請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/39232完整後設資料紀錄
| DC 欄位 | 值 | 語言 |
|---|---|---|
| dc.contributor.advisor | 徐爾烈 | |
| dc.contributor.author | Yu-Cheng Su | en |
| dc.contributor.author | 蘇俞丞 | zh_TW |
| dc.date.accessioned | 2021-06-13T17:24:36Z | - |
| dc.date.available | 2005-02-04 | |
| dc.date.copyright | 2005-02-04 | |
| dc.date.issued | 2005 | |
| dc.date.submitted | 2005-01-26 | |
| dc.identifier.citation | 肆、參考文獻
陳錦生。1991。表皮碳氫化合物在病媒昆蟲分類上的應用。第四屆病媒防治技術研討會論文集。中華昆蟲特刊第6號:37 - 47。 陳錦生。1999。表皮碳氫化合物分析技術在昆蟲分類上的應用。昆蟲分類及進化研討會專刊:127 – 136頁。 魯亮 和 歸鴻。1995。RAPD技術的特點及其在昆蟲分類中的應用。昆蟲學報。38(1):117 - 122。 Alair, Y., H. Joly, and D. Dennie. 1998. Cuticular hydrocarbon analysis of the aquatic beetle Agabus anthracinus Mannerheim (Coleoptera: Dytiscidae). Can. Entomol. 130: 61 –629. Anyanwu, G. I., D. H. Davies, D. H. Molyneux, and A. Phillips. 1997. Variation in cuticualr hydrocarbons among strains of Anopheles (Cellia) stephensi Liston possibly related to prior insecticide exposure. Ann. Trop. Med. Parasitol. 91: 64 –659. Apostol. B. L., W. C. Black IV, P. Reiter and B. R. Miller. 1996. Population genetics with RAPD-PCR markers: the breeding structure of Aedes aegypti in Puerto Rico. Heredity. 76: 32 –334. Ballinger-Crabtree, M. E., W. C. Black IV and B. R. Miller. 1992. Use of genetic polymorphisms detected by the random-amplified polymorphic DNA polymerase chain reaction (RAPD-PCR) for differentiation and identification of Aedes aegypti subspecies and populations. Am. J. Trop. Med. Hyg. 47: 893–901. Brown, W. V., H. A. Rose, and M. J. Lacey. 1997. The cuticular hydrocarbons of the soil burrowing cockroach Geoscapheus dilatatus (Saussure) (Blattodea: Blaberidae: Geoscapheinae) indicate species dimorphism. Comp. Biochem. Physiol. 118B: 549–562. Brown, W. V., R. Morton, and J. P. Spradbery. 1992. Cuticular hydrocarbons of the old world screw-worm fly, Chrysomya bezziana Villeneuve (Diptera: Calliphoridae). Chemical characterization and quantification by age and sex. Comp. Biochem. Physiol. 101B: 665–671. Carlson, D. A. and M. W. Service. 1979. Differentiation between species of the Anopheles gambiae Giles complex (Diptera: Culicidae) by analysis of cuticular hydrocarbons. Ann. Trop. Med. Parasitol. 73: 589–592. Carlson, D. A. and M. W. Service. 1980. Identification of mosquitoes of Anopheles gambiae species complex A and B by analysis of cuticular components. Science 207: 1089–1091. Chen, C. S., M. S. Mulla, R. B. March, and J. D. Chaney. 1990. Cuticular hydrocarbon patterns in Culex quinquefasciatus as influenced by age, sex and geography. Bull. Soc. Vector Ecol. 15: 129–139. Chiu, Y. C., W. J. Wu, S. F. Shiao and C. J. Shih. 2000. The application of RAPD-PCR to develop rapid diagnostic technique for identification of 6 species of Liriomyza spp. (Diptera: Agromyzidae). Chinese J. Entomol. 20: 293–309. Coyne, J. A., C. Wicker-Thomas, and J. Jallon. 1999. A gene responsible for a cuticular hydrocarbon polymorphism in Drosophila melanogaster. Gene. Res. 73: 189–203. Craig, G. B. JR., and R. C. Vandehey. 1962. Genetic variability in Aedes aegypti (Diptera: Culicidae) I. Mutations affecting color pattern. Annl. Entomol. Soc. Am. 55: 47–58. Desena, M. L., J. D. Edman, J. M. Clark, S.B. Symington, and T. W. Scott. 1999. Aedes aegypti (Diptera: Culicidae) age determination by cuticular hydrocarbon analysis of female legs. J. Med. Entomol. 36: 824–830. Desena, M. L., J. M. Clark, J. D. Edman, S. B. Symington, T. W. Scott, G. G. Clark and T. M. Peters. 1999. Potential for aging female Aedes aegypti (Diptera: Culicidae) by gas chromatopraphic analysis of cuticular hydrocarbons. Including a field evaluation. J. Med. Entomol. 36: 811–823. DeSousa, G. B., A. Blanco and C. N. Gardenal. 2001. Genetic relationships among Aedes aegypti (Diptera: Culicidae) populations from Argentina using random amplified polymorphic DNA polmerase chain reaction markers. J. Med. Entomol. 38: 371–375. Duhrkopf, R. E., W. K. Hartberg, and R. Novak. 1993. A comparison of abdominal scale patterns in the mosquito Aedes aegypti. Bull. Soc. Vector Ecol. 18: 49–60. Elmes, G. W., T. Akino, J. A. Thomas, R. T. Clarke, R. T., and J. J. Knapp. 2002. Interspecific differences in cuticular hydrocarbon profiles of Myrmica ants are sufficiently consistent to explain host specificity by Maculinea (large blue) butterflies. Oecologia. 130: 525–535. Estrada-Pena, A., A. A. Guglielmone, A. J. Mangold, and J. Castella. 1993. Patterns of cuticular hydrocarbon variation and genetic similarity between natural populations of Amblyomma cajennense (Acari: Ixodidae). Acta Tropica. 55: 61–78. Estrada-Pena, A. J. Castella, and P. C. Morel. 1994. Cuticular hydrocarbon composition, Phenotypic variability, and geographic relationships in allopatric populations of Amblyomma variegatum (Acari: Ixodidae) from Africa and the Caribbean. J. Med. Entomol. 31: 534–544. Everaets, C., J. P. Farine, and R. Brossut, R. 1997. Changes of species specific cuticular hydrocarbon profiles in the cockroaches Nauphoeta cinerea and Leucophaea maderae reared in heterospecific groups. Entomol. Exper. et Appl. 85: 145–150. Gao M. Y. 2001. Application of cuticular hydrocarbon analysis to insect taxonomy. Acta Entomol. Sinica. 44: 119–122. Garner, K. J. and J. M. Slavicek. 1996. Identification and characterization of a RAPD-PCR marker for distinguishing Asian and North American gypsy moths. Insect. Mol. Biol. 5: 81–91. Gawel, N. J. and A. C. Bartlett. 1993. Characterization of differences between whiteflies using RAPD-PCR. Insect. Mol. Biol. 2: 33–38. Gorrochotegui-Escalante, N., M. DeLourdes Munoz, I. Fernandez-Salas, B. J. Beaty and W. C. Black IV. 2000. Genetic isolation by distance among Aedes aegypti populations along the northeastern coast of Mexico. Am. J. Trop. Med. Hyg. 62: 200–209. Gorrochotegui-Escalante, N., C. Gomez-Machorro, S. Lozano-Fuentes, I. Fernandez-Salas, M. DeLourdes Munoz, J. A. Farfan-Ale, J. Garcia-Rejon, B. J. Beaty, W. C. Black VI. 2002. Breeding structure of Aedes aegypti populations in Mexico varies by region. Am. J. Trop. Med. Hyg. 66: 213–222. Hartberg, W. K., C. K. Meek and K. R. Williams. 