Skip navigation

DSpace

機構典藏 DSpace 系統致力於保存各式數位資料(如:文字、圖片、PDF)並使其易於取用。

點此認識 DSpace
DSpace logo
English
中文
  • 瀏覽論文
    • 校院系所
    • 出版年
    • 作者
    • 標題
    • 關鍵字
    • 指導教授
  • 搜尋 TDR
  • 授權 Q&A
    • 我的頁面
    • 接受 E-mail 通知
    • 編輯個人資料
  1. NTU Theses and Dissertations Repository
  2. 電機資訊學院
  3. 電子工程學研究所
請用此 Handle URI 來引用此文件: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/39206
完整後設資料紀錄
DC 欄位值語言
dc.contributor.advisor陳中平(Chung-Ping Chen)
dc.contributor.authorYi-Hao Changen
dc.contributor.author張益豪zh_TW
dc.date.accessioned2021-06-13T17:24:19Z-
dc.date.available2006-01-01
dc.date.copyright2005-02-02
dc.date.issued2005
dc.date.submitted2005-01-27
dc.identifier.citationBibliography
[1] K. Nabors and J. White, “FastCap: A multipole-accelerated 3-D capacitance extraction program,” IEEE Transaction on Computer-Aided Design (TCAD), vol. 10, no.10, pp. 1447-1459, Nov. 1991.
[2] K. Nabors, S. Kim, J. White, and S. Senturia, “FastCap USER’S GUIDE,” Sep. 1992.
[3] S. Kapur and D. E. Long, “IES3: A fast integral equation solver for efficient 3-dimensional extraction,” in Proceeding of International Conference on Computer Aided Design (ICCAD), pp. 448-455, Nov. 1997.
[4] J. R. Phillips and J. White, “A precorrected FFT method for capacitance extraction of complicated 3-D structures,” IEEE Transaction on Computer Aided Design (TCAD), vol. 16, no. 10, pp. 1059-1072, Oct. 1997.
[5] W. Shi, J. Liu, N. Kakani, and T. Yu, “A fast hierarchical algorithm for 3-D capacitance extraction,” IEEE Transaction on Computer Aided Design (TCAD), vol. 21, no. 3, pp. 330-336, March 2002.
[6] S. Balakrishnan, J. H. Park, H. Kim, Yu-Min Lee, and Charlie Chung-Ping Chen, 'Linear Time Hierarchical Capacitance Extraction Without Multipole Expansion,' International Conference on Computer Design (ICCD), pp. 98-103, 2001.
[7] S. Yan, J. Liu, and W. Shi, 'Improving boundary element methods for parasitic extraction,' in Proceeding of 2003 Asia and South Pacific Design Automation Conference (ASP-DAC), pp. 261-267, Jan. 2003.
[8] W. Shi and F. Yu, 'A divide-and-conquer algorithm for 3D capacitance extraction,' IEEE Transactions on Computer-Aided Design of Integrated Circuits and Systems, vol. 23, no. 8, pp. 1157-1163, Aug. 2004.
[9] S. Yan, V. Sarin, and W. Shi, “Sparse Transformations and Preconditioners for Hierarchical 3-D Capacitance Extraction with Multiple Dielectrics,” in Proceeding of ACM/IEEE Design Automation Conference (DAC), pp. 788-793, 2004.
[10] J. Tausch and J. White, “A multiscale for fast capacitance extraction,” in Proceeding of ACM/IEEE Design Automation Conference (DAC), pp. 537-542, 1999.
[11] M. Beattie and L. Pileggi, “Electromagnetic parasitic extraction via a multipole method with hierarchical refinement,” in Proceeding of International Conference on Computer Aided Design (ICCAD), pp. 437-444, 1999
[12] Matthew N. O. Sadiku, “Monte Carlo Methods in an Introductory Electromagnetic Course,” IEEE Transactions on Education, vol. 33, no. 1, pp. 73-80, Feb. 1990.
[13] Y. L. Le Coz and R. B. Iverson, “A stochastic algorithm for high speed capacitance extraction in integrated circuits,” Solid State Electronics, vol. 35, no. 7, pp. 1005-1012, 1992.
[14] Jinsong Hou and Xu Zhu, “Quasi-3D Capacitance Computation for VLSI Full Chip Extraction,” in Proceeding of International Conference on Design Automation (ICDA), 2000.
[15] Jason Cong and Lei He, “Analysis and Justification of a Simple, Practical 2 1/2-D Capacitance Extraction Methodology,” in Proceeding of ACM/IEEE Design Automation Conference (DAC), pp. 627-632, 1997.
[16] S. Yen and N. Shirali, “Capacitance Extraction,” Cadence Design Systems Application Note, 1995.
[17] The International Technology Roadmap for Semiconductors (2001).
[18] J. Barnes and P. Hut. “A hierarchical O(nlogn) force calculation algorithm,” Nature, vol. 324, 1986.
[19] A Grama, V. Sarin, and A. H. Sameh, “Improving error bounds for multipole-based treecodes,” SIAM J. Sci. Comput., vol. 21, no. 5, pp. 1790-1803, 2000.
[20] J. Tausch and J. White, “Mesh refinement strategies for capacitance extraction based on residue errors,” IEEE 5th Tropical Meeting, pp. 236-237, 1996.
[21] Roger F. Harrington, “Field Computation by Moment Methods,” IEEE Press, 1993.
[22] Albert Ruehli and Pierce Brennan, “Efficient Capacitance Calculations for Three-Dimension Multiconductor Systems,” IEEE Transaction on Microwave Theory and Techniques, pp. 76-82, Feb. 1973.
[23] Y. Saad and M. H. Schultz, “GMRES: A generalized minimal residual algorithm for solving nonsymmetric linear systems,” SIAM J. Sci. Stat. Comput., vol. 7, no. 3, pp. 856-869, July 1986.
[24] Lesslie Greengard, “The Rapid Evaluation of Potential Fields in Particles Systems,” MIT Press, Cambridge, Massachusetts, 1988.
[25] A. A. Appel, “An efficient program for many-body simulation,” SIAM J. Sci. Stat. Comput., vol. 6, no. 1, pp. 88-103, 1985.
[26] K. Esselink, “The order of Appel’s Algorithm,” Inform. Processing Lett., vol. 41, pp. 141-147, 1992.
[27] L. Greengard and V. Rohklin, “A fast algorithm for particle simulations,” J. Comp. Phys., vol. 73, pp. 325-348, 1987.
[28] P. Hanrahan, D. Salzman, and L. Aupperle, “A rapid hierarchical rediousity algorithm,” Computer Graphics, vol. 25, no. 4, pp. 197-206, July 1991.
[29] Yousef Saad, “Iterative methods for linear systems,” 2nd Ed., 2000.
[30] David S. Watkins, “Fundamentals of Matrix Computations,” 2nd Ed., 2002.
[31] H. Hoole and P. Hoole, “A Modern Short Course in Engineering Electromagnetics,” Oxford University Press, 1996.
[32] M. Jones and P. Plassmann, “An improved incomplete Cholesky factorization,” Argonne National Laboratory, 1992.
[33] Hasan Dag and F. L. Alvarado, “Computer-Free Preconditioners for the Parallel Solution of Power System Problems,” IEEE Transactions on Power Systems, vol. 12, no. 2, pp. 585-591, May 1997.
[34] Tsung-Hao Chen and Charlie Chung-Ping Chen, 'Efficient Large-Scale Power Grid Analysis Based on Preconditioned Krylov-Subspace Iterative Methods,' in Proceeding of ACM/IEEE Design Automation Conference (DAC), 2001.
[35] T. Lu, Z. Wang, and W. Yu, ”Hierarchical block boundary-element method (HBBEM): a fast field solver for 3-D capacitance extraction,” IEEE Transactions on Microwave Theory and Techniques, vol. 52, issue: 1, pp.10 – 19, Jan. 2004.
[36] B. Krauter, X. Yu, A. Dengi, and L. Plieggi, “A sparse image method for BEM capacitance extraction,” in Proceeding of ACM/IEEE Design Automation Conference (DAC), pp. 357-362, June 1996.
dc.identifier.urihttp://tdr.lib.ntu.edu.tw/jspui/handle/123456789/39206-
dc.description.abstract本篇論文主要闡述在三維電容抽取中有效地產生一個隱含稀疏變換的電位係數矩陣,之前所有的電容抽取演算法都是基於邊界元素法並且以所有的葉節點來定義電位係數矩陣,基於任一小導體表面均可視為基底的前提下,ICCAP發現以所有葉節點作為基底的變換將會得到一個最緊密的線性方程式。因此,ICCAP提出一個可以在線性時間內找出最佳基底的演算法,它可以保證在線性時間內建立出一個僅含有O(n)元素的電位係數矩陣。由此,這個稀疏變換可以使用前置式疊代解矩陣的方法加速整個線性方程式的求解速度。zh_TW
dc.description.abstractThis thesis presents ICCAP to efficient generate sparsified potential coefficient matrices for three-dimensional capacitance extraction. Previous capacitance extraction algorithms based on boundary element formulate the potential coefficient matrix in terms of surface potentials and charges on the most delicate panels (leaf panels). By introducing the concept of basis panels, ICCAP reveals that leaf panels compose the worst basis which leads to the densest system. Therefore, ICCAP proposes a linear time basis panel selection algorithm to choose a new set of basis panels. It is provable that the n x n potential coefficient matrix constructed in terms of the new basis contains O(n) non-zero entries and hence the sparse system can be solved more efficiently by preconditioned iterative matrix solvers.en
dc.description.provenanceMade available in DSpace on 2021-06-13T17:24:19Z (GMT). No. of bitstreams: 1
ntu-94-R91943082-1.pdf: 2040992 bytes, checksum: c593a9548b52b784aaf67b4a6bf8cd01 (MD5)
Previous issue date: 2005
en
dc.description.tableofcontentsTable of Contents
Abstract (Chinese) i
Abstract ii
Acknowledgements iii
List of Tables vi
List of Figures vii
Chapter 1. Introduction 1
1.1 Motivation …………………………………………1
1.2 What is Parastic Capacitance Extraction ……3
1.3 Previous Works ……………………………5
1.4 Our Contribution …………………………………6
1.5 Organization of the Thesis …………………7
Chapter 2. Preliminaries 8
2.1 Boundary Element Method .…………………………8
2.2 Conjugate Gradient Method ……………………11
2.3 Preconditioned Conjugate Gradient Method ……13
2.4 Hierarchical Algorithm (HiCap and PHiCap Algorithm) 16
Chapter 3. ICCAP Algorithm 21
3.1 Selecting Basis Panels …………………………23
3.1.1 Implicit congruence transformation ………………25
3.1.2 Algorithm for generating independent panels ……29
3.2 Direct Formulation of J’ in Linear Time ……31
3.3 Extracting E from J’ ……………………………33
3.4 Solving P’q’=v’ …………………………………33
3.5 Complexity Analysis …………………………………34
Chapter 4. Experimental Result 35
Chapter 5. Conclusion 40
Bibliography 41
dc.language.isoen
dc.subject電容抽取zh_TW
dc.subjectCapacitance Extactionen
dc.title一個隱含稀疏變換的三維電容抽取演算法zh_TW
dc.titleICCAP: A Linear Time 3-D Capacitance Extraction Algorithm with Congruence Transformationen
dc.typeThesis
dc.date.schoolyear93-1
dc.description.degree碩士
dc.contributor.oralexamcommittee李建模(Chien-Mo Li),黃鐘揚(Ric Huang)
dc.subject.keyword電容抽取,zh_TW
dc.subject.keywordCapacitance Extaction,en
dc.relation.page44
dc.rights.note有償授權
dc.date.accepted2005-01-27
dc.contributor.author-college電機資訊學院zh_TW
dc.contributor.author-dept電子工程學研究所zh_TW
顯示於系所單位:電子工程學研究所

文件中的檔案:
檔案 大小格式 
ntu-94-1.pdf
  未授權公開取用
1.99 MBAdobe PDF
顯示文件簡單紀錄


系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved