Skip navigation

DSpace

機構典藏 DSpace 系統致力於保存各式數位資料(如:文字、圖片、PDF)並使其易於取用。

點此認識 DSpace
DSpace logo
English
中文
  • 瀏覽論文
    • 校院系所
    • 出版年
    • 作者
    • 標題
    • 關鍵字
    • 指導教授
  • 搜尋 TDR
  • 授權 Q&A
    • 我的頁面
    • 接受 E-mail 通知
    • 編輯個人資料
  1. NTU Theses and Dissertations Repository
  2. 醫學院
  3. 生物化學暨分子生物學科研究所
請用此 Handle URI 來引用此文件: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/39275
完整後設資料紀錄
DC 欄位值語言
dc.contributor.advisor張智芬
dc.contributor.authorDuen-Yi Huangen
dc.contributor.author黃婷茵zh_TW
dc.date.accessioned2021-06-13T17:25:14Z-
dc.date.available2006-01-28
dc.date.copyright2005-01-28
dc.date.issued2005
dc.date.submitted2005-01-25
dc.identifier.citationReference
1. Duan Z, Horwitz M. Gfi-1 oncoproteins in hematopoiesis. Hematology. 2003;8:339-344
2. Cantor AB, Orkin SH. Transcriptional regulation of erythropoiesis: an affair involving multiple partners. Oncogene. 2002;21:3368-3376
3. Orkin SH. Development of the hematopoietic system. Curr Opin Genet Dev. 1996;6:597-602
4. Palis J, Robertson S, Kennedy M, Wall C, Keller G. Development of erythroid and myeloid progenitors in the yolk sac and embryo proper of the mouse. Development. 1999;126:5073-5084
5. Dzierzak E, Medvinsky A. Mouse embryonic hematopoiesis. Trends Genet. 1995;11:359-366
6. Kulessa H, Frampton J, Graf T. GATA-1 reprograms avian myelomonocytic cell lines into eosinophils, thromboblasts, and erythroblasts. Genes Dev. 1995;9:1250-1262
7. Orkin SH. GATA-binding transcription factors in hematopoietic cells. Blood. 1992;80:575-581
8. Pevny L, Simon MC, Robertson E, Klein WH, Tsai SF, D'Agati V, Orkin SH, Costantini F. Erythroid differentiation in chimaeric mice blocked by a targeted mutation in the gene for transcription factor GATA-1. Nature. 1991;349:257-260
9. Weiss MJ, Keller G, Orkin SH. Novel insights into erythroid development revealed through in vitro differentiation of GATA-1 embryonic stem cells. Genes Dev. 1994;8:1184-1197
10. Weiss MJ, Orkin SH. Transcription factor GATA-1 permits survival and maturation of erythroid precursors by preventing apoptosis. Proc Natl Acad Sci U S A. 1995;92:9623-9627
11. Shivdasani RA, Fujiwara Y, McDevitt MA, Orkin SH. A lineage-selective knockout establishes the critical role of transcription factor GATA-1 in megakaryocyte growth and platelet development. Embo J. 1997;16:3965-3973
12. Tsai FY, Keller G, Kuo FC, Weiss M, Chen J, Rosenblatt M, Alt FW, Orkin SH. An early haematopoietic defect in mice lacking the transcription factor GATA-2. Nature. 1994;371:221-226
13. Zheng W, Flavell RA. The transcription factor GATA-3 is necessary and sufficient for Th2 cytokine gene expression in CD4 T cells. Cell. 1997;89:587-596
14. Ting CN, Olson MC, Barton KP, Leiden JM. Transcription factor GATA-3 is required for development of the T-cell lineage. Nature. 1996;384:474-478
15. Gao X, Sedgwick T, Shi YB, Evans T. Distinct functions are implicated for the GATA-4, -5, and -6 transcription factors in the regulation of intestine epithelial cell differentiation. Mol Cell Biol. 1998;18:2901-2911
16. Kuo CT, Morrisey EE, Anandappa R, Sigrist K, Lu MM, Parmacek MS, Soudais C, Leiden JM. GATA4 transcription factor is required for ventral morphogenesis and heart tube formation. Genes Dev. 1997;11:1048-1060
17. Zon LI, Tsai SF, Burgess S, Matsudaira P, Bruns GA, Orkin SH. The major human erythroid DNA-binding protein (GF-1): primary sequence and localization of the gene to the X chromosome. Proc Natl Acad Sci U S A. 1990;87:668-672
18. Yamamoto M, Takahashi S, Onodera K, Muraosa Y, Engel JD. Upstream and downstream of erythroid transcription factor GATA-1. Genes Cells. 1997;2:107-115
19. Fujiwara Y, Browne CP, Cunniff K, Goff SC, Orkin SH. Arrested development of embryonic red cell precursors in mouse embryos lacking transcription factor GATA-1. Proc Natl Acad Sci U S A. 1996;93:12355-12358
20. Visvader J, Adams JM. Megakaryocytic differentiation induced in 416B myeloid cells by GATA-2 and GATA-3 transgenes or 5-azacytidine is tightly coupled to GATA-1 expression. Blood. 1993;82:1493-1501
21. Evans T, Felsenfeld G. The erythroid-specific transcription factor Eryf1: a new finger protein. Cell. 1989;58:877-885
22. Tsai SF, Martin DI, Zon LI, D'Andrea AD, Wong GG, Orkin SH. Cloning of cDNA for the major DNA-binding protein of the erythroid lineage through expression in mammalian cells. Nature. 1989;339:446-451
23. Martin DI, Zon LI, Mutter G, Orkin SH. Expression of an erythroid transcription factor in megakaryocytic and mast cell lineages. Nature. 1990;344:444-447
24. Shimizu R, Takahashi S, Ohneda K, Engel JD, Yamamoto M. In vivo requirements for GATA-1 functional domains during primitive and definitive erythropoiesis. Embo J. 2001;20:5250-5260
25. Osada H, Grutz G, Axelson H, Forster A, Rabbitts TH. Association of erythroid transcription factors: complexes involving the LIM protein RBTN2 and the zinc-finger protein GATA1. Proc Natl Acad Sci U S A. 1995;92:9585-9589
26. Wadman IA, Osada H, Grutz GG, Agulnick AD, Westphal H, Forster A, Rabbitts TH. The LIM-only protein Lmo2 is a bridging molecule assembling an erythroid, DNA-binding complex which includes the TAL1, E47, GATA-1 and Ldb1/NLI proteins. Embo J. 1997;16:3145-3157
27. Tsang AP, Visvader JE, Turner CA, Fujiwara Y, Yu C, Weiss MJ, Crossley M, Orkin SH. FOG, a multitype zinc finger protein, acts as a cofactor for transcription factor GATA-1 in erythroid and megakaryocytic differentiation. Cell. 1997;90:109-119
28. Merika M, Orkin SH. Functional synergy and physical interactions of the erythroid transcription factor GATA-1 with the Kruppel family proteins Sp1 and EKLF. Mol Cell Biol. 1995;15:2437-2447
29. Blobel GA, Nakajima T, Eckner R, Montminy M, Orkin SH. CREB-binding protein cooperates with transcription factor GATA-1 and is required for erythroid differentiation. Proc Natl Acad Sci U S A. 1998;95:2061-2066
30. Nerlov C, Querfurth E, Kulessa H, Graf T. GATA-1 interacts with the myeloid PU.1 transcription factor and represses PU.1-dependent transcription. Blood. 2000;95:2543-2551
31. Zhang P, Behre G, Pan J, Iwama A, Wara-Aswapati N, Radomska HS, Auron PE, Tenen DG, Sun Z. Negative cross-talk between hematopoietic regulators: GATA proteins repress PU.1. Proc Natl Acad Sci U S A. 1999;96:8705-8710
32. Rekhtman N, Radparvar F, Evans T, Skoultchi AI. Direct interaction of hematopoietic transcription factors PU.1 and GATA-1: functional antagonism in erythroid cells. Genes Dev. 1999;13:1398-1411
33. Eisbacher M, Holmes ML, Newton A, Hogg PJ, Khachigian LM, Crossley M, Chong BH. Protein-protein interaction between Fli-1 and GATA-1 mediates synergistic expression of megakaryocyte-specific genes through cooperative DNA binding. Mol Cell Biol. 2003;23:3427-3441
34. Ueki N, Zhang L, Hayman MJ. Ski negatively regulates erythroid differentiation through its interaction with GATA1. Mol Cell Biol. 2004;24:10118-10125
35. Elagib KE, Xiao M, Hussaini IM, Delehanty LL, Palmer LA, Racke FK, Birrer MJ, Shanmugasundaram G, McDevitt MA, Goldfarb AN. Jun blockade of erythropoiesis: role for repression of GATA-1 by HERP2. Mol Cell Biol. 2004;24:7779-7794
36. Tsang AP, Fujiwara Y, Hom DB, Orkin SH. Failure of megakaryopoiesis and arrested erythropoiesis in mice lacking the GATA-1 transcriptional cofactor FOG. Genes Dev. 1998;12:1176-1188
37. Crispino JD, Lodish MB, MacKay JP, Orkin SH. Use of altered specificity mutants to probe a specific protein-protein interaction in differentiation: the GATA-1:FOG complex. Mol Cell. 1999;3:219-228
38. Zhang P, Zhang X, Iwama A, Yu C, Smith KA, Mueller BU, Narravula S, Torbett BE, Orkin SH, Tenen DG. PU.1 inhibits GATA-1 function and erythroid differentiation by blocking GATA-1 DNA binding. Blood. 2000;96:2641-2648
39. Weiss MJ, Yu C, Orkin SH. Erythroid-cell-specific properties of transcription factor GATA-1 revealed by phenotypic rescue of a gene-targeted cell line. Mol Cell Biol. 1997;17:1642-1651
40. Gilks CB, Bear SE, Grimes HL, Tsichlis PN. Progression of interleukin-2 (IL-2)-dependent rat T cell lymphoma lines to IL-2-independent growth following activation of a gene (Gfi-1) encoding a novel zinc finger protein. Mol Cell Biol. 1993;13:1759-1768
41. Zornig M, Schmidt T, Karsunky H, Grzeschiczek A, Moroy T. Zinc finger protein GFI-1 cooperates with myc and pim-1 in T-cell lymphomagenesis by reducing the requirements for IL-2. Oncogene. 1996;12:1789-1801
42. Schmidt T, Zornig M, Beneke R, Moroy T. MoMuLV proviral integrations identified by Sup-F selection in tumors from infected myc/pim bitransgenic mice correlate with activation of the gfi-1 gene. Nucleic Acids Res. 1996;24:2528-2534
43. Schmidt T, Karsunky H, Gau E, Zevnik B, Elsasser HP, Moroy T. Zinc finger protein GFI-1 has low oncogenic potential but cooperates strongly with pim and myc genes in T-cell lymphomagenesis. Oncogene. 1998;17:2661-2667
44. Schmidt T, Karsunky H, Rodel B, Zevnik B, Elsasser HP, Moroy T. Evidence implicating Gfi-1 and Pim-1 in pre-T-cell differentiation steps associated with beta-selection. Embo J. 1998;17:5349-5359
45. Tong B, Grimes HL, Yang TY, Bear SE, Qin Z, Du K, El-Deiry WS, Tsichlis PN. The Gfi-1B proto-oncoprotein represses p21WAF1 and inhibits myeloid cell differentiation. Mol Cell Biol. 1998;18:2462-2473
46. Zweidler-Mckay PA, Grimes HL, Flubacher MM, Tsichlis PN. Gfi-1 encodes a nuclear zinc finger protein that binds DNA and functions as a transcriptional repressor. Mol Cell Biol. 1996;16:4024-4034
47. Grimes HL, Chan TO, Zweidler-McKay PA, Tong B, Tsichlis PN. The Gfi-1 proto-oncoprotein contains a novel transcriptional repressor domain, SNAG, and inhibits G1 arrest induced by interleukin-2 withdrawal. Mol Cell Biol. 1996;16:6263-6272
48. Kosman D, Ip YT, Levine M, Arora K. Establishment of the mesoderm-neuroectoderm boundary in the Drosophila embryo. Science. 1991;254:118-122
49. Leptin M. twist and snail as positive and negative regulators during Drosophila mesoderm development. Genes Dev. 1991;5:1568-1576
50. Gray S, Levine M. Short-range transcriptional repressors mediate both quenching and direct repression within complex loci in Drosophila. Genes Dev. 1996;10:700-710
51. Hemavathy K, Ashraf SI, Ip YT. Snail/slug family of repressors: slowly going into the fast lane of development and cancer. Gene. 2000;257:1-12
52. Cano A, Perez-Moreno MA, Rodrigo I, Locascio A, Blanco MJ, del Barrio MG, Portillo F, Nieto MA. The transcription factor snail controls epithelial-mesenchymal transitions by repressing E-cadherin expression. Nat Cell Biol. 2000;2:76-83
53. Batlle E, Sancho E, Franci C, Dominguez D, Monfar M, Baulida J, Garcia De Herreros A. The transcription factor snail is a repressor of E-cadherin gene expression in epithelial tumour cells. Nat Cell Biol. 2000;2:84-89
54. Rodel B, Wagner T, Zornig M, Niessing J, Moroy T. The human homologue (GFI1B) of the chicken GFI gene maps to chromosome 9q34.13-A locus frequently altered in hematopoietic diseases. Genomics. 1998;54:580-582
55. Nolo R, Abbott LA, Bellen HJ. Senseless, a Zn finger transcription factor, is necessary and sufficient for sensory organ development in Drosophila. Cell. 2000;102:349-362
56. Cameron S, Clark SG, McDermott JB, Aamodt E, Horvitz HR. PAG-3, a Zn-finger transcription factor, determines neuroblast fate in C. elegans. Development. 2002;129:1763-1774
57. Hock H, Hamblen MJ, Rooke HM, Traver D, Bronson RT, Cameron S, Orkin SH. Intrinsic requirement for zinc finger transcription factor Gfi-1 in neutrophil differentiation. Immunity. 2003;18:109-120
58. Karsunky H, Zeng H, Schmidt T, Zevnik B, Kluge R, Schmid KW, Duhrsen U, Moroy T. Inflammatory reactions and severe neutropenia in mice lacking the transcriptional repressor Gfi1. Nat Genet. 2002;30:295-300
59. Person RE, Li FQ, Duan Z, Benson KF, Wechsler J, Papadaki HA, Eliopoulos G, Kaufman C, Bertolone SJ, Nakamoto B, Papayannopoulou T, Grimes HL, Horwitz M. Mutations in proto-oncogene GFI1 cause human neutropenia and target ELA2. Nat Genet. 2003;34:308-312
60. Zeng H, Yucel R, Kosan C, Klein-Hitpass L, Moroy T. Transcription factor Gfi1 regulates self-renewal and engraftment of hematopoietic stem cells. Embo J. 2004
61. Thomson M, McCarroll J, Bond J, Gordon-Thomson C, E DW, Moore GP. Parathyroid hormone-related peptide modulates signal pathways in skin and hair follicle cells. Exp Dermatol. 2003;12:389-395
62. Hertzano R, Montcouquiol M, Rashi-Elkeles S, Elkon R, Yucel R, Frankel WN, Rechavi G, Moroy T, Friedman TB, Kelley MW, Avraham KB. Transcription profiling of inner ears from Pou4f3ddl/ddl identifies Gfi1 as a target of the Pou4f3 deafness gene. Hum Mol Genet. 2004;13:2143-2153
63. Rodel B, Tavassoli K, Karsunky H, Schmidt T, Bachmann M, Schaper F, Heinrich P, Shuai K, Elsasser HP, Moroy T. The zinc finger protein Gfi-1 can enhance STAT3 signaling by interacting with the STAT3 inhibitor PIAS3. Embo J. 2000;19:5845-5855
64. McGhee L, Bryan J, Elliott L, Grimes HL, Kazanjian A, Davis JN, Meyers S. Gfi-1 attaches to the nuclear matrix, associates with ETO (MTG8) and histone deacetylase proteins, and represses transcription using a TSA-sensitive mechanism. J Cell Biochem. 2003;89:1005-1018
65. Grimes HL, Gilks CB, Chan TO, Porter S, Tsichlis PN. The Gfi-1 protooncoprotein represses Bax expression and inhibits T-cell death. Proc Natl Acad Sci U S A. 1996;93:14569-14573
66. Duan Z, Horwitz M. Targets of the transcriptional repressor oncoprotein Gfi-1. Proc Natl Acad Sci U S A. 2003;100:5932-5937
67. Garcon L, Lacout C, Svinartchouk F, Le Couedic JP, Villeval JL, Vainchenker W, Dumenil D. Gfi-1B plays a critical role in terminal differentiation of normal and transformed erythroid progenitor cells. Blood. 2004
68. Saleque S, Cameron S, Orkin SH. The zinc-finger proto-oncogene Gfi-1b is essential for development of the erythroid and megakaryocytic lineages. Genes Dev. 2002;16:301-306
69. Jegalian AG, Wu H. Regulation of Socs gene expression by the proto-oncoprotein GFI-1B: two routes for STAT5 target gene induction by erythropoietin. J Biol Chem. 2002;277:2345-2352
70. Osawa M, Yamaguchi T, Nakamura Y, Kaneko S, Onodera M, Sawada K, Jegalian A, Wu H, Nakauchi H, Iwama A. Erythroid expansion mediated by the Gfi-1B zinc finger protein: role in normal hematopoiesis. Blood. 2002;100:2769-2777
71. Doan LL, Kitay MK, Yu Q, Singer A, Herblot S, Hoang T, Bear SE, Morse HC, 3rd, Tsichlis PN, Grimes HL. Growth factor independence-1B expression leads to defects in T cell activation, IL-7 receptor alpha expression, and T cell lineage commitment. J Immunol. 2003;170:2356-2366
72. Wallis D, Hamblen M, Zhou Y, Venken KJ, Schumacher A, Grimes HL, Zoghbi HY, Orkin SH, Bellen HJ. The zinc finger transcription factor Gfi1, implicated in lymphomagenesis, is required for inner ear hair cell differentiation and survival. Development. 2003;130:221-232
73. Zhu J, Guo L, Min B, Watson CJ, Hu-Li J, Young HA, Tsichlis PN, Paul WE. Growth factor independent-1 induced by IL-4 regulates Th2 cell proliferation. Immunity. 2002;16:733-744
74. Karsunky H, Mende I, Schmidt T, Moroy T. High levels of the onco-protein Gfi-1 accelerate T-cell proliferation and inhibit activation induced T-cell death in Jurkat T-cells. Oncogene. 2002;21:1571-1579
75. Suzuki Y, Yoshitomo-Nakagawa K, Maruyama K, Suyama A, Sugano S. Construction and characterization of a full length-enriched and a 5'-end-enriched cDNA library. Gene. 1997;200:149-156
76. Suzuki Y, Sugano S. Construction of a full-length enriched and a 5'-end enriched cDNA library using the oligo-capping method. Methods Mol Biol. 2003;221:73-91
77. Angel P, Hattori K, Smeal T, Karin M. The jun proto-oncogene is positively autoregulated by its product, Jun/AP-1. Cell. 1988;55:875-885
78. Chen H, Ray-Gallet D, Zhang P, Hetherington CJ, Gonzalez DA, Zhang DE, Moreau-Gachelin F, Tenen DG. PU.1 (Spi-1) autoregulates its expression in myeloid cells. Oncogene. 1995;11:1549-1560
79. Grass JA, Boyer ME, Pal S, Wu J, Weiss MJ, Bresnick EH. GATA-1-dependent transcriptional repression of GATA-2 via disruption of positive autoregulation and domain-wide chromatin remodeling. Proc Natl Acad Sci U S A. 2003;100:8811-8816
80. Timchenko N, Wilson DR, Taylor LR, Abdelsayed S, Wilde M, Sawadogo M, Darlington GJ. Autoregulation of the human C/EBP alpha gene by stimulation of upstream stimulatory factor binding. Mol Cell Biol. 1995;15:1192-1202
81. Tsai SF, Strauss E, Orkin SH. Functional analysis and in vivo footprinting implicate the erythroid transcription factor GATA-1 as a positive regulator of its own promoter. Genes Dev. 1991;5:919-931
82. Dignam JD, Lebovitz RM, Roeder RG. Accurate transcription initiation by RNA polymerase II in a soluble extract from isolated mammalian nuclei. Nucleic Acids Res. 1983;11:1475-1489
83. Mantovani R, Li XY, Pessara U, Hooft van Huisjduijnen R, Benoist C, Mathis D. Dominant negative analogs of NF-YA. J Biol Chem. 1994;269:20340-20346
84. Nordeen SK. Luciferase reporter gene vectors for analysis of promoters and enhancers. Biotechniques. 1988;6:454-458
85. Horak CE, Mahajan MC, Luscombe NM, Gerstein M, Weissman SM, Snyder M. GATA-1 binding sites mapped in the beta-globin locus by using mammalian chIp-chip analysis. Proc Natl Acad Sci U S A. 2002;99:2924-2929
86. Wells J, Farnham PJ. Characterizing transcription factor binding sites using formaldehyde crosslinking and immunoprecipitation. Methods. 2002;26:48-56
87. Chang ZF, Huang DY, Hsue NC. Differential phosphorylation of human thymidine kinase in proliferating and M phase-arrested human cells. J Biol Chem. 1994;269:21249-21254
88. Orkin SH. Diversification of haematopoietic stem cells to specific lineages. Nat Rev Genet. 2000;1:57-64
89. Cantor AB, Orkin SH. Hematopoietic development: a balancing act. Curr Opin Genet Dev. 2001;11:513-519
90. Plumb M, Frampton J, Wainwright H, Walker M, Macleod K, Goodwin G, Harrison P. GATAAG; a cis-control region binding an erythroid-specific nuclear factor with a role in globin and non-globin gene expression. Nucleic Acids Res. 1989;17:73-92
91. Yang HY, Evans T. Distinct roles for the two cGATA-1 finger domains. Mol Cell Biol. 1992;12:4562-4570
92. Trainor CD, Ghirlando R, Simpson MA. GATA zinc finger interactions modulate DNA binding and transactivation. J Biol Chem. 2000;275:28157-28166
93. Chang ZF, Liu CJ. Human thymidine kinase CCAAT-binding protein is NF-Y, whose A subunit expression is serum-dependent in human IMR-90 diploid fibroblasts. J Biol Chem. 1994;269:17893-17898
94. Chang ZF, Huang DY, Hu SF. NF-Y-mediated trans-activation of the human thymidine kinase promoter is closely linked to activation of cyclin-dependent kinase. J Cell Biochem. 1999;75:300-309
95. Mantovani R. A survey of 178 NF-Y binding CCAAT boxes. Nucleic Acids Res. 1998;26:1135-1143
96. Mantovani R. The molecular biology of the CCAAT-binding factor NF-Y. Gene. 1999;239:15-27
97. Duan Z, Stamatoyannopoulos G, Li Q. Role of NF-Y in in vivo regulation of the gamma-globin gene. Mol Cell Biol. 2001;21:3083-3095
98. Reddy PM, Stamatoyannopoulos G, Papayannopoulou T, Shen CK. Genomic footprinting and sequencing of human beta-globin locus. Tissue specificity and cell line artifact. J Biol Chem. 1994;269:8287-8295
99. Huang DY, Kuo YY, Lai JS, Suzuki Y, Sugano S, Chang ZF. GATA-1 and NF-Y cooperate to mediate erythroid-specific transcription of Gfi-1B gene. Nucleic Acids Res. 2004;32:3935-3946
100. Rylski M, Welch JJ, Chen YY, Letting DL, Diehl JA, Chodosh LA, Blobel GA, Weiss MJ. GATA-1-mediated proliferation arrest during erythroid maturation. Mol Cell Biol. 2003;23:5031-5042
101. Berry M, Grosveld F, Dillon N. A single point mutation is the cause of the Greek form of hereditary persistence of fetal haemoglobin. Nature. 1992;358:499-502
102. Cassel DL, Subudhi SK, Surrey S, McKenzie SE. GATA and NF-Y participate in transcriptional regulation of FcgammaRIIA in megakaryocytic cells. Blood Cells Mol Dis. 2000;26:587-597
103. Xu N, Chen CY, Shyu AB. Modulation of the fate of cytoplasmic mRNA by AU-rich elements: key sequence features controlling mRNA deadenylation and decay. Mol Cell Biol. 1997;17:4611-4621
104. Lagnado CA, Brown CY, Goodall GJ. AUUUA is not sufficient to promote poly(A) shortening and degradation of an mRNA: the functional sequence within AU-rich elements may be UUAUUUA(U/A)(U/A). Mol Cell Biol. 1994;14:7984-7995
105. Zubiaga AM, Belasco JG, Greenberg ME. The nonamer UUAUUUAUU is the key AU-rich sequence motif that mediates mRNA degradation. Mol Cell Biol. 1995;15:2219-2230
106. Holcik M, Liebhaber SA. Four highly stable eukaryotic mRNAs assemble 3' untranslated region RNA-protein complexes sharing cis and trans components. Proc Natl Acad Sci U S A. 1997;94:2410-2414
107. Blattner C, Kannouche P, Litfin M, Bender K, Rahmsdorf HJ, Angulo JF, Herrlich P. UV-Induced stabilization of c-fos and other short-lived mRNAs. Mol Cell Biol. 2000;20:3616-3625
108. Lemm I, Ross J. Regulation of c-myc mRNA decay by translational pausing in a coding region instability determinant. Mol Cell Biol. 2002;22:3959-3969
109. Ragheb JA, Deen M, Schwartz RH. CD28-Mediated regulation of mRNA stability requires sequences within the coding region of the IL-2 mRNA. J Immunol. 1999;163:120-129
110. Schiavi SC, Belasco JG, Greenberg ME. Regulation of proto-oncogene mRNA stability. Biochim Biophys Acta. 1992;1114:95-106
111. Aghib DF, Bishop JM, Ottolenghi S, Guerrasio A, Serra A, Saglio G. A 3' truncation of MYC caused by chromosomal translocation in a human T-cell leukemia increases mRNA stability. Oncogene. 1990;5:707-711
112. Shyu AB, Greenberg ME, Belasco JG. The c-fos transcript is targeted for rapid decay by two distinct mRNA degradation pathways. Genes Dev. 1989;3:60-72
113. Hershko A, Ciechanover A. The ubiquitin system. Annu Rev Biochem. 1998;67:425-479
114. Scheffner M, Nuber U, Huibregtse JM. Protein ubiquitination involving an E1-E2-E3 enzyme ubiquitin thioester cascade. Nature. 1995;373:81-83
115. Rechsteiner M, Rogers SW. PEST sequences and regulation by proteolysis. Trends Biochem Sci. 1996;21:267-271
dc.identifier.urihttp://tdr.lib.ntu.edu.tw/jspui/handle/123456789/39275-
dc.description.abstract中文摘要:
Gfi-1B(growth factor independence 1B)為細胞原致癌基因,其所譯碼的蛋白質之胺基端有SNAG repressor domain,
zh_TW
dc.description.abstractAbstract
Gfi-1B(growth factor independence-1B)is a proto-oncogene that encodes a transcriptional repressor with an N-terminal SNAG repressor domain and a C-terminal zinc finger domain. Expression of Gfi-1B is restricted to erythroid lineage cells and is essential for erythropoiesis. As Gfi-1B is highly expressed in the erythroid lineage chronic myelocytic leukemia (CML) line K562, this study aims to understand how the expression of Gfi-1B is regulated in K562 cells.
Toward understanding the transcriptional control of the human Gfi-1B gene, I first defined its transcription start site. By using oligo-capping method, its first non-coding exon of Gfi-1B gene was found to be approximately 7.82 kb upstream of the first coding exon. The genomic sequence preceding this first non-coding exon has been identified to be its erythroid-specific promoter region in K562 cells. Using gel-shift and chromatin immunoprecipitation (ChIP) assays, I have demonstrated that NF-Y and GATA-1 directly participate in transcriptional activation of Gfi-1B gene in K562 cells. Ectopic expression of GATA-1 markedly stimulates the activity of Gfi-1B promoter in a non-erythroid cell line U937. Interestingly, this GATA-1-mediated trans-activation not only is dependent on its binding to the promoter, but also requires transcription factor NF-Y binding to the CCAAT site. Thus, functional cooperation between GATA-1 and NF-Y contributes to erythroid-specific transcriptional activation of Gfi-1B promoter.
The expression of many eukaryotic transcription factors has been shown to be autoregulated positively and negatively. To further investigating the effect of Gfi-1B on its own promoter. By ectopic expression of Gfi-1B in K562 cells, I have demonstrated that the transcription of Gfi-1B is negatively regulated by its own gene product. GATA-1, instead of Gfi-1B, binds directly to the Gfi-1-like sites in the Gfi-1B promoter, and Gfi-1B suppresses GATA-1-mediated stimulation of Gfi-1B promoter through their protein interaction. These results not only demonstrate that expression of Gfi-1B is negatively autoregulated through GATA-1, but also suggest that Gfi-1B can modulate transcription in erythroid-type cells without its direct interaction with the Gfi-1 site of the target genes. Here, I propose that this negative autoregulatory feedback loop provides a mean to restrict the expression level of Gfi-1B, thus limiting its inhibitory effect on GATA-1-mediated transcription necessary for erythroid differentiation.
In addition to GATA-1 mediated transcription, I also found that Gfi-1B expression in K562 cells is controlled by post-transcriptional and post-translational regulation. RNA transcript and polypeptide of Gfi-1B were found to be destabilized in response to phorbol ester (PMA) treatment in K562 cells. Degradation of Gfi-1B protein is through the ubiquitin-proteasome-mediated pathway. During PMA treatment, Gfi-1B became phosphorylated in its PEST containing region. However, the phosphorylation on PEST sequence is not a requisite signal for Gfi-1B degradation during PMA treatment in K562 cells. In summary, the results obtained from this study indicated that multiple layers of regulation interplay to confer a tight regulation on Gfi-1B expression in K562 cells.
en
dc.description.provenanceMade available in DSpace on 2021-06-13T17:25:14Z (GMT). No. of bitstreams: 1
ntu-94-D88442006-1.pdf: 18297719 bytes, checksum: c663f36944ad63d85649ec0844cc4ad3 (MD5)
Previous issue date: 2005
en
dc.description.tableofcontentsTable of contents:
Abstract i
中文摘要 ii
Acknowledgements iii
Table of contents iv
Chapter I- Overview and Rationale 1
I- The role of transcription factor in hematopoiesis. 1
I-1. Hematopoiesis and transcription factors. 1
I-2. The role of GATA-1 in erythroid development. 2
II- Gfi-1 and Gfi-1B, The transcriptional repressors in hematopoiesis. 4
Rationale 8
Chapter II- the transcriptional regulation of Gfi-1B gene.
Introduction 9
Materials and Methods
Cell culture. 11
5’ end Oligo-capping of total RNA. 11
5’ end amplification of Gfi-1B cDNA. 11
Amplification of 3’-end of Gfi-1B cDNA. 11
Preparation of nuclear extracts and gel-shift analysis. 11
RNase protection assays. 12
Plasmid constructs and site-directed mutagenesis. 12
Chromatin immunoprecipitation. 12
Transient-transfection and luciferase assays. 14
Retrovirus-mediated expression of Flag-tagged Gfi-1B in K562 cells. 14
Immunoprecipitation. 14
Western blot analysis. 15
RT-PCR assay. 15
Results
Identification of novel 5’ untranslated region in the human Gfi-1B gene. 16
Identification of the human Gfi-1B promoter 16
GATA-1 activates the Gfi-1B promoter. 18
GATA-1 binding to the Gfi-1B promoter is necessary for Gfi-1B expression in
K562 cells. 18
The CCAAT-site is necessary for GATA-1-mediated transcriptional activation of
Gfi-1B promoter. 19
NF-Y binds to the Gfi-1B promoter and cooperates with GATA-1 for
transactivation. 19
Gfi-1B transcription is down regulated by ectopic expression of Gfi-1B protein. 20
The Gfi-1-like sequences in the Gfi-1B promoter are recognized by GATA-1 and act
as a positive cis-element in transcription. 20
Both non-typical & typical GATA sites contribute to GATA-1 mediated
transcriptional activation of Gfi-1B gene. 22
Gfi-1B inhibits GATA-1-mediated transcription. 22
Gfi-1B interacts with GATA-1. 22
The DNA binding ability of GATA-1 is not affected by Gfi-1B. 23
The SNAG domain of Gfi-1B is required for inhibiting GATA-1-mediated
transactivation 23
Discussion 24
Figures
Figure II-1. Identification of novel 5’ untranslated region in the human Gfi-1B gene. 27
Figure II-2. Activities of the Gfi-1B gene promoter in K562 (erythroid) and
U937 (non-erythroid) cell lines in transient transfection assays. 30
Figure II-3. Gel shift analysis of the –146/-116 sequence. 32
Figure II-4. Transactivation of the Gfi-1B promoter by GATA-1. 33
Figure II-5. GATA-1 plays a crucial role in erythroid-specific expression of
Gfi-1B. 34
Figure II-6. The CCAAT-site is necessary for GATA-1-mediated transcriptional
activation of Gfi-1B promoter. 35
Figure II-7. NF-Y binds to the Gfi-1B promoter and cooperates with GATA-1 for trans-activation. 36
Figure II-8. Endogenous Gfi-1B transcription is repressed by ectopic expression of
Gfi-1B in K562 cells. 38
Figure II-9. The Gfi-1-like sequences in the Gfi-1B promoter act as a positive cis-element
in transcription. 40
Figure II-10. GATA-1 can bind to the Gfi-1 recognition sequence in the Gfi-1B promoter.41
Figure II-11. Both non-typical & typical GATA-1 sites contribute to GATA-1 mediated transcriptional activation of Gfi-1B genes. 43
Figure II-12. Gfi-1B inhibits GATA-1-mediated transactivation in 293T cells. 44
Figure II-13. Gfi-1B interacts with GATA-1. 45
Figure II-14. The DNA binding ability of GATA-1 is not affected by Gfi-1B. 47
Figure II-15. The N-terminus of Gfi-1B is required for inhibition of GATA-1-mediated transactivation
Chapter III- Post-transcriptional regulation of Gfi-1B in K562 cells during PMA treatment.
Introduction 49
Materials and Methods
RNase protection assays. 50
RT-PCR assay. 50
Immunoprecipitation. 50
Pulse chase labeling and immunoprecipitation. 50
Metabolic labelling with [32P] Orthophosphate. 51
Plasmid Construction. 51
Retrovirus-mediated expression of Flag-tagged Gfi-1B in K562 cells. 51
Transient transfection and luciferase assay. 51
Western blot analysis. 52
Results
Instability of Gfi-1B RNA transcript contributes to its down-regulation in K562
cell during phorbol ester stimulation. 53
PMA treatment facilitates the degradation of endogenous Gfi-1B protein. 53
PMA-induced degradation of Gfi-1B protein in K562 cells which is through an ubiquitin-proteasome pathway. 53
Cell-type specificity of PMA-induced protein degradation and hyperphosphorylation of Gfi-1B. 53
PMA induces Gfi-1B phosphorylation through PEST-like sequence. 54
Phosphorylation of PEST-like sequence is not a requisite signal for Gfi-1B
degradation during PMA treatment in K562 cells. 54
Discussion 55
Figures
Figure III-1. Instability of Gfi-1B RNA transcript in K562 cells. 56
Figure III-2. PMA facilitate Gfi-1B degradation. 57
Figure III-3. Phorbol ester treatment induces degradation of Gfi-1B in K562 cells
through a ubiquitin/ proteasomal dependent pathway. 58
Figure III-4. Gfi-1B is rapidly degraded and hyperphosphorylated in PMA-treated
K562 cells, but not in PMA-treated HeLa cells. 59
Figure III-5. PEST sequence is required for PMA induced hGfi-1B phosphorylation t
in K562 cells 60
Figure III-6. Phosphorylation of PEST sequence is not a requisite signal for
Gfi-1B degradation during PMA treatment in K562 cells. 62
Perspective 63
References 64
Appendix
dc.language.isoen
dc.subject紅血球細胞的發育調控zh_TW
dc.subject組織特異性zh_TW
dc.subjectGfi-1Ben
dc.subjectautoregulationen
dc.subjectGATA-1en
dc.title在K562細胞中Gfi-1B基因表現的調控機制zh_TW
dc.titleRegulation of the Gfi-1B Expression in K562 Cellsen
dc.typeThesis
dc.date.schoolyear93-1
dc.description.degree博士
dc.contributor.oralexamcommittee施修明,林榮耀,羅?升,吳國瑞,阮麗蓉
dc.subject.keyword組織特異性,紅血球細胞的發育調控,zh_TW
dc.subject.keywordGfi-1B,GATA-1,autoregulation,en
dc.relation.page71
dc.rights.note有償授權
dc.date.accepted2005-01-25
dc.contributor.author-college醫學院zh_TW
dc.contributor.author-dept生物化學暨分子生物學研究所zh_TW
顯示於系所單位:生物化學暨分子生物學科研究所

文件中的檔案:
檔案 大小格式 
ntu-94-1.pdf
  未授權公開取用
17.87 MBAdobe PDF
顯示文件簡單紀錄


系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved