fukushima, Y., J. Mater. Chem. 2004, 14 (10), 1579.
63. Yamada, Y.; Yano, K., Micropor. Mesopor. Mater. 2006, 93 (1-3), 190.
64. Chen, B. C.; Lin, H. P.; Chao, M. C.; Mou, C. Y.; Tang, C. Y., Adv. Mater. 2004, 16 (18), 1657.
65. Ruthstein, S.; Frydman, V.; Goldfarb, D., J. Phys. Chem. B 2004, 108 (26), 9016.
66. Flodstrom, K.; Wennerstrom, H.; Alfredsson, V., Langmuir 2004, 20 (3), 680.
67. Flodstrom, K.; Teixeira, C. V.; Amenitsch, H.; Alfredsson, V.; Linden, M., Langmuir 2004, 20 (12), 4885.
68. Khodakov, A. Y.; Zholobenko, V. L.; Imperor-Clerc, M.; Durand, D., J. Phys. Chem. B 2005, 109 (48), 22780.
69. Ruthstein, S.; Frydman, V.; Kababya, S.; Landau, M.; Goldfarb, D., J. Phys. Chem. B 2003, 107 (8), 1739.
70. Imperor-Clerc, M.; Grillo, I.; Khodakov, A. Y.; Durand, D.; Zholobenko, V. L., Chem. Commun. 2007, (8), 834.
71. Linton, P.; Alfredsson, V., Chem. Mater. 2008, 20 (9), 2878.
72. Linton, P.; Rennie, A. R.; Zackrisson, M.; Alfredsson, V., Langmuir 2009, 25 (8), 4685.
73. Linton, P.; Hernandez-Garrido, J. C.; Midgley, P. A.; Wennerstrom, H.; Alfredsson, V., Phys. Chem. Chem. Phys. 2009, 11 (46), 10973.
74. Linton, P.; Wennerstrom, H.; Alfredsson, V., Phys. Chem. Chem. Phys. 2010, 12 (15), 3852.
75. Tsuchiya, K.; Nakanishi, H.; Sakai, H.; Abe, M., Langmuir 2004, 20 (6), 2117.
76. Herrington, K. L.; Kaler, E. W.; Miller, D. D.; Zasadzinski, J. A.; Chiruvolu, S., J. Phys. Chem. 1993, 97 (51), 13792.
77. You, Y. L.; Hao, L. S.; Nan, Y. Q., Colloid Surf. A-Physicochem. Eng. Asp. 2009, 335 (1-3), 154.
78. Kaler, E. W.; Murthy, A. K.; Rodriguez, B. E.; Zasadzinski, J. A. N., Science 1989, 245 (4924), 1371.
79. Kaler, E. W.; Herrington, K. L.; Murthy, A. K.; Zasadzinski, J. A. N., J. Phys. Chem. 1992, 96 (16), 6698.
80. Chiruvolu, S.; Israelachvili, J. N.; Naranjo, E.; Xu, Z.; Zasadzinski, J. A.; Kaler, E. W.; Herrington, K. L., Langmuir 1995, 11 (11), 4256.
81. Zhang, S.; Teng, H. N., Colloid J. 2008, 70 (1), 105.
82. Yatcilla, M. T.; Herrington, K. L.; Brasher, L. L.; Kaler, E. W.; Chiruvolu, S.; Zasadzinski, J. A., J. Phys. Chem. 1996, 100 (14), 5874.
83. Prevost, S.; Gradzielski, M., J. Colloid Interface Sci. 2009, 337 (2), 472.
84. Letizia, C.; Andreozzi, P.; Scipioni, A.; La Mesa, C.; Bonincontro, A.; Spigone, E., J. Phys. Chem. B 2007, 111 (4), 898.
85. Andreozzi, P.; Funari, S. S.; La Mesa, C.; Mariani, P.; Ortore, M. G.; Sinibaldi, R.; Spinozzi, F., J. Phys. Chem. B 2010, 114 (24), 8056.
