請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/39196完整後設資料紀錄
| DC 欄位 | 值 | 語言 |
|---|---|---|
| dc.contributor.advisor | 王國龍 | |
| dc.contributor.author | Chia-Ju Chieh | en |
| dc.contributor.author | 偕嘉如 | zh_TW |
| dc.date.accessioned | 2021-06-13T17:24:14Z | - |
| dc.date.available | 2011-07-26 | |
| dc.date.copyright | 2011-07-26 | |
| dc.date.issued | 2011 | |
| dc.date.submitted | 2011-07-14 | |
| dc.identifier.citation | Adam, J., and Green, T., 2001, Experimentally determined partition coefficients for minor and trace elements in peridotite minerals and carbonatitic melt, and their relevance to natural carbonatites: European Journal of Mineralogy, v. 13, p. 815.
Agafonov, L.V., Pinus, G.V., Lesnov, F.P., YuG, L.e., and Usova, L.S., 1975, Abyssal inclusions in basaltoids from the Shavaryn- Saram pipe Mongolia: Doll Akad Nauk SSSR, v. 225, p. 1163-1165. Barruol, G., Deschamps, A., Deverchere, J., Mordvinova, V.V., Ulziibat, M., Perrot, J., Artemiev, A.A., Dugarmaa, T., and Bokelmann, G.H.R., 2008, Upper mantle flow beneath and around the Hangay dome, Central Mongolia: Earth and Planetary Science Letters, v. 274, p. 221-233. Barry, T., Saunders, A., Kempton, P., Windley, B., Pringle, M., Dorjnamjaa, D., and Saandar, S., 2003, Petrogenesis of Cenozoic basalts from Mongolia: evidence for the role of asthenospheric versus metasomatized lithospheric mantle sources: Journal of Petrology, v. 44, p. 55. Bedini, R., and Bodinier, J.L., 1999, Distribution of incompatible trace elements between the constituents of spinel peridotite xenoliths: ICP-MS data from the East African Rift: Geochimica et cosmochimica acta, v. 63, p. 3883-3900. Blundy, J., and Dalton, J., 2000, Experimental comparison of trace element partitioning between clinopyroxene and melt in carbonate and silicate systems, and implications for mantle metasomatism: Contributions to Mineralogy and Petrology, v. 139, p. 356-371. Boyd, F., 1989, Compositional distinction between oceanic and cratonic lithosphere: Earth and Planetary Science Letters, v. 96, p. 15-26. Boyd, F., Pokhilenko, N., Pearson, D., Mertzman, S., Sobolev, N., and Finger, L., 1997, Composition of the Siberian cratonic mantle: evidence from Udachnaya peridotite xenoliths: Contributions to Mineralogy and Petrology, v. 128, p. 228-246. Brey, G., and Kohler, T., 1990, Geothermobarometry in four-phase lherzolites II. New thermobarometers, and practical assessment of existing thermobarometers: Journal of Petrology, v. 31, p. 1353. Carignan, J., Ludden, J., and Francis, D., 1996, On the recent enrichment of subcontinental lithosphere: A detailed U---Pb study of spinel lherzolite xenoliths, Yukon, Canada: Geochimica et cosmochimica acta, v. 60, p. 4241-4252. Coltorti, M., Bonadiman, C., Hinton, R., Siena, F., and Upton, B., 1999, Carbonatite metasomatism of the oceanic upper mantle: evidence from clinopyroxenes and glasses in ultramafic xenoliths of Grande Comore, Indian Ocean: Journal of Petrology, v. 40, p. 133. Downes, H., and Dupuy, C., 1987, Textural, isotopic and REE variations in spinel peridotite xenoliths, Massif Central, France: Earth and Planetary Science Letters, v. 82, p. 121-135. Downes, H., Embey-Isztin, A., and Thirlwall, M., 1992, Petrology and geochemistry of spinel peridotite xenoliths from the western Pannonian Basin (Hungary): evidence for an association between enrichment and texture in the upper mantle: Contributions to Mineralogy and Petrology, v. 109, p. 340-354. Eggins, S., Woodhead, J., Kinsley, L., Mortimer, G., Sylvester, P., McCulloch, M., Hergt, J., and Handler, M., 1997, A simple method for the precise determination of>= 40 trace elements in geological samples by ICPMS using enriched isotope internal standardisation: Chemical Geology, v. 134, p. 311-326. Gao, S., Liu, X., Yuan, H., Hattendorf, B., Gunther, D., Chen, L., and Hu, S., 2002, Determination of Forty Two Major and Trace Elements in USGS and NIST SRM Glasses by Laser Ablation Inductively Coupled Plasma Mass Spectrometry: Geostandards and Geoanalytical Research, v. 26, p. 181-196. Goldschmidt, V.M., 1992, On the metasomatic processes in silicate rocks. Economic Geology, 17, p.105-123 Govindaraju, K., 1994, Complication of working values and sample descrirtion for 383 geostandards: Geostandards Newsletter, v. 18, p. 158. Hart, S.R., and Zindler, A., 1986, In search of a bulk-earth composition: Chemical Geology, v. 57, p. 247-267. Harte, B., 1987 Metasomatic events recorded in mantle xenoliths: an overview. In: Nixon, P.H., “Mantle xenoliths”, Wiley, London, p. 625-640. Hunt, A., Parkinson, I., Rogers, N., Harris, N., Barry, T., and Uondon, M., 2008, Deciphering the sources and melt generation mechanisms of Cenozoic intraplate volcanism in central Mongolia: Geochimica et Cosmochimica Acta Supplement, v. 72, p. 403. Ionov, D.A., 1986, Spinel peridotite xenoliths from the Shavaryn-Tsaram volcano, northern Mongolia: petrography, major element chemistry and mineralogy: Geologica Zbornik-Geologica Carpathica, v. 37. Ionov, D. A., O’Reilly, S. Y., Griffin, W.L., 1998, A geotherm and lithospheric cross-section for central Mongolia. In: Flower MJF, Chung, S.L., Lo, C.H., Lee, T.Y. (eds), “Mantle dynamics and plate interactions in East Asia”, Amer Ionov, D., 2002, Mantle structure and rifting processes in the Baikal-Mongolia region: geophysical data and evidence from xenoliths in volcanic rocks: Tectonophysics, v. 351, p. 41-60. Ionov, D.A., Bodinier, J.L., Mukasa, S.B., and Zanetti, A., 2002, Mechanisms and sources of mantle metasomatism: major and trace element compositions of peridotite xenoliths from Spitsbergen in the context of numerical modeling: Journal of Petrology, v. 43, p. 2219-2259. Ionov, D.A., Prikhodko, V.S., Bodinier, J.L., Sobolev, A.V., and Weis, D., 2005, Lithospheric mantle beneath the south-eastern Siberian craton: petrology of peridotite xenoliths in basalts from the Tokinsky Stanovik: Contributions to Mineralogy and Petrology, v. 149, p. 647-665. Ionov, D.A., 2007, Compositional variations and heterogeneity in fertile lithospheric mantle: peridotite xenoliths in basalts from Tariat, Mongolia: Contributions to Mineralogy and Petrology, v. 154, p. 455-477. Johnson, K. T. M., 1998, Experimental determination of partition coefficients for rare earth and high-field-strength elements between clinopyroxene, garnet, and basaltic melt at high pressures: Con tributions to Mineralogy and Petrology, v. 133, p.60–68. Khutorskoy, M., and Yarmoluk, V., 1989, Heat flow, structure and evolution of the lithosphere of Mongolia: Tectonophysics, v. 164, p. 315-322. Kinzler, R.J., and Grove, T.L., 1992, Primary magmas of mid-ocean ridge basalts 1. Experiments and methods: Journal of Geophysical Research, v. 97, p. 6885-6906. Kopylova, M., O'Reilly, S., and Genshaft, Y.S., 1995, Thermal state of the lithosphere beneath Central Mongolia: evidence from deep-seated xenoliths from the Shavaryn-Saram volcanic centre in the Tariat depression, Hangai, Mongolia: Lithos, v. 36, p. 243-255. Litasov, K., Taniguchi, H., 2002, Mantle Evolution beneath the Baikal Rift. Center for Northeast Asian Studies Monograph Ser 5, Tohoku University, 221pp. Logatche, N.A., 1984, The Baikal Rift System: Episode, v. 7, p. 38-43. Lysak, S.V., and Dorofeeva, R.P., 1997, Geothermal regime of the upper horizons of the earth's crust in the southern regions of Eastern Siberia: Trans Dokl Russ Acad Sci Earth Sci Sect, v. 325, p. 133-137. McDonough, W., and Sun, S.S., 1995, The Composition of the Earth Chemical Geology, v. 120, p. 223-253. Menzies, M. A., 1983, Mantle ultramafic xenoliths in alkaline magmas: evidence for mantle heterogeneity modified by magmatic activity. In: Hawkesworth, C. J. and Norry, M. J. (eds.), “Continental Basalts and Mantle xenoliths”, Shiva Pub., London, p. 92-110. Nixon, P.H., 1987a Mantle xenoliths: Wiley, London, 844pp. Norman, M., Pearson, N., Sharma, A., and Griffin, W., 1996, Quantitative analysis of trace elements in geological materials by laser ablation ICPMS: instrumental operating conditions and calibration values of NIST glasses: Geostandards and Geoanalytical Research, v. 20, p. 247-261. Norman, M.D., 1998, Melting and metasomatism in the continental lithosphere: laser ablation ICPMS analysis of minerals in spinel lherzolites from eastern Australia: Contributions to Mineralogy and Petrology, v. 130, p. 240-255. Norman, M.D., Griffin, W.L., Pearson, N.J., Garcia, M.O., and O¡¦reilly, S.Y., 1998, Quantitative analysis of trace element abundances in glasses and minerals: a comparison of laser ablation inductively coupled plasma mass spectrometry, solution inductively coupled plasma mass spectrometry, proton microprobe and electron microprobe data: J. Anal. At. Spectrom., v. 13, p. 477-482. Palme, H., and Nickel, K., 1985, Ca/Al ratio and composition of the Earth's upper mantle: Geochimica et cosmochimica acta, v. 49, p. 2123-2132. Pearce, N.J.G., Perkins, W.T., Westgate, J.A., Gorton, M.P., Jackson, S.E., Neal, C.R., and Chenery, S.P., 1997, A compilation of new and published major and trace element data for NIST SRM 610 and NIST SRM 612 glass reference materials: Geostandards Newsletter, v. 21, p. 115-144. Preb, S., Wirr, G., Seck, H., Eonov, D., and Kovalenko, V., 1986, Spinel peridotite xenoliths from the Tariat Depression, Mongolia. I: Major element chemistry and mineralogy of a primitive mantle xenolith suite: Geochimica et cosmochimica acta, v. 50, p. 2587-2599. Rampone, E., Bottazzi, P., and Ottolini, L., 1991, Complementary Ti and Zr anomalies in orthopyroxene and clinopyroxene from mantle peridotites. Ringwood, A.E., 1979, Origin of the Earth and Moon: New York, Springer-Verlag New York, Inc., 1979. 307 p., v. 1. Rollinson, H.R., 1993, Using geochemical data: evaluation, presentation, interpretation. Sachtleben, T., and Seck, H., 1981, Chemical control of Al-solubility in orthopyroxene and its implications on pyroxene geothermometry: Contributions to Mineralogy and Petrology, v. 78, p. 157-165. Stosch, H.G., Ionov, D., Puchtel, I., Galer, S., and Sharpouri, A., 1995, Lower crustal xenoliths from Mongolia and their bearing on the nature of the deep crust beneath central Asia: Lithos, v. 36, p. 227-242. Stosch, H.G., Lugmair, G., and Kovalenko, V., 1986, Spinel peridotite xenoliths from the Tariat Depression, Mongolia. II: Geochemistry and Nd and Sr isotopic composition and their implications for the evolution of the subcontinental lithosphere: Geochimica et cosmochimica acta, v. 50, p. 2601-2614. Sun, S.S., and McDonough, W., 1989, Chemical and isotopic systematics of oceanic basalts: implications for mantle composition and processes: Geological Society, London, Special Publications, v. 42, p. 313. Tapponnier, P., Peltzer, G., Le Dain, A., Armijo, R., and Cobbold, P., 1982, Propagating extrusion tectonics in Asia: New insights from simple experiments with plasticine: Geology, v. 10, p. 611. Tatsumi, Y., Hamilton, D., and Nesbitt, R., 1986, Chemical characteristics of fluid phase released from a subducted lithosphere and origin of arc magmas: evidence from high-pressure experiments and natural rocks: Journal of Volcanology and Geothermal Research, v. 29, p. 293-309. Taylor, S.R. and McLennan, S.M., 1985, The continental crust: Its composition and evolution. Blackwell, Cambridge, 312pp. Van Orman, J.A., Grove, T.L., and Shimizu, N., 2001, Rare earth element diffusion in diopside: influence of temperature, pressure, and ionic radius, and an elastic model for diffusion in silicates: Contributions to Mineralogy and Petrology, v. 141, p. 687-703. Wiechert, U., Ionov, D.A., and Wedepohl, K.H., 1997, Spinel peridotite xenoliths from the Atsagin-Dush volcano, Dariganga lava plateau, Mongolia: a record of partial melting and cryptic metasomatism in the upper mantle: Contributions to Mineralogy and Petrology, v. 126, p. 345-364. Windley, B.F., Alexeiev, D., Xiao, W., Kroner, A., and Badarch, G., 2007, Tectonic models for accretion of the Central Asian Orogenic Belt: Journal of the Geological Society, v. 164, p. 31. Windley, B.F., and Allen, M.B., 1993, Mongolian plateau: Evidence for a late Cenozoic mantle plume under central Asia: Geology, v. 21, p. 295. Xu, Y., Menzies, M.A., Vroon, P., Mercier, J.C., and Lin, C., 1998, Texture-temperature-geochemistry relationships in the upper mantle as revealed from spinel peridotite xenoliths from Wangqing, NE China: Journal of Petrology, v. 39, p. 469. Xu, X., O'reilly, S., Griffin, W., and Zhou, X., 2000, Genesis of Young Lithospheric Mantle in Southeastern China: an LAM-ICPMS Trace Element Study: Journal of Petrology, v. 41, p. 111-148. Xu, Y.G., and Bodinier, J.L., 2004, Contrasting enrichments in high-and low-temperature mantle xenoliths from Nushan, eastern China: Results of a single metasomatic event during lithospheric accretion?: Journal of Petrology, v. 45, p. 321. Zindler, A., and Hart, S., 1986, Chemical geodynamics: Annual Review of Earth and Planetary Sciences, v. 14, p. 493-571. 李寄嵎、蔡榮浩、何孝桓、楊燦堯、鍾孫霖、陳正宏. (1997) 應用X光螢光分析儀從事岩石樣本之定量分析(I)主要元素, 中國地質學會八十六年年會暨學術研討會論文摘要: 418-420. 羅彥、劉勇勝、胡聖虹、高山. (2001) 激光剝蝕電感耦合等離子體質譜測定岩時樣品中稀土元素, 地球科學-中國地質大學學報6: 508-512 鍾孫霖. (1990) 台灣西部鹼性玄武岩中偉晶與包體之地球化學研究兼論晚新生代中國東南部沿海板塊內部玄武岩的岩石成因, 國立台灣大學地質科學研究所博士論文: 共183頁 | |
| dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/39196 | - |
| dc.description.abstract | 位於蒙古中部杭愛山區(Hangay Mountain)北緣的Tariat火成岩區,火山活動開始於上新世,持續活動至數千年前。許多火山口伴隨著火山岩流和碎屑岩在此區域廣泛分布,部份火山岩流富含來自地函的橄欖岩(peridotite)捕獲岩,因而提供良好的材料研究Tariat地區大陸岩石圈地函(subcontinental lithospheric mantle;SCLM)的物質組成、熔融過程和交代變質作用。
透過岩象觀察,此區域之地函捕獲岩以尖晶石二輝橄欖岩(spinel lherzolite)為主,組織型態為等粒狀(coarse-grained equigranular),部分橄欖石具有急折帶微構造(kink-band),顯示受到輕微的應力作用。另外,在少部分的橄欖岩中,發現具有: (1)含水礦物,如磷灰石(apatite);(2)斜輝石中的液包體(fluid inclusion);(3)斜輝石邊緣之蠕蟲狀反應圈(spongy vermicular aggregates),皆明顯指示曾受到交代變質作用。絕大部分橄欖岩中的斜輝石體積百分比為10-15 %,且較少橄欖岩受到交代變質作用,因此反映此地區之岩石圈地函為富化(fertile)且無水(anhydrous)環境。主要元素方面,無論是全岩或礦物化學特徵,元素間對應關係和部分熔融後殘餘物質演化的趨勢相似。全岩鎂莫爾分率(Mg# = 100 Mg / (Mg+Fe)*100 )為0.89-0.91,顯示為地函物質經部分熔融後的殘餘岩石。由這些橄欖石在模式橄欖石比例對應橄欖石鎂莫爾分率的”Boyd diagram”分布顯示,除了兩個橄欖岩樣本具有較高的鎂莫爾分率外,其餘主要落在現今海洋橄欖岩趨勢(oceanic peridotite trend)上,暗示在此區域之岩石圈地函可能是富化的軟流圈地函 (fertile asthenospheric mantle)或是成分接近原始地函(primitive mantle)。以本研究中最富化且未受到明顯交代變質作用之橄欖岩樣本ST0802 (Mg# =0.89),比較前人所計算出來的原始地函值(McDonough and Sun, 1995; Palme and O’Neill, 1985; Hart and Zindler, 1986; Ringwood, 1979),其主要元素成份極為一致,代表此地區部份岩石圈地函成份可能極為接近原始地函的特徵。透過直輝石中Ca含量計算此區域尖晶石二輝橄欖岩之平衡溫度(Brey and Kohler, 1990) 為862°C 至 1041°C,亦落在前人所建立完成的Tariat地溫梯度(Ionov, 2007)之尖晶石二輝橄欖岩深度範圍內。 微量元素方面,藉由模擬全岩Ti-Yb與斜輝石Y-Yb和Zr-Ti在部份熔融後殘餘岩石的含量,表明此地區絕大部分尖晶石二輝橄欖岩為經歷小於10%部份熔融後的殘餘岩體,只有一個相對耐熔(refractory)之橄欖岩(Mg# = 0.91)為經歷較大程度部份熔融( > 10%)。從斜輝石之稀土元素分布圖(Rare Earth Element (REE) pattern)來看,可以分為虧損型式(depleted pattern)、富集型式(enriched pattern)和過渡型式(transitional pattern)。虧損型式指示典型地函部分熔融後殘餘的岩體,未受到或受輕微之後期交代變質作用影響。富集模式和過渡型式指示受到交代變質作用影響。其中,斜輝石之所以具有富集或過渡模式,推測乃和其距離岩脈遠近的不同位置所造成的差異。透過斜輝石中 (Pb/Nb)N - Ce/Pb、Ce/Pb - Ceb和(La/Yb)N - Ti/Eu作圖,顯示造成Tariat地區交代變質作用的介質主要有含水流體、矽質岩漿和碳酸鹽質岩漿,因此推斷此區域至少經歷三期以上交代變質作用。在整體不相容元素分佈圖中的高場強元素(High Field Strengh Element; HFSE)負異常亦應由含水流體交代變質所造成,可能和中亞造山帶伴隨的隱沒帶作用有關。 Sr-Nd同位素方面,具有斜輝石REE虧損型式的橄欖岩(未受到後期交代變質作用),顯示較高的143Nd/144Nd (0.51282-0.51307),和較低的87Sr/86Sr (0.70292-0.70434),落在現今大西洋玄武岩(Pacific mid-ocean ridge basalt; P-MORB)和印度洋玄武岩(Indian mid-ocean ridge basalt; I-MORB)範圍內。最富化之橄欖岩ST0802接近地球初始組成值(bulk earth value),與上述討論的主要元素特徵相符合,顯示Tariat地區之岩石圈地函不均質性。這些橄欖岩之Nd模式年齡(Nd model age)為0.9至2.3 Ga,推測此區域岩石圈地函自元古代(Proterozoic)就已經存在。相反的,具有斜輝石REE富集型式和過渡型式的橄欖岩(受到後期交代變質作用),比起斜輝石REE虧損的橄欖岩含有較低143Nd/144Nd (0.51264-0.51291)和較高87Sr/86Sr (0.70335-0.70511),指示這些橄欖岩為二元端成分混合的結果。一端元為虧損地函質(depleted MORB mantle; DMM),另一端元為具有較高 87Sr/86Sr 和較低 143Nd/144Nd之特徵。最後,綜合所有地球化學特徵,在Tariat地區,存在古老且虧損的元古代岩石圈地函散布於年輕且富化的岩石圈地函,顯示此地區岩石圈地函的不均質性。 | zh_TW |
| dc.description.abstract | In the Tariat region, mantle-derived xenoliths of Tertiary basalts provide direct information on the nature of the lithospheric mantle. Most Tariat spinel lherzolites, with up to 15 vol.% of modal clinopyroxene (cpx), have neither hydrous minerals nor “melt pocket”, implying that some parts of the subcontinental lithospheric mantle (SCLM) are relatively fertile and anhydrous. Other cpx-rich (15-20 vol.%) lherzolites contain apatites, melt pockets and fluid inclusions in orthopyroxene (opx) and cpx porphyroblasts. Such mineralogical characteristis reflect modal metasomatism. Using the Ca-in-opx thermometry of Brey and Kohler (1990), the equilibration temperatures of Tariat spinel lherzolites range from 862°C to 1041°C, similar to that reported by Ionov (2007). Whole-rock Mg# (0.89-0.91; mainly between 0.89 and 0.90) and Fo contents of olivines in spinel lherzolites suggest that part of the SCLM beneath this region is fertile and similar to the estimated composition of primitive or fertile asthenospheric mantle. The mineral and whole-rock chemical compositions demonstrate that melt extraction was responsible for the geochemical variation of the Tariat lherzolites. Trace element (Y-Yb, Zr-Ti) modeling of cpx indicates that most Tariat spinel lherzolites had experienced less than 10% of melt extraction, except one lherzolite which requires a higher degree of melt extraction ( > 10%). Rare earth element (REE) patterns of cpx can be divided into three types: depleted, enriched and transitional types. The depleted patterns are typical of unmetasomatised, relatively fertile lithospheric mantle. The enriched and transitional patterns suggest that lherzolites had undergone enrichment. In the REE-depleted group of lherzolites, complementary Ti and Zr anomalies in opx (positive) and cpx (negative) have been observed as reported on mantle peridotites worldwide. In some lherzolites, cpx maybe REE-enriched, but other HFSE’s depleted, suggesting that the metasomatism could have occurred in a subduction zone. Plots of (Pb/Nb)N vs Ce/Pb, Ce/Pb vs Ce and (La/Yb)N vs Ti/Eu of cpx suggest that some lherzolites in the REE-enriched and transitional groups are most likely products of hydrous fluid, silicate and carbonatitic metasomatism. Therefore, at least three episodes of metasomatism are recognized in the SCLM beneath the Tariat region. Sr-Nd analysis in the Tariat lherzolites reveals ancient ages for the lithospheric mantle formation and suggests that some Proterozoic mantle domains have survived, and probably metasomatic enrichment. | en |
| dc.description.provenance | Made available in DSpace on 2021-06-13T17:24:14Z (GMT). No. of bitstreams: 1 ntu-100-R98224208-1.pdf: 11506979 bytes, checksum: 4b2634cfb7930bbcf923141b08036b59 (MD5) Previous issue date: 2011 | en |
| dc.description.tableofcontents | 致 謝 i
摘 要 ii Abstract iv 目 錄 v 圖 目 vii 表 目 ix 一、緒論 1 1.1前言 1 1.2地質背景 4 1.3前人研究 4 1.3.1 Tariat火成岩區之地函捕獲岩 4 1.3.2雷射剝蝕感應耦合電漿質譜儀分析(Laser Ablated (LA)-ICPMS analysis) 6 1.4研究動機和目的 10 1.4.1研究動機 10 1.4.2研究目的 10 二、研究方法及樣本採集 11 2.1 雷射剝蝕進樣感應耦合電漿質譜儀分析之建立 11 2.1.1 儀器與基本原理 11 2.1.2 精確度與準確度 11 2.1.3 分析流程 15 2.1.4 標樣測量結果 17 2.2研究樣本 25 2.3礦物化學分析 28 2.3.1主要元素分析 28 2.3.2微量元素分析 29 2.4全岩地球化學分析 29 2.4.1主要元素分析 29 2.4.1.1燒失量測量 30 2.4.2微量元素分析 30 2.4.2.1標本處理前處理 30 2.4.2.2測量USGS標準樣結果 31 2.4.3 鍶-釹同位素組成分析 34 2.4.3.1 鍶-釹同位素化學分離流程 34 2.4.3.2 測量標準樣結果 35 三、實驗分析結果 37 3.1岩象學觀察 37 3.2礦物地球化學分析結果 41 3.2.1 主要元素 41 3.2.1微量元素 49 3.3全岩地球化學分析結果 67 3.3.1主要元素 67 3.3.2微量元素 67 3.3.3鍶-釹同位素 68 四、討論 73 4.1 Tariat地區下方之岩石圈地函 73 4.1.1化學組成成分與不均質性 73 4.1.2平衡溫度之估算 74 4.1.3微量元素分佈型態 78 4.2 Tariat地區岩石圈地函之熔融過程 81 4.3 Tariat地區岩石圈地函之交代變質作用 88 4.3.1 交代變質作用之種類 88 4.3.2 交代變質作用介質 91 4.3.3 橄欖岩中斜輝石的不均質性 92 4.4 釹模式年齡和岩石圈地函不均質性 97 五、結論 99 六、參考文獻 101 | |
| dc.language.iso | zh-TW | |
| dc.subject | 蒙古 | zh_TW |
| dc.subject | 地函捕獲岩 | zh_TW |
| dc.subject | 尖晶石二輝橄欖岩 | zh_TW |
| dc.subject | 富化岩石圈地函 | zh_TW |
| dc.subject | 交代變質作用 | zh_TW |
| dc.subject | Tariat火成岩區 | zh_TW |
| dc.subject | Mongolia | en |
| dc.subject | mantle xenoliths | en |
| dc.subject | spinel lherzolites | en |
| dc.subject | fertile lithospheric mantle | en |
| dc.subject | metasomatism | en |
| dc.subject | Tariat volcanic zone | en |
| dc.title | 富化岩石圈地函的地球化學特徵:以蒙古Tariat地函橄欖岩為例 | zh_TW |
| dc.title | Peridotite Xenoliths from Tariat, Mongolia: Geochemical Characteristics and Heterogeneity in Fertile Lithospheric Mantle | en |
| dc.type | Thesis | |
| dc.date.schoolyear | 99-2 | |
| dc.description.degree | 碩士 | |
| dc.contributor.coadvisor | 鍾孫霖 | |
| dc.contributor.oralexamcommittee | 江博明,李德春,何恭算 | |
| dc.subject.keyword | 地函捕獲岩,尖晶石二輝橄欖岩,富化岩石圈地函,交代變質作用,Tariat火成岩區,蒙古, | zh_TW |
| dc.subject.keyword | mantle xenoliths,spinel lherzolites,fertile lithospheric mantle,metasomatism,Tariat volcanic zone,Mongolia, | en |
| dc.relation.page | 108 | |
| dc.rights.note | 有償授權 | |
| dc.date.accepted | 2011-07-14 | |
| dc.contributor.author-college | 理學院 | zh_TW |
| dc.contributor.author-dept | 地質科學研究所 | zh_TW |
| 顯示於系所單位: | 地質科學系 | |
文件中的檔案:
| 檔案 | 大小 | 格式 | |
|---|---|---|---|
| ntu-100-1.pdf 未授權公開取用 | 11.24 MB | Adobe PDF |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。