1986. A model for polygenic inheritance of abdominal tergal scale pattern in Aedes aegypti. J. Am. Mosq. Control. Assoc. 2: 490–502. Haverty, M. I., G. M. Getty, L. J. Nelson, and V. R. Lewis. 2003. Flight phenoloyg of sympatric populations of Reticulitermes (Isoptera: Rhinotermitidae) in Northern Claifornia: disparate flight intervals indicate reproductive isolation among cuticular hydrocarbon phenotypes. Ann. Entomol. Soc. Am. 96: 828–833. Haverty, M. I., J. K. Grace, L. J. Nelson, and R. T. Yamamoto. 1996. Intercaste, intercolony, and temporal variation in cuticular hydrocarbons of Coptotermes formosanus Shiraki (Isoptera: Rhinotermitidae). J. Chem. Ecol. 22: 1813–1834. Haverty, M. I., L. J. Nelson, and M. Page. 1990. Cuticular hydrocarbons of four populations of Coptotermes formosanus Shiraki in The United States. J. Chem. Ecol. 16: 1635–1647. Haverty, M. I., M. S. Collins, L. J. Nelson, and B. L. Thorne. 1997. Cuticular hydrocarbons of termites of the British Vigin Islands. J. Chem. Ecol. 23: 927–964. Haymer, D. S., M. He and D. O. McInnis. 1997. Genetic marker analysis of spatial and temporal relationships among existing populations and new infestations of the Mediterranean fruit fly (Ceratitis capitata). Heredity. 79: 302–309. Horne, G. L., and A. A. Priestman. 2002. The chemical characterization of the epicuticular hydrocarbons of Aedes aegypti (Diptera: Culicidae). Bull. Entomol. Res. 92: 287–294. Howard, R. W., and G. J. Blomquist. 1982. Chemical ecology and biochemistry of insect hydrocarbons. Ann. Rev. Entomol. 27: 149–172. Hoy, M. A. 1994. Insect molecular genetics: An introduction to principles and applications. Academic Press. 126–129. Jackson, L. L. 1974. Cuticular lipids of adults fleshflies, Sarcophage bullata. Insect Biochem. 4: 369–379. Jackson, L. L., and G. J. Blomquist. 1976. Insect wax. pp. 201–233. in: P. E. Kolattukudy, ed. Chemistry, and Biochemistry of Natural Waxes. Elsevier, Amsterdam. Johnson, C. A., R. K. Vander Meer, and B. Lavine. 2001. Changes in the cuticular hydrocarbon profile of the slave maker ant queen, Polyergus breviceps Emery, after killing a Formica host queen (Hymenoptera: Formicidae). J. Chem. Ecol. 27: 1787–1804. Jowett, T. 1986. Preparation of nucleic acids. Roberts DB. Ed. Drosophila: A practical approach. Oxford: IRL Press. 275–286. Jupp, P. G., A. Kemp and C. Frangos. 1991. The potential for dengue in South Africa: Morphology and the Taxonomic status of Aedes aegypti populations. Mosq. Systematics. 23: 182–190. Jupp, P. G. and B. M. McIntosh. 1990. Aedes furcifer and other mosquitoes as vectors of chikungunya virus at Mica, northeastern Transvaal, South Africa. J. Am. Mosq. Contro. Assoc. 6: 415–420. Jurenka, R. A., D. Holland, and E. S. Krafsur. 1998. Hydrocarbon profiles of diapausing and reproductive adult face fly (Musca autumnalis). Arch. Insect Biochem. Physiol. 37: 206–214. Kambhampati, S., W. C. Black IV and K. S. Rai. 1992. Ramdon amplified polymorphic DNA of mosquito species and populations (Diptera: Culicidae): Techniques, statistical analysis, and applications. J. Med. Entomol. 29: 939–945. Kawai, Y. and J. Mitsuhashi. 1996. An insect cell line discrimination method by RAPD-PCR. In Vitro. Cell. Dev. Biol.- Animal. 33: 512–515. Kemp, A. and P. G. Jupp. 1991. Potential for dengue in South Africa: mosquito ecology with particular reference to Aedes aegypti. J. Am. Mosq. Control. Assoc. 6: 415–420. Kruger, E. L. and C. D. Pappas. 1993. Geographic variation of cuticular hyarocarbons among fourteen populations of Aedes albopictus (Diptera: Culicidae). J. Med. Entomol. 30: 544–548. Kruger, E. L., C. D. Pappas and R. W. Howard. 1991. Cuticular hydrocarbon geographic variation among seven North American populations of Aedes albopictus (Diptera: Culicidae). J. Med. Entomol. 28: 859–864. Leahy, Sister M. G., R. C. VandeHey and K. S. Booth. 1978. Differential response to oviposition site by feral and domestic populations of Aedes aegypti (L.) (Dipetra: Culicidae). Bull. Entomol. Res. 68: 455–463. Lien, J. C. 1988. The ecology of Stegomyia mosquitoes in Taiwan. In: Proceedings of the 1st seminar on the vectpr control techniques. 1988 March 25; Taipei, Taiwan, Republic of China. Enviromental Protection Adminiatration, The Executive Yuan, Taipei, Taiwan. P 63-74. Lockey, K. H. 1978. The adult cuticular hydrocarbons of Tenebrio molitor L. and T. obscurus F. (Coleoptera: Tenebrionidae). Insect Biochem. 8: 237–250. Lockey, K. H. 1988. Review: Lipids of the insect cuticle: Origin, Composition and Function. Comp. Biochem. Physiol. 89B: 595–645. Machdo-Allison, C. E. and G. B. Jr, Craig. 1972. Geographic variation in resistance to dessication in Aedes aegypti and A. atropalpus (Dipetra, Culicidae). Ann. Entomol. Soc. Am. 65: 542–547. Mattingly, P. F. 1957. Genetical aspects of the Aedes aegypti problem, I. Taxonomy and bionomics. Ann. Trop. Med. Parasitol. 51: 305–320. Matting, P. F. 1958. Genetical aspects of the Aedes aegypti problem. II: Disease relationships, genetics and control. Ann. Trop. Med. Parasit. 52: 5–17. McClelland, G. A. H. 1960. A preliminary study of the genetics of abdominal colour variations in Aedes aegypti (L.) (Diptera, Culicidae). Ann. Trop. Med. Parasitol. 54: 305–320. McClelland, G. A. H. 1974. A worldwide survey of variation in scale pattern of the abdominal tergum of Aedes aegypti (L.) (Diptera, Culicidae). Trans. R. entomol. Soc. Lond. 126: 239–259. McIntosh, B. M., P. G. Jupp and J. DeSousa. 1972. Mosquitoes feeding at two horizontal levels in gallery forest in Natal, South Africa, with reference to possible vectors of chikungunya virus. J. Entomol. Soc. South. Afr. 35: 81–90. Milligan, P. J. M., A. Phillips, D. H. Molyneux, S. K. Subbarao, and G. B. White. 1986. Differentiation of Anopheles culicifacies Giles (Diptera: Culicidae) sibling species by analysis of cuticular components. Bull. Entomol. Res. 76: 529–537. Mogi, M., T. Okazawa, I. Miyagi, and L. A. De Las Llagas. 1984. Variation in abdominal color pattern in eight populations of Aedes aegypti from the Philippines. Mosq. News. 44: 60–65. Mogi, M., W. Choochote, T. Okazawa, C. Khamboonruang and P. Suwanpanti. 1989. Scale pattern variations of Aedes aegypti in Chiang Mai, northern Thailand. J. Am. Mosq. Control. Assoc. 5: 529–533. Pappas, C. D., B. J. Bricker, J. A. Christen, and S. A. Rumbaugh. 1994. Cuticular hydrocarbons of Aedes hendersoni Cockerell and A. triseriatus (Say). J. Chem. Ecol. 20: 1121–1136. Paskewitz, S. M. and F. H. Collins. 1990. Use of the polymerase chain reaction to identify mosquito species of the Anopheles gambiae complex. Med. Vet. Entomol. 4: 367–373. Phillips, A., A. Sabatini, P. J. M. Milligan, D. Boccolini, G. Broomfield and D. H. Molyneux. 1990. The Anopheles maculipennis complex (Diptera: Culicidae): comparison of the cuticular hydrocarbon profiles determined in adults of five Palaearctic species. Bull. Entomol. Res. 80: 459–464. Phillips, A., P. J. M. Milligan, G. Broomfield and D. H. Molyneux. 1988. Identification of medically important Diptera by analysis of cuticular hydrocarbons. Biosystematics of Haematophagous Insects (ed. M. W. Service), Systematics Association Special Volume No37, pp.39–59. Clarendon Press, Oxford, 1988. Polerstock, A. R., S. D. Eigenbrode, and M. J. Klowden. 2002. Mating alters the cuticular hydrocarbons of female Anopheles gambiae sensu stricto and Aedes aegypti (Diptera: Culicidae). J. Med. Entomol. 39: 545–552. Pomonis, J. G., and J. Mackley. 1985. Gas chromatographic composition profiles of surface lipid extracts from screwworm compared by age, sex, colonization and geography. The southwestern Entomol. 10: 65–76. Rosen, L., W. C. Reeves, and Y. Aarons. 1948. Aedes aegypti in Wake Island. Proc. Hawaii Entomol. Soc. 13: 255-256. Schneider, S., D. Roessli, and L. Excoffier. 2000. Arlequin: A software for populations genetics data analysis. http://anthropologie.unige.ch/arlequin/. Silhacek, D. L., D. A. Carlson, M. S. Mayer, and J. D. James. 1972. Composition and sex arrtractancy of cuticular hydrocarbons from houseflies: effects of age, sex and mating. J. Insect Physiol. 18: 347–354. Sister, M., G. Leahy, R. C. VandeHey, and K. S. Booth. 1978. Differential response to oviposition site by feral and domestic populations of Aedes aegypti (L.) (Diptera: Culicidae). Bull. Ent. Res. 68: 455–463. Slatkin, M. 1993. Isolation by distance in equilibrium and non-equilibrium populations. Evolution. 47: 264–279. Sledge, M. F., I. Trinca, A. Massolo, F. Boscaro, and S. Turillazzi. 2004. Variation in cuticular hydrocarbon signatures, hormonal correlates and establishment of reproductive dominance in a polistine wasp. J. Insect Physiol. 50: 73–83. Stofflano, J. G., E. Schauber, C. M. Yin, J. A. Tillman, and G. J. Blomoquist. 1997. Cuticular hydrocarbons and their role in copulatory behavior in Phormia regina (Meigen). J. Insect Physiol. 43: 1065–1076. Su, Y. C., C. Y. Chang, E. L. Hsu, C. M. Yin, and C. M. Ho. 2003. Genetic relationships among populations of Aedes aegypti in Taiwan by using phenotypic and random amplified DNA-polymerase chain reaction markers. J. Am. Mosq. Control Assoc. 19: 329–338. Sucharit, S. and K. Surathin. 1994. The occurrence of Aedes aegypti Linnaeus variety or form queenslandensis Theobald in Thailand. Mosquito-Borne Diseases Bull. 11: 122–126. Sucharit, S. and N. Komalamisra. 1997. Differentiation of Anopheles minimus species complex by RAPD-PCR technique. J. Med.Assoc.Thai. 80: 597–602. Sutton, B. D., and D. A. Carlson. 1997. Cuticular hydrocarbon variation in the Tabanidae (Diptera): Tabanus nogrovittatus complex of the North American Atlantic Coast. Ann. Entomol. Soc. Am. 90: 542–549. Sutton, B. D., and G. J. Steck. 1994. Discrimination of Caribbean and Mediterranean fruit fly larvae (Diptera: Tephritidae) by cuticular hydrocarbon anlysis. Florida Entomologist. 77: 231–237. Tabachnick, W. J., L. E. Munstermann and J. R. Powell. 1979. Genetic distinctness of sympatric forms of Aedes aegypti in East Africa. Evolution. 33: 287–295. Takahashi, A., S. C. Tsaur, J. A. Coyne, and C. I. Wu. 2001. The nucleotide changes governing cuticular hydrocarbon variation and their evolution in Drosophila melanogaster. Proceedings of the National Academy of Sciences of the United States of America. 98: 3920-3925. Takematsu, Y. 1996. A taxonomic revision of the Japanese termites from a chemical approach by the cuticular hydrocarbon analysis (Isoptera). Ph. D. thesis, Univ. of Kyushu, Japan. Teng, H. H, C. L. Chung, S. T. Wang, and T. J. Ho. 1996. The distribution of dengue vectors and its possible explanation in the coastal area of Chiayi County. Chin. J. Entomol. 16: 155-165. Trips, M. and W. Hausermann. 1975. Demonstration of differential domesticity of Aedes aegypti (L.) (Diptera, Culicidae) in Africa by mark-release-recapture. Bull. Entomol. Res. 65: 199–208. Tsai, H. C. and Y. C. Chien. 1998. Phylogenic relationships in the Drosophila nasuta species group (Diptera: Drosophilidae): A RAPD approach. Chinese J. Entomol. 18: 167–175. Uebel, E. C., P. E. Sonnet, R. E. Menzer, R. W. Miller, and W. R. Lusby. 1977. Mating-stimulant pheromone and cuticular lipid consitituents of little housefly, Fannia canicularis (L.). J. Chem. Ecol. 3: 269–278. VandeHey, R. C., Sister M. G. Leahy and K. S. Booth. 1978. Analysis of colour variations in feral, peridomestic and domestic populations of Aedes aegypti (L.) (Diptera: Culicidae). Bull. Entomol. Res. 68: 443-453. Wagner, D., M. Tissot, and D. Gordon. 2001. Task-related environment alters the cuticular hydrocarbon composition of harvester ants. J. Chem. Ecol. 27: 1805–1819. Wallis, G. P., and W. J. Tabachnick. 1990. Genetic analysis of rock hole and domestic Aedes aegypti on the Caribbean island of Anguilla. J. Am. Mosq. Control Assoc. 6: 625–630. Wang, X, J. Li, and P. Wang. 2000. Genetic polymorphisms detected by the random amplified polymorphic DNA differentiation and identification of Anopheles minimus. Chin. J. Vector. Bio. & Control. 11: 257–260. Welsh, J., C. Peterson and M. McClelland. 1991. Polymorphisms generated by arbitrarily primed PCR in the mouse: application to steain identification and genetic mapping. Nucleic Acids Res. 19: 303–306. Wilkerson, R. C., T. J. Parson, D. G. Albright, T. A. Klein and M. J. Braun. 1993. Random amplified polymorphic DNA (RAPD) markers readily distinguish cryptic mosquito species (Diptera: Culicidae: Anopheles). Insect. Mol. Biol. 1: 205–211. Wilkerson, R. C., T. J. Parson, T. A. Klein, T. V. Gaffigan, E. Bergo and J. Consolim. 1995. Diagnosis by random chain reaction of four cryptic species related to Anopheles (Nyssorhynchus) albitarsis (Diptera: Culicidae) from Paraquay, Argentina and Brazil. J. Med. Entomol. 32: 697–704. William, C. Black IV, N. M. DuTeau, G. J. Puterka, J. R. Nechols and J. M. Pettorini. 1992. Use of the random amplified polymorphic DNA polymerase chain reaction (RAPD-PCR) to detect DNA polymorphisms in aphids (Homoptera: Aphididae). Bull. Entomol. Res. 82: 151–159. Williams, J. G. K., A. R. Kubelik, K. J. Livak, Rafalski J. Antoni and J. Tingey. 1991. DNA polymorphisms amplified by arbitrary primers are useful as genetic markers. Nucleic Acids Res. 18: 6531–6535 | |
| dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/39232 | - |
| dc.description.abstract | 依據埃及斑蚊成蟲腹部背板白色鱗片的分佈情形可將其區分為三型:1.模式型(the type form),為 Ae. aegypti aegypti之一型,廣佈於全球熱帶、亞熱帶地區,其各腹節除了基部有白色鱗片帶外,白色鱗片在各節往後延伸的情形僅發生於第一腹節上,在CKM系統上被區分為CKM1;2.淡色型(the pale form),為 Ae. aegypti aegypti之另一型,腹節背板白色鱗片往後延伸的情形可以連續發生於各腹節上,屬於CKM2-7的等級;3.深色型(the dark form),為 Ae. aegypti formosus,,分佈於非洲南部撒哈拉地區以及印度洋島嶼,各腹節完全沒有往後延伸的白色鱗片,屬於CKM0的等級。以RAPD-PCR的方法隨機擴增CKM1-7品系之基因組 DNA,並分析其間的差異後發現,模式型與淡色型雖然具有類似之生態席位,但在RAPD的形質上可以明顯的區分開來。分析CKM1-7之埃及斑蚊不同品系之正烷類表皮碳氫化合物的結果來看,在定性上之組成皆為n-C18至n-C36共19種化合物,但成蟲體表白色鱗片的分佈與數量造成化合物定量上的差異,n-C18至n-C27之平均含量會隨著CKM值的增加而變多,而n-C29至n-C36會變少。
台灣西南部和東南部沿海共9個埃及斑蚊族群的個體屬於模式型與淡色型混棲的形式,未發現深色型的個體。並檢視其白鱗分佈的情形,發現雄性成蟲其CKM值的變化程度較雌性成蟲低。台灣東南部埃及斑蚊族群其淡色型個體比例較西南部族群多,在室內採集的成蟲淡色型比例亦比室外採集者多。分析這些成蚊之族群表皮正烷類結果發現,n-C18至n-C36的平均含量在蟲體上隨著碳數增多而增加,而各族群內孳生於室內者其淡色型比例較孳生於室外者高,且在n-C18至n-C27的平均含量較室外品系多。亦野外族群表皮正烷類的含量比實驗室品系少。族群間RAPD形質的差異明顯的將9個埃及斑蚊族群歸類為三群,依照地理位置可分為:台灣西南部偏北族群、西南部偏南族群、台灣東南部族群,西南部族群的族群有效範圍為33 km,有效密度為2.9 mosquitoes / km。 | zh_TW |
| dc.description.abstract | There are some variation, in the distribution of white scale on the abdominal tergites of Aedes aegypti. The C. K.Meek’s (CKM) classification system was used to identify and rank eight classes in the abdominal scale patterns, including CKM0 which was generalized as the dark form of Ae. aegypti formosus, CKM1 as the type form of Ae. aegypti aegypti and CKM2-7 as the other pale form of Ae. aegypti aegypti. The RAPD fragments profiles of seven CKM laboratory selected strains were analyzed and genetic similarities were estimated, the UPGMA dendrogram assorted these strains into two major groups: the type form and the pale form. The dendrogram was detected based on n-alkane cuticular hydrocarbon profiles of seven CKM strains. All nineteen n-alkanes (n-C18 to n-C36) were shared from female adult’s epicuticle among seven CKM strains, but varied quantitatively. The mosquito with CKM values of 2-7 strains had more abundance of components n-C18 to n-C27 than CKM 1, less abundance of n-C29 to n-C36.
The scale patterns of field collected Ae. aegypti were found to have the type form and the pale form, those were mixed in the similar niche in Taiwan. The female mosquitoes within populations exhibited greater variation in scale pattern than males. The frequency CKM value in female individual was used for cluster analyses, that generated a dendrogram depicting the branches of populations. The nine populations assorted into two clusters that correspond geographically with southwestern and southeastern area in Taiwan. We also found that the southeastern mosquito populations exhibited high frequency of pale form than that of southwestern. The similar phenomenon was observed in indoor breeding populations than outdoors. Therefore, the cuticular n-alkane hydrocarbons of adults from southeastern Taiwan and indoor breeding populations were analyzed, we found these mosquitoes contained larger amount of n-C18 to n-C27. Nineteen types of n-alkanes were identified using gas chromatography electron impact-mass spectrometry. Dendrogram obtained from cluster analysis showed that grouping associated on the frequencies of pale form but not with geographic distribution. Differences in the frequencies of RAPD markers were detected among populations. Cluster analyses revealed, there were two groups separated by the Central Mountain Range. Regression analysis of geographic distances and pairwise Fst values estimated from RAPD markers showed that southwestern populations were isolated by distance of 33 km within southwestern populations and 29 km within southeastern in Taiwan. | en |
| dc.description.provenance | Made available in DSpace on 2021-06-13T17:24:36Z (GMT). No. of bitstreams: 1 ntu-94-D86624104-1.pdf: 1409147 bytes, checksum: dbdab700f4dd3b8e59a13398c2b83892 (MD5) Previous issue date: 2005 | en |
| dc.description.tableofcontents | 目 錄
中文摘要………………………………………………………………………...…….1 英文摘要……………………………………………………………………….……...3 目錄…………………………………………………………………………………....5 表次…………………………………………………………………………..…….….6 圖次………………………………………………………………………………........7 壹、 前言與往昔研究………………………………………………….…..….10 貳、 材料與方法………………………………………………………….…...22 參、 結果與討論 一、 台灣地區埃及斑蚊族群在成蟲腹部背板白色鱗片分佈 位置上的差異………………………………………………….……...33 二、 埃及斑蚊不同白色鱗片分佈位置與雌性成蟲表皮正烷 類所產生的差異………………………………………………....……37 三、台灣地區埃及斑蚊族群在表皮正烷類形質上的差異………………40 四、埃及斑蚊不同白色鱗片分佈位置對於成蟲基因組 DNA 之RAPD形質所產生的差異………………………..…………………48 五、台灣地區埃及斑蚊族群在RAPD-PCR的形質上所出 現的差異性………………………………………….…………...…….54 肆、 參考文獻…………………………………………………………..……..58 伍、 圖表………………………………………………………………..……..69 致謝……………………………………………………………………………...….135 | |
| dc.language.iso | zh-TW | |
| dc.subject | 族群差異 | zh_TW |
| dc.subject | 白鱗分布 | zh_TW |
| dc.subject | 埃及斑蚊 | zh_TW |
| dc.subject | RAPD | zh_TW |
| dc.subject | 表皮正烷類 | zh_TW |
| dc.subject | scale pattern | en |
| dc.subject | Aedes aegypti | en |
| dc.subject | RAPD | en |
| dc.subject | cuticular n-alkanes | en |
| dc.title | 從埃及斑蚊成蟲腹部背板白鱗、成蟲表皮正烷類、隨機增幅多型性基因組DNA探討在台灣之族群間差異 | zh_TW |
| dc.title | Variations among populations of Aedes aegypti in Taiwan: based on tergum white-scale patterns, n-alkane hydrocarbons and random amplified polymorphism DNA of adults Aedes aegypti | en |
| dc.type | Thesis | |
| dc.date.schoolyear | 93-1 | |
| dc.description.degree | 博士 | |
| dc.contributor.oralexamcommittee | 寇融,彭武康,何兆美,馬堪津,陳錦生 | |
| dc.subject.keyword | 白鱗分布,埃及斑蚊,RAPD,表皮正烷類,族群差異, | zh_TW |
| dc.subject.keyword | scale pattern,cuticular n-alkanes,RAPD,Aedes aegypti, | en |
| dc.relation.page | 134 | |
| dc.rights.note | 有償授權 | |
| dc.date.accepted | 2005-01-26 | |
| dc.contributor.author-college | 生物資源暨農學院 | zh_TW |
| dc.contributor.author-dept | 昆蟲學研究所 | zh_TW |
| 顯示於系所單位: | 昆蟲學系 | |
文件中的檔案:
| 檔案 | 大小 | 格式 | |
|---|---|---|---|
| ntu-94-1.pdf 未授權公開取用 | 1.38 MB | Adobe PDF |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。