86. Chen, F. X.; Huang, L. M.; Li, Q. Z., Chem. Mater. 1997, 9 (12), 2685.
87. Ohkubo, T.; Ogura, T.; Sakai, H.; Abe, M., J. Colloid Interface Sci. 2007, 312 (1), 42.
88. Ogura, T.; Sakai, K.; Sakai, H.; Abe, M., J. Phys. Chem. C 2008, 112 (32), 12184.
89. O'Driscoll, B. M. D.; Nickels, E. A.; Edler, K. J., Chem. Commun. 2007, (10), 1068.
90. Yamauchi, Y.; Sawada, M.; Komatsu, M.; Sugiyama, A.; Osaka, T.; Hirota, N.; Sakka, Y.; Kuroda, K., Chemistry-an Asian Journal 2007, 2 (12), 1505.
91. Du, J.; Fukushima, M.; Sakamoto, S.; Sakurai, M.; Suzuki, T.; Shimojima, A.; Miyata, H.; Crudden, C. M.; Kuroda, K., Langmuir 2009, 25 (23), 13614.
92. Brezesinski, T.; Groenewolt, M.; Pinna, N.; Amenitsch, H.; Antonietti, M.; Smarsly, B. M., Adv. Mater. 2006, 18 (14), 1827.
93. Fan, J.; Boettcher, S. W.; Tsung, C. K.; Shi, Q.; Schierhorn, M.; Stucky, G. D., Chem. Mater. 2008, 20 (3), 909.
94. Knoll, A.; Horvat, A.; Lyakhova, K. S.; Krausch, G.; Sevink, G. J. A.; Zvelindovsky, A. V.; Magerle, R., Phys. Rev. Lett. 2002, 89 (3).
95. Jeong, U.; Ryu, D. Y.; Kho, D. H.; Kim, J. K.; Goldbach, J. T.; Kim, D. H.; Russell, T. P., Adv. Mater. 2004, 16 (6), 533.
96. Han, E.; Stuen, K. O.; Leolukman, M.; Liu, C. C.; Nealey, P. F.; Gopalan, P., Macromolecules 2009, 42 (13), 4896.
97. Ahn, D. U.; Sancaktar, E., Soft Matter 2008, 4 (7), 1454.
98. Horvat, A.; Lyakhova, K. S.; Sevink, G. J. A.; Zvelindovsky, A. V.; Magerle, R., J. Chem. Phys. 2004, 120 (2), 1117.
99. Lefevre, N.; Daoulas, K. C.; Muller, M.; Gohy, J. F.; Fustin, C. A., Macromolecules 2010, 43 (18), 7734.
100. C. Wagner, Z. E., Theory of Precipitate Change by Redissolution, Z. Elektrochem 1961, 65, 581.
101. Speight, M. V., Growth Kinetics of Grain-boundary Precipitates, Acta Metall. 1968, 16, 133.
102. Kirchner, H. O. K., Coarsening of Grain-Boundary Precipitates, Metall. Trans. 1971, 2, 2861.
103. Penn, R. L.; Banfield, J. F., Am. Mineral. 1998, 83 (9-10), 1077.
104. Zhang, J.; Huang, F.; Lin, Z., Nanoscale 2010, 2 (1), 18.
105. Shen, P.; Fahn, Y. Y.; Su, A. C., Nano Lett. 2001, 1 (6), 299.
106. Kline, S. R., J. Appl. Crystallogr. 2006, 39, 895.
107. Marı′a Luisa Ojeda; Juan Marcos Esparza; Antonio Campero; Salomo′n Cordero; Isaac Kornhauser; Rojas, F., Phys. Chem. Chem. Phys. 2003, 5, 1859.
108. Morishige, K.; Kanzaki, Y., J. Phys. Chem. C 2009, 113 (33), 14927.
109. Poyraz, A. S.; Dag, O., J. Phys. Chem. C 2009, 113 (43), 18596.
110. Yeh, Y. Q.; Chen, B. C.; Lin, H. P.; Tang, C. Y., Langmuir 2006, 22 (1), 6.
111. Kim, S. S.; Karkamkar, A.; Pinnavaia, T. J.; Kruk, M.; Jaroniec, M., J. Phys. Chem. B 2001, 105 (32), 7663.
112. Berggren, A.; Palmqvist, A. E. C., J. Phys. Chem. C 2008, 112 (3), 732.
113. Hung, S. C.; Lin, H. P.; Mou, C. Y., Nanotechnology in Mesostructured Materials 2003, 146, 105.
114. Flory, P. I., J. Chem. Phys. 1942, 10 (1), 51.
115. Huggins, M. L., J. Chem. Phys. 1941, 9 (5), 440.
116. Hamley, I. W.; Castelletto, V.; Yang, Z.; Price, C.; Booth, C., Macromolecules 2001, 34 (12), 4079.
117. Epps, T. H.; Bailey, T. S.; Pham, H. D.; Bates, F. S., Chem. Mater. 2002, 14 (4), 1706.
118. Kim, S. H.; Misner, M. J.; Yang, L.; Gang, O.; Ocko, B. M.; Russell, T. P., Macromolecules 2006, 39 (24), 8473.
119. Tirumala, V. R.; Romang, A.; Agarwal, S.; Lin, E. K.; Watkins, J. J., Adv. Mater. 2008, 20 (9), 1603.
120. Icopini, G. A.; Brantley, S. L.; Heaney, P. J., Geochim. Cosmochim. Acta 2005, 69 (2), 293.
121. Miyazawa, K.; Inagaki, S., Chem. Commun. 2000, (21), 2121.
122. Kruk, M.; Jaroniec, M.; Ko, C. H.; Ryoo, R., Chem. Mater. 2000, 12 (7), 1961.
123. Galarneau, A.; Cambon, H.; Di Renzo, F.; Fajula, F., Langmuir 2001, 17 (26), 8328.
124. Imperor-Clerc, M.; Davidson, P.; Davidson, A., J. Am. Chem. Soc. 2000, 122 (48), 11925.
125. Wanka, G.; Hoffmann, H.; Ulbricht, W., Macromolecules 1994, 27 (15), 4145.
126. Mortensen, K.; Pedersen, J. S., Macromolecules 1993, 26 (4), 805.
127. Cheng, C. F.; Lin, Y. C.; Cheng, H. H.; Chen, Y. C., Chem. Phys. Lett. 2003, 382 (5-6), 496.
128. Shioi, A.; Hatton, T. A., Langmuir 2002, 18 (20), 7341.
129. Li, H. G.; Hao, J. C., J. Phys. Chem. B 2009, 113 (8), 2371.
130. Wang, C.; Yan, P.; Xiao, J. X., Chem. J. Chin. Univ.-Chin. 2009, 30 (10), 2012.
131. Tsarkova, L.; Sevink, G. J. A.; Krausch, G., Nanopattern Evolution in Block Copolymer Films: Experiment, Simulations and Challenges. In Adv. Polym. Sci., Springer-Verlag Berlin: Berlin, 2010; Vol. 227, pp 33.
132. Szamel, G.; Muller, M., J. Chem. Phys. 2003, 118 (2), 905.
133. Innocenzi, P.; Malfatti, L.; Kldchob, T.; Falcaro, P., Chem. Mater. 2009, 21 (13), 2555.
134. Yamauchi, Y.; Nagaura, T.; Ishikawa, A.; Chikyow, T.; Inoue, S., J. Am. Chem. Soc. 2008, 130 (31), 10165.
135. Thurn-Albrecht, T.; Steiner, R.; DeRouchey, J.; Stafford, C. M.; Huang, E.; Bal, M.; Tuominen, M.; Hawker, C. J.; Russell, T. P., Adv. Mater. 2000, 12 (11), 787.
136. Cheng, J. Y.; Mayes, A. M.; Ross, C. A., Nat. Mater. 2004, 3 (11), 823.
137. Yamauchi, Y.; Sawada, M.; Noma, T.; Ito, H.; Furumi, S.; Sakka, Y.; Kuroda, K., J. Mater. Chem. 2005, 15 (11), 1137.
138. Yamauchi, Y.; Sawada, M.; Sugiyama, A.; Osaka, T.; Sakka, Y.; Kuroda, K., J. Mater. Chem. 2006, 16 (37), 3693.
139. Ahn, B.; Hirai, T.; Jin, S.; Rho, Y.; Kim, K. W.; Kakimoto, M.; Gopalan, P.; Hayakawa, T.; Ree, M., Macromolecules 2010, 43 (24), 10568.
140. Choi, S. Y.; Lee, J. U.; Lee, J. W.; Lee, S.; Song, Y. J.; Jo, W. H.; Kim, S. H., Macromolecules 2011, 44 (7), 1771.
141. Yang, B.; Guo, C.; Chen, S.; Ma, J. H.; Wang, J.; Liang, X. F.; Zheng, L.; Liu, H. Z., J. Phys. Chem. B 2006, 110 (46), 23068.
142. Chiang, C. W.; Wang, A. Q.; Wan, B. Z.; Mou, C. Y., J. Phys. Chem. B 2005, 109 (38), 18042.
143. Chiang, C. W.; Wang, A. Q.; Mou, C. Y., Catal. Today 2006, 117 (1-3), 220.
144. Lin, M. L.; Huang, C. C.; Lo, M. Y.; Mou, C. Y., J. Phys. Chem. C 2008, 112 (3), 867.
145. Lin, M. L.; Lo, M. Y.; Mou, C. Y., J. Phys. Chem. C 2009, 113 (36), 16158.
146. Lin, M. L.; Lo, M. Y.; Mou, C. Y., Catal. Today 2011, 160 (1), 109.
147. SWDSOP, Bio-Imaging 2004.
148. Firestone, M. A.; Wolf, A. C.; Seifert, S., Biomacromolecules 2003, 4 (6), 1539.
149. Baekmark, T. R.; Pedersen, S.; Jorgensen, K.; Mouritsen, O. G., Biophys. J. 1997, 73 (3), 1479.
150. Almgren, M.; Rangelov, S., Langmuir 2004, 20 (16), 6611.
151. Konikoff, F. M.; Danino, D.; Weihs, D.; Rubin, M.; Talmon, Y., Hepatology 2000, 31 (2), 261.
152. Agarwal, V.; Singh, M.; McPherson, G.; John, V.; Bose, A., Langmuir 2004, 20 (1), 11.
153. Braun, A.; Stenger, P. C.; Warriner, H. E.; Zasadzinski, J. A.; Lu, K. W.; Taeusch, H. W., Biophys. J. 2007, 93 (1), 123.
154. Iampietro, D. J.; Brasher, L. L.; Kaler, E. W.; Stradner, A.; Glatter, O., J. Phys. Chem. B 1998, 102 (17), 3105.
155. Jung, H. T.; Coldren, B.; Zasadzinski, J. A.; Iampietro, D. J.; Kaler, E. W., Proc. Natl. Acad. Sci. U. S. A. 2001, 98 (4), 1353.
156. Li, Y.; Chen, Y. M.; Zhao, K. S.; Hikida, T., J. Environ. Sci-China 2004, 16 (2), 282.
157. 孙美娟; 邵红云; 黄永伟; 陈雷; 李林辉; 赵玲; 滕弘霓, Journal of Qingdao University of Science and Technology 2005, 26 (4), 304.
158. Hecht, E.; Mortensen, K.; Gradzielski, M.; Hoffmann, H., J. Phys. Chem. 1995, 99 (13), 4866.
159. Senkov, S.; Roux, A. H.; Roux-Desgranges, G., Phys. Chem. Chem. Phys. 2004, 6 (4), 822.
160. Roux, A. H.; Douheret, G.; Roux-Desgranges, G., Colloid Surf. A-Physicochem. Eng. Asp. 2005, 252 (1), 43.
161. Tomasic, V.; Popovic, S.; Filipovic-Vincekovic, N., J. Colloid Interface Sci. 1999, 215 (2), 280.
162. Iwamoto, K.; Ohnuki, Y.; Sawada, K.; Seno, M., Mol. Cryst. Liquid Cryst. 1981, 73 (1-2), 95.
163. Liang, X. M.; Mao, G. Z.; Ng, K. Y. S., J. Colloid Interface Sci. 2005, 285 (1), 360.
164. Lam, Y. M.; Goldbeck-Wood, G., Polymer 2003, 44 (12), 3593.
165. Leng, J.; Egelhaaf, S. U.; Cates, M. E., Biophys. J. 2003, 85 (3), 1624.
166. Sundblom, A.; Oliveira, C. L. P.; Palmqvist, A. E. C.; Pedersen, J. S., J. Phys. Chem. C 2009, 113 (18), 7706.
167. Sundblom, A.; Oliveira, C. L. P.; Pedersen, J. S.; Palmqvist, A. E. C., J. Phys. Chem. C 2010, 114 (8), 3483.
168. Linton, P.; Rennie, A. R.; Alfredsson, V., Solid State Sci. 2011, 13 (4), 793.
169. Forster, S.; Timmann, A.; Konrad, M.; Schellbach, C.; Meyer, A.; Funari, S. S.; Mulvaney, P.; Knott, R., J. Phys. Chem. B 2005, 109 (4), 1347.
170. Freiberger, N.; Glatter, O., J. Phys. Chem. B 2006, 110 (30), 14719.
171. Wang, R. H.; Chen, Q.; Chen, F. R.; Kai, J. J.; Peng, L. M., Chem. Phys. Lett. 2005, 411 (4-6), 463.
172. He, Y.; Ko, S. H.; Tian, Y.; Ribbe, A. E.; Mao, C. D., Small 2008, 4 (9), 1329.
173. Xu, F. F.; Cui, F. M.; Ruan, M. L.; Zhang, L. L.; Shi, J. L., Langmuir 2010, 26 (10), 7535.
174. Luchnikov, V.; Kondyurin, A.; Formanek, P.; Lichte, H.; Stamm, M., Nano Lett. 2007, 7 (12), 3628.
175. Hunter, H. M. A.; Garcia-Bennett, A. E.; Shannon, I. J.; Zhou, W. Z.; Wright, P. A., J. Mater. Chem. 2002, 12 (1), 20.
dc.identifier.urihttp://tdr.lib.ntu.edu.tw/jspui/handle/123456789/39296-
dc.description.abstract利用三界面活性界面活性劑C16TMAB/SDS/P123(十六烷基三甲基銨/十二烷基磺酸鈉/三區塊共聚高分子Pluronic 123)做為模版,與矽酸鈉共組裝形成具有開放式、垂直性奈米孔道的薄片狀SBA-15(簡稱SBA(⊥)),本研究主題為探討SBA(⊥)的形成機制,目的在於協助SBA(⊥)的開發與應用。 本研究藉由穿隧式與掃描式電子顯微鏡(TEM、SEM)、氮氣吸脫附等溫儀(N2 sorption isotherm)、熱重分析儀(TGA)、動態光散射(DLS)、以及同步輻射研究中心的粉末式X-ray繞射儀(BL 17A, powder XRD)與小角散射儀(BL23A, SAXS)的鑑定探討SBA(⊥)的形成機制。本文分為七章節,緒論、實驗、結果與討論四章、和結論。
第一部分,改變材料合成條件(SDS/C16TMAB莫耳比例、溫度、pH值),鑑定材料的型態與孔洞結構,歸納SBA(⊥)的形成趨勢(孔道方向性、片狀厚度、孔道壁厚)與溫度、pH值的相互關聯性,並提出一個囊泡式限制空間效應的模型(氧化矽沈積囊泡)來解釋SBA(⊥)的形成,最佳 SBA(⊥) 合成條件是SDS/C16TMAB=1.5, 溫度大於40oC,pH值在3-6範圍之間;第二部分,研究C16TMAB/SDS/P123的微胞行為,探討此模版對於SBA(⊥)的片狀型態與開放式、垂直性奈米孔道的影響;第三部分,研究C16TMAB/SDS/P123/silicates的共組裝行為,考察隨時間變化的形態與結構;第四部分,藉由SBA(⊥)的特徵圖案,旋轉型與位移型莫爾條紋、區域邊界和截面結構,了解片狀SBA(⊥)間方向性結合的組裝行為。
根據研究上述結果, C16TMAB/SDS/P123形成的特殊盤狀囊泡型微胞模版促使SBA(⊥)的薄片狀型態和開放式孔洞特徵,在後期形成的囊泡式限制空間,可有效引導垂直性奈米孔道的構成。
zh_TW
dc.description.abstractA ternary surfactant system C16TMAB/SDS/P123 was empolyed to template the condensation of sodium silicates for SBA(⊥) formation. The study on the formation mechanism is helpful to control direct it for application. SBA(⊥) is characterized as thin sheet with 2D hexagonally arrayed perpendicular nanochannels with open-ends.
We have investigated the formation mechanism by using TEM, SEM, N2 sortion isotherm, powder XRD (X-ray Diffraction), TGA (Thermogravimetric Analysis), DLS (Dynamic Light Scattering), and SAXS (solution SAXS and in-situ SAXS). This studies is organized as four section. In SectionⅠ, we have summarized the results and correlate channel orientation, sheet thickness, and wall thickness to pH and temperature by proposing a vesicle confinement effect. The best recipe for SBA(⊥) synthesis is SDS/C16TMAB=1.5, T≧40oC. In SectionⅡ, the self-assembly process of C16TMAB/SDS/P123 reveals the correlation between the appearance of disk micelles and the silica sheet formation. In SectionⅢ, the co-assembly process of surfactant/silicate hybrids has been investigated. In SectionⅣ, it is found that the assembly behaviors in the late stage of SBA(⊥) formation follow the oriented attachment mechanism. It is confirmed that the sheet form and the perpendicular nanochannels of SBA(⊥) should derive from disk micelle template.
en
dc.description.provenanceMade available in DSpace on 2021-06-13T17:25:34Z (GMT). No. of bitstreams: 1
ntu-100-D95223019-1.pdf: 14743659 bytes, checksum: 03a303e97f2484c62858345e1c208331 (MD5)
Previous issue date: 2011
en
dc.description.tableofcontentsContents
Chapter 1. ……….……………………………………………………………………….………….1
Introduction ………………………………………………………….………………….………….1
1.1 Motivation ………………………………………………………………………….……….…..1
1.2 Background ………………………………..…………………………….……………………...2
1.3 Basic principles …………………………………………………………………………..……..4
1.4 Formation mechanisms of MCM-41 ……………………………………………..……………..6
1.5 Formation mechanisms of SBA-15 …………………………………..…………………………8
1.6 Phase diagram of cationic and anionic surfactants …………………………….………………15
1.7 Mesoporous silica template with catanionic surfactants ………………………….…………...19
1.8 Researches on cationic surfactant /anionic surfactant/polymer …………….………….………19
1.9 Confinement effect ………………………………………………………….…………………20
1.10 Self-assembly of copolymer in thin film ………………………………………….………….21
1.11 Oriented attachment (OA) mechanism ……………………………………….………………21
1.12 Objectives in this study …………………………………………………….………………...22
Chapter 2. Experimental section …………………………………….…………………………..24
2.1 Preparation of SBA(⊥) ………………………………………………….…………………….25
(1) Preparation of mesoporous silicas in Section Ⅰ………………………….…………………..25
(2) Preparation of hexagonal sheets in Section Ⅱ …………………………. ………….…....…..26
(3) Preparation of SBA(⊥) in Section Ⅳ ………………………….………………….………...27
2.2 Surfactant mixture preparation for micelle behavior investigation ………………….………..27
2.3 Instruments ………………………………………………………………………………..28
2.3.1 Scanning and Transmission Electron Microscopys (SEM and TEM) ………………….28
2.3.2 Powder X-Ray Diffraction (XRD) ………………………………………………………….28
2.2.3 Nitrogen sorption isotherm ……………………………………………………………….29
2.2.4 Thermogravimetric Analysis (TGA) …………………………..…………………………….29
2.3.5 Dynamic light scattering (DLS) and Zeta-potential ……………………………………….29
2.3.6 Negative-stain TEM ………………………………………………………………………….29
2.3.6 Freeze-Fracture Replication (FFR) TEM …………………………………………………….30
2.3.8 Small-angle X-ray Scattering (SAXS) ……………………………………………………….31
2.3.8.1 Polydisperse Core-Shell Spheres with Constant Core/Shell Ratio …………………..….33
2.3.8.2 Power-law ……………………………………………………………….………………….34
Chapter 3. Results and discussion-Ⅰ…………………………………………………………….35
Section Ⅰ. Synthetic conditions ………………………………………………………..………….35
3.1 Results ……………………………………………………………………………….…………35
(1) SDS/C16TMAB molar ratio …………………………………………………………………….35
(2) Temperatures …………………………………………………………………………………43
(3) pH effect ……………………………………………………………………………………………50
3.2 Discussions …………………………………………………………………………………….56
3.2.1 Factors of segregation model ---χN …………………………………………………….……57
3.2.2 The self-organization of C16TMAB/SDS/P123 ……………………………………………..61
3.2.3 Microdomain in block copolymer thin films ……………………………….………………..64
3.2.4 The perpendicular orientation of nanochannels in SBA(⊥) …………………………………66
3.2.5 The short nanochannels with open ends in SBA(⊥) …………………………...……………69
3.2.6 Schematic model of “SDV” (Silica Deposition Vesicle) pool ……………………………….70
3.3 Summary ……………………………………………………………………………………….72
Chapter 4. Results and discussion-Ⅱ ……………………………………………………..…….74
SectionⅡ. Self-assembly behaviors of surfactant molecules ………………………………………74
4.1 Dynamic light scattering (DLS) …………………………………………………………..……74
4.2 Negative-staining TEM ………………………………………………..……………………..80
4.3 FFR-TEM ………………………………………..……………………………………………..…83
4.4 SAXS ……………………………………………………………………………………………..91
(1) SAXS profiles of P123, C16TMAB/SDS, and C16TMAB/SDS/P123 ………………………..92
(2) core-shell sphere fit of P123(aq) ………………………………………………………………...94
(3) C16TMAB/SDS/P123 systems at various SDS/C16TMAB ratios……………………………...95
(4) C16TMAB/SDS/P123 systems at various P123 concentrations.……………………………….98
4.5 Summary ……………………………………………………………………………………..104
Chapter 5. Results and discussion-Ⅲ…………………………………………………………..107
Section Ⅲ. Co-assembly process of surfactant/silicate hybrid ……………………..…………….107
5.1 optimized condition …………………………………………………………………………...107
5.3 FFR-TEM ……………………………………………………………………………………..109
5.4 in-situ SAXS ………………………………………………………………….........................113
5.4.1 Low q region ……………………………………………………………………………...…115
5.4.2 High q region ……………………………………………………………………………..…117
5.4 Summary ………………………………………………………………………………………124
Chapter 6. Results and discussion-Ⅳ…………………………………………………...………129
Section Ⅳ. The late stage of SBA(⊥) formation ………………………………...........................129
6.1 features on SBA(⊥) ……………………………………………………..……………………129
6.2 Moiré pattern …………………………………………………………………………….……130
6.2 Domain boundary …………………………………………………………………………..…133
6.4 Possible assembly pathway of silica sheets …………………………………………………...134
6.5 Hexagonal sheets ……………………………………………………………………………...138
6.6 Summary ……………………………………………………………………………………....145
Chapter 7. Conclusions ……………………………………………………..…………………...146
Reference …………………………………………………………………………..……………..149
dc.language.isoen
dc.title具有垂直性孔道的薄片狀SBA-15的形成機制研究zh_TW
dc.titleA Study on the Formation Mechanism of SBA-15 Thin Sheet
with Perpendicular Nanochannels (SBA(⊥))
en
dc.typeThesis
dc.date.schoolyear99-2
dc.description.degree博士
dc.contributor.oralexamcommittee鄭淑芬(Soofin Cheng),林弘萍,鄭有舜,孫亞賢,莊偉綜
dc.subject.keywordSBA-15,薄片狀,孔道方向性,氧化矽沈積囊泡,十六烷基三甲基銨,十二烷基磺酸鈉,Pluronic 123,zh_TW
dc.subject.keywordSBA-15,thin sheet,mesopore orientation,silica deposition vesicle,C16TMAB,SDS,P123,en
dc.relation.page155
dc.rights.note有償授權
dc.date.accepted2011-07-14
dc.contributor.author-college理學院zh_TW
dc.contributor.author-dept化學研究所zh_TW
顯示於系所單位:化學系

文件中的檔案:
檔案 大小格式 
ntu-100-1.pdf
  目前未授權公開取用
14.4 MBAdobe PDF
顯示文件簡單紀錄


系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved