Please use this identifier to cite or link to this item:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/39184Full metadata record
| ???org.dspace.app.webui.jsptag.ItemTag.dcfield??? | Value | Language |
|---|---|---|
| dc.contributor.advisor | 林彥蓉(Yann-rong Lin) | |
| dc.contributor.author | Chieh-han Pu | en |
| dc.contributor.author | 蒲玠涵 | zh_TW |
| dc.date.accessioned | 2021-06-13T17:24:06Z | - |
| dc.date.available | 2016-08-22 | |
| dc.date.copyright | 2011-08-22 | |
| dc.date.issued | 2011 | |
| dc.date.submitted | 2011-08-19 | |
| dc.identifier.citation | Ashida K, Iida S, and Yasui T (2009) Morphological, physical, and chemical properties of grain and flour from chalky rice mutants. Cereal Chem. 86: 225-231
Blatch GL and Lassle M (1999) The tetratricopeptide repeat: a structural motif mediating protein-protein interactions. Bioessays 21: 932-939 Bligh HFJ, Larkin PD, Roach PS, Jones CA, Fu HY, and Park WD (1998) Use of alternate splice sites in granule-bound starch synthase mRNA from low-amylose rice varieties. Plant Mol. Biol. 38: 407-415 Bommer UA, Lutsch G, Stahl J, and Bielka H (1991) Eukaryotic initiation factors eIF-2 and eIF-3: interactions, structure and localization in ribosomal initiation complexes. Biochimie 73: 1007-1019 Chang T (ed) (1999) History of the development of Taiwan rice. TPG-DAF, Nantou, Taiwan Chang TT (1976) The origin, evolution, cultivation, dissemination, and diversification of Asian and African rices. Euphytica 25: 425-441 Coletta A, Pinney JW, Solis DYW, Marsh J, Pettifer SR, and Attwood TK (2010) Low-complexity regions within protein sequences have position-dependent roles. BMC Syst. Biol. 4: 43 D'Andrea LD and Regan L (2003) TPR proteins: the versatile helix. Trends Biochem. Sci. 28: 655-662 Denyer K, Johnson P, Zeeman S, and Smith AM (2001) The control of amylose synthesis. J. Plant Physiol. 158: 479-487 Dian WM, Jiang HW, Chen QS, Liu FY, and Wu P (2003) Cloning and characterization of the granule-bound starch synthase II gene in rice: gene expression is regulated by the nitrogen level, sugar and circadian rhythm. Planta 218: 261-268 Dian WM, Jiang HW, and Wu P (2005) Evolution and expression analysis of starch synthase III and IV in rice. J. Exp. Bot. 56: 623-632 Emanuelsson O, Nielsen H, Brunak S, and Heijne G (2000) Predicting subcellular localization of proteins based on their N-terminal amino acid sequence. J. Mol. Biol. 300: 1005-1016 Finn RD, Mistry J, Tate J, Coggill P, Heger A, Pollington JE, Gavin OL, Gunasekaran P, Ceric G, and Forslund K (2010) The Pfam protein families database. Nucleic Acids Res. 38: D211-D222 Fitzgerald M, Martin M, Ward R, Park W, and Shead H (2003) Viscosity of rice flour: A rheological and biological study. J. Agric. Food Chem. 51: 2295-2299 Fitzgerald MA, McCouch SR, and Hall RD (2009) Not just a grain of rice: the quest for quality. Trends Plant Sci. 14: 133-139 Fujita N, Kubo A, Suh DS, Wong KS, Jane JL, Ozawa K, Takaiwa F, Inaba Y, and Nakamura Y (2003) Antisense inhibition of isoamylase alters the structure of amylopectin and the physicochemical properties of starch in rice endosperm. Plant Cell Physiol. 44: 607-618 Fujita N, Toyosawa Y, Utsumi Y, Higuchi T, Hanashiro I, Ikegami A, Akuzawa S, Yoshida M, Mori A, Inomata K, et al. (2009) Characterization of pullulanase (PUL)-deficient mutants of rice (Oryza sativa L.) and the function of PUL on starch biosynthesis in the developing rice endosperm. J. Exp. Bot. 60: 1009-1023 Gojobori T (2007) Curated genome annotation of Oryza sativa ssp japonica and comparative genome analysis with Arabidopsis thaliana - The Rice Annotation Project. Genome Res. 17: 175-183 Hanashiro I, Itoh K, Kuratomi Y, Yamazaki M, Igarashi T, Matsugasako JI, and Takeda Y (2008) Granule-bound starch synthase I is responsible for biosynthesis of extra-long unit chains of amylopectin in rice. Plant Cell Physiol. 49: 925-933 Hori Y, Fujimoto R, Sato Y, and Nishio T (2007) A novel wx mutation caused by insertion of a retrotransposon-like sequence in a glutinous cultivar of rice (Oryza sativa). Theor. Appl. Genet. 115: 217-224 Hsu A (2000) Studies on rice quality of japonica waxy rices I. Texture of processing products for six varieties. Taichung DARES Research Report 66: 15-26 (in Chinese) Hsu AN and Wu Y (1998) Study on viscosity of milled rice flour in rice varieties. Taichung DARES Series 58: 48-59 (in Chinese) Hunter S, Apweiler R, Attwood TK, Bairoch A, Bateman A, Binns D, Bork P, Das U, Daugherty L, Duquenne L, et al. (2009) InterPro: the integrative protein signature database. Nucleic Acids Res. 37: D211-D215 Isshiki M, Matsuda Y, Takasaki A, Wong HL, Satoh H, and Shimamoto K (2008) Du3, a mRNA cap-binding protein gene, regulates amylose content in Japonica rice seeds. Plant Biotechnol. 25: 483-487 Isshiki M, Nakajima M, Satoh H, and Shimamoto K (2000) dull: rice mutants with tissue-specific effects on the splicing of the waxy pre-mRNA. Plant J. 23: 451-460 Jain M, Nijhawan A, Tyagi AK, and Khurana JP (2006) Validation of housekeeping genes as internal control for studying gene expression in rice by quantitative real-time PCR. Biochem. Biophys. Res. Commun. 345: 646-651 James MG, Denyer K, and Myers AM (2003) Starch synthesis in the cereal endosperm. Curr. Opin. Plant Biol. 6: 215-222 Jeon JS, Ryoo N, Hahn TR, Walia H, and Nakamura Y (2010) Starch biosynthesis in cereal endosperm. Plant Physiol. Biochem. 48: 383-392 Jobling S (2004) Improving starch for food and industrial applications. Curr. Opin. Plant Biol. 7: 210-218 Kang HG, Park S, Matsuoka M, and An GH (2005) White-core endosperm floury endosperm-4 in rice is generated by knockout mutations in the C-4-type pyruvate orthophosphate dikinase gene (OsPPDKB). Plant J. 42: 901-911 Kaushik RP and Khush GS (1991) Genetic analysis of endosperm mutants in rice Oryza sativa L. Theor. Appl. Genet. 83: 146-152 Kawasaki T, Mizuno K, Shimada H, Satoh H, Kishimoto N, Okumura S, Ichikawa N, and Baba T (1996) Coordinated regulation of the genes participating in starch biosynthesis by the rice Floury-2 locus. Plant Physiol. 110: 89-96 Keeling PL and Myers AM (2010) Biochemistry and genetics of starch synthesis. Annu. Rev. Food Sci. Technol. 1: 271-303 Lamb J, Tugendreich S, and Hieter P (1995) Tetratricopeptide repeat interactions: to TPR or not to TPR? Trends Biochem. Sci. 20: 257 Larkin PD and Park WD (2003) Association of waxy gene single nucleotide polymorphisms with starch characteristics in rice (Oryza sativa L.). Mol. Breed. 12: 335-339 Lee S-K, Hwang S-K, Han M, Eom J-S, Kang H-G, Han Y, Choi S-B, Cho M-H, Bhoo S, An G, et al. (2007) Identification of the ADP-glucose pyrophosphorylase isoforms essential for starch synthesis in the leaf and seed endosperm of rice (Oryza sativa L.). Plant Mol. Biol. 65: 531-546 Letunic I, Doerks T, and Bork P (2009) SMART 6: Recent updates and new developments. Nucleic Acids Res. 37: D229-D232 Lewin B (2008) Genes IX Jones and Bartlett Publishers, pp. 667-706 Lin HY (2009) Toward positional cloning of the rice (Oryza sativa L.) Dull8, Du8. National Taiwan University Master Thesis, Taipei, Taiwan, pp. 1-75 Lisle AJ, Martin M, and Fitzgerald MA (2000) Chalky and translucent rice grains differ in starch composition and structure and cooking properties. Cereal Chem. 77: 627-632 Livak KJ and Schmittgen TD (2001) Analysis of relative gene expression data using real-time quantitative PCR and the 2 (T)(-Delta Delta C) method. Methods 25: 402-408 Luh BS (ed) (1991) Rice Utilization. II Kluwer Academic / Plenum Publishers Martin C and Smith AM (1995) Starch biosynthesis. Plant Cell 7: 971-985 Matsuo T and Hoshikawa K (1993a) Science of the rice plant. II. Physiology Food and Agriculture Policy Research Center, Tokyo, pp. 98-111 Matsuo T and Hoshikawa K (1993b) Science of the rice plant I. Morphology Food and Agriculture Policy Research Center, Tokyo, pp. 339-376 Mikami I, Uwatoko N, Ikeda Y, Yamaguchi J, Hirano HY, Suzuki Y, and Sano Y (2008) Allelic diversification at the wx locus in landraces of Asian rice. Theor. Appl. Genet. 116: 979-989 Morell MK and Myers AM (2005) Towards the rational design of cereal starches. Curr. Opin. Plant Biol. 8: 204-210 Nakamura Y (2002) Towards a better understanding of the metabolic system for amylopectin biosynthesis in plants: Rice endosperm as a model tissue. Plant Cell Physiol. 43: 718-725 Nakano M, Nobuta K, Vemaraju K, Tej SS, Skogen JW, and Meyers BC (2006) Plant MPSS databases: signature-based transcriptional resources for analyses of mRNA and small RNA. Nucleic Acids Res. 34: D731 Neff MM, Turk E, and Kalishman M (2002) Web-based primer design for single nucleotide polymorphism analysis. Trends Genet. 18: 613-615 Nelson K and Green M (1990) Mechanism for cryptic splice site activation during pre-mRNA splicing. Proc. Natl. Acad. Sci. USA 87: 6253 Nishi A, Nakamura Y, Tanaka N, and Satoh H (2001) Biochemical and genetic analysis of the effects of amylose-extender mutation in rice endosperm. Plant Physiol. 127: 459-472 Ohdan T, Francisco PB, Sawada T, Hirose T, Terao T, Satoh H, and Nakamura Y (2005) Expression profiling of genes involved in starch synthesis in sink and source organs of rice. J. Exp. Bot. 56: 3229-3244 Ouyang S, Zhu W, Hamilton J, Lin H, Campbell M, Childs K, Thibaud-Nissen F, Malek RL, Lee Y, Zheng L, et al. (2007) The TIGR Rice Genome Annotation Resource: improvements and new features. Nucleic Acids Res. 35: D883-D887 Qiao Y, Lee SI, Piao R, Jiang W, Ham TH, Chin JH, Piao Z, Han LZ, Kang SY, and Koh HJ (2010) Fine mapping and candidate gene analysis of the floury endosperm gene, FLO(a), in rice. Mol. Cells 29: 167-174 Rozen S and Skaletsky H (2000) Primer3 on the WWW for general users and for biologist programmers. Methods Mol. Biol. 132: 365-386. Source code available at http://fokker.wi.mit.edu/primer363/. Ryoo N, Yu C, Park CS, Baik MY, Park IM, Cho MH, Bhoo SH, An G, Hahn TR, and Jeon JS (2007) Knockout of a starch synthase gene OsSSIIIa/Flo5 causes white-core floury endosperm in rice (Oryza sativa L.). Plant Cell Rep. 26: 1083-1095 Sato H (2002) Genetics and breeding of high eating quality rice: Status and perspectives on the researches of low amylose content rice. Japan Agriculture and Horticulture 77: 556-564 Satoh H, Nishi A, Yamashita K, Takemoto Y, Tanaka Y, Hosaka Y, Sakurai A, Fujita N, and Nakamura Y (2003) Starch-branching enzyme I-deficient mutation specifically affects the structure and properties of starch in rice endosperm. Plant Physiol. 133: 1111-1121 Satoh H and Omura T (1981) New endosperm mutations induced by chemical mutagens in rice, Oryza sativa L. Jpn. J. Breed 31: 316-326 Schultz J, Milpetz F, Bork P, and Ponting CP (1998) SMART, a simple modular architecture research tool: Identification of signaling domains. Proc. Natl. Acad. Sci. U.S.A. 95: 5857-5864 She K, Kusano H, Koizumi K, Yamakawa H, Hakata M, Imamura T, Fukuda M, Naito N, Tsurumaki Y, and Matsumoto K (2009) A novel superior factor widely controlling the rice grain quality. Available from Nature Preceedings <http://hdl.handle.net/10101/npre.2009.3283.1> She K, Kusano H, Koizumi K, Yamakawa H, Hakata M, Imamura T, Fukuda M, Naito N, Tsurumaki Y, Yaeshima M, et al. (2010) A novel factor FLOURY ENDOSPERM2 is involved in regulation of rice grain size and starch quality. Plant Cell 22: 3280-3294 Singh R and Juliano BO (1977) Free sugars in relation to starch accumulation in developing rice grain. Plant Physiol. 59: 417-421 Smith AM (2001) The biosynthesis of starch granules. Biomacromolecules 2: 335-341 Song S, Hong MC, and and Hsu A (1991) Studies on rice quality in Taiwan. Taichung DARES Series 24: 1-10 (in Chinese) Song X and Liu (1996) Factors influencing rice grain quality. Newsletter, Hualien, DARES 18: 12-15 (in Chinese) Tai T and Tanksley S (1990) A rapid and inexpensive method for isolation of total DNA from dehydrated plant tissue. Plant Mol Biol Rep. 8: 297-303 Tamura, Peterson D, Peterson N, Stecher G, Nei M, and S K (2011) MEGA5: Molecular evolutionary genetics analysis using maximum likelihood, evolutionary distance, and maximum parsimony methods. Mol. Biol. Evol. (submitted) Tanaka T, Antonio BA, Kikuchi S, Matsumoto T, Nagamura Y, Numa H, Sakai H, Wu J, Itoh T, Sasaki T, et al. (2008) The rice annotation project database (RAP-DB): 2008 update. Nucleic Acids Res. 36: D1028-D1033 Tanksley SD and McCouch SR (1997) Seed banks and molecular maps: unlocking genetic potential from the wild. Science 277: 1063 Tetlow IJ (2006) Understanding storage starch biosynthesis in plants: a means to quality improvement. Can. J. Bot./Rev. Can. Bot. 84: 1167-1185 Tetlow IJ (2011) Starch biosynthesis in developing seeds. Seed Sci. Res. 21: 5-32 Vandeputte GE and Delcour JA (2004) From sucrose to starch granule to starch physical behaviour: a focus on rice starch. Carbohydr. Polym. 58: 245-266 Wakem MP and Kohalmi SE (2003) Mutation in the ap2-6 allele causes recognition of a cryptic splice site. J. Exp. Bot. 54: 2655-2660 Wang YJ and Wang L (2002) Structures of four waxy rice starches in relation to thermal, pasting, and textural properties. Cereal Chem. 79: 252-256 Wang ZY, Zheng FQ, Shen GZ, Gao JP, Snustad DP, Li MG, Zhang JL, and Hong MM (1995) The amylose content in rice endosperm is related to the posttranscriptional regulation of the waxy gene. Plant J. 7: 613-622 Wong K, Kubo A, Jane J, Harada K, Satoh H, and Nakamura Y (2003) Structures and Properties of Amylopectin and Phytoglycogen in the Endosperm of sugary-1 Mutants of Rice. J. Cereal Sci. 37: 139-149 Wrigley CW and Batey IL (2010) Cereal grains : assessing and managing quality. CRC Press, Boca Raton, pp. 34-42 Wu YP and Lur HS (2002) Rice mutation breeding. Chinese Agron. J. 12: 219-239 (in Chinese) Yang H, Yu J, Ramachandran S, and Pan S (2003) A holistic approach to rice research and genetic engineering. World Scientific Publishing, pp. 111-128 Yano M, Okuno K, Kawakami J, Satoh H, and Omura T (1985) High amylose mutants of rice, Oryza sativa L. Theor. Appl. Genet. 69: 253-257 Yano M, Okuno K, Satoh H, and Omura T (1988) Chromosomal location of genes conditioning low amylose content of endosperm starches in rice, Oryza sativa L. Theor. Appl. Genet. 76: 183-189 Zeeman SC, Kossmann J, and Smith AM (2010) Starch: Its metabolism, evolution, and biotechnological modification in plants. Annu. Rev. Plant Biol. 61: 209-234 Zeng D, Yan MX, Wang YH, Liu XF, Qian Q, and Li JY (2007) Du1, encoding a novel Prp1 protein, regulates starch biosynthesis through affecting the splicing of Wxb supercript stop pre-mRNAs in rice (Oryza sativa L.). Plant Mol. Biol. 65: 501-509 Zhu CL, Shen WB, Zhai HQ, and JM W (2004) Advances in researches of the application of low-amylose content rice gene for breeding. Sci. Agri. Sinica 37: 157-162 | |
| dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/39184 | - |
| dc.description.abstract | 稻米品質的改良為育種研究之重要指標,穀粒的澱粉占含量90 %,為影響稻米品質的重要因子。目前水稻穀粒澱粉代謝之研究雖然相當多,但尚不足以解釋水稻品種之間的直鏈性澱粉含量差異與澱粉結構多樣性間的關聯。近幾十年來研究顯示一些澱粉合成的調控基因可影響直鏈性澱粉含量與澱粉質地的差異,其中半糯 (Dull) 基因是獨立於Waxy基因但能影響直鏈性澱粉合成的調控基因。本研究利用EMS誘變出低直鏈性澱粉含量之半糯品系CNY921391-du8,進行基因定位選殖與澱粉合成相關基因表現分析,藉以探討突變基因du8在澱粉合成代謝調控上扮演之角色。經細微定位已將Du8半糯基因落在第四條染色體上,分子標幟CH0422 與 CH0426之間,含12個候選基因。定序分析結果顯示,CNY921391-du8品系在負責轉譯含有TPR(tetratricopeptide)保守區域蛋白的基因上產生了由G變成A的單點突變。此單點突變位於基因的第十一個內引子的3’端修飾位置上,利用RT-PCR進行單點突變區域的擴增,CNY921391-du8擴增出三個轉錄片段,而TK 8轉錄出單一轉錄片段。轉錄片段的定序結果發現CNY921391-du8 中在3’端修飾位置上的單點突變造成不正確的RNA修飾,降低了Du8在RNA修飾的準確率。除此之外,在其他低直鏈性澱粉突變品系中也發現另外三個Du8對偶基因。TPR區域負責蛋白質間的交互作用及多蛋白複合體的形成,在高粱、阿拉伯芥、蓖麻等高等植物中具相當高之保守性。利用real-time PCR分析du8突變品系在穀粒充實期間,半糯基因Du1與Du3的表現模式與Du8有所差異,其調控機制應與Du8有所不同。澱粉合成基因表現中,表現未有明顯差異的基因有OsAGPL3、OsBEIIa、OsISA2、OsISA3。表現有所差異但未有明顯模式的基因有OsAGPL1、OsAGPL4、OsAGPS2a、OsSSI、OsSSIIa、OsSSIIb、OsSSIIc、OsSSIIIa、OsSSIIIb、OsSSIVa、OsSSIVb、OsDPE2。而在穀粒充實時期整個表現都下降的澱粉合成基因,包含OsAGPL2、OsAGPS1、OsAGPS2b、OsGBSSI、OsGBSSII、OsBEI、OsBEIIb、OsISA1、OsPUL、OsDPE1、OsPHOL、OsPHOH。其中OsGBSSI、OsBEI與OsPUL在穀粒充實期間的表現模式與半糯基因Du8相似,但其表現量在du8突變體中顯著地降低,由此可推測Du8可調控作用上述的澱粉合成基因。 | zh_TW |
| dc.description.abstract | Rice quality improvement is an important issue in rice breeding. Starch is a major influence in rice quality because it composes 90% of rice grain. Though starch metabolism has been highly studied, so far non-sufficient evidence can be applied to explain the role of diverse starch textures in rice cultivars. Rice starch regulatory genes had been revealed and studied in the past few decades for better understanding in starch texture regulations. Dull genes are considered as amylose synthesis regulatory genes independent to Waxy. This study analyzed an EMS induced dull rice mutant line, CNY921391-du8, which exhibits low amylose content with opaque grain. Previous research had finely mapped Du8 between molecular markers CH0422 and CH0426 on chromosome 4, encompassing 12 candidate genes. Sequence analysis revealed a single point mutation of G to A in the gene encoding tetratricopeptide (TPR) repeat domain containing protein. The SNP mutation occurs on 3’ splice site of intron 11, leading to three truncated transcripts in the SNP of CNY921391-du8, compared to a single transcript of TK 8. In addition, three other du8 alleles were also found in other low amylose content mutants. The TPR domain mediates protein-protein interactions and multiprotein complexes assembly. Amino acid sequences of Du8 were highly conserved among higher plants such as Sorghum bicolor, Arabidopsis thaliana, and Ricinus communis. Real-time PCR analysis of Du8 mutant during rice grain developing stages showed that the Du8 expression pattern varied with the two dull genes, Du1 and Du3, indicating different regulation of Du8. Starch synthesis gene showing no significant variance expression patterns include OsAGPL3, OsBEIIa, OsISA2, and OsISA3. Genes with significant expression variance but not specified patterns include OsAGPL1, OsAGPL4, OsAGPS2a, OsSSI, OsSSIIa, OsSSIIb, OsSSIIc, OsSSIIIa, OsSSIIIb, OsSSIVa, OsSSIVb, and OsDPE2. Genes that were significantly reduced throughout the whole seed developing stages were OsAGPL2, OsAGPS1, OsAGPS2b, OsGBSSI, OsGBSSII, OsBEI, OsBEIIb, OsISA1, OsPUL, OsDPE1, OsPHOL, and OsPHOH. In addition, OsGBSSI, OsBEI, and OsPUL showed similar expression patterns as the isolated dull gene, Du8, and the expression levels were severely reduced in the overall rice grain developing stages of the du8 mutants. These result indicated the possibility role of Du8 in regulating these starch synthesis genes mentioned above. | en |
| dc.description.provenance | Made available in DSpace on 2021-06-13T17:24:06Z (GMT). No. of bitstreams: 1 ntu-100-R98621108-1.pdf: 3055414 bytes, checksum: 5b3d390b51822fc2d813983e7c306a6f (MD5) Previous issue date: 2011 | en |
| dc.description.tableofcontents | Acknowledgment (in Chinese) 致謝 I
Abstract III Abstract (in Chinese) 中文摘要 V Content VII Table and Appendix Content IX Figure Content X Preface 1 Chapter 1. Literature Review 5 1.1 Rice quality preference and influences 5 1.2 Rice endosperm development and starch granule formation 8 1.3 Starch biosynthesis in rice 10 1.4 Other regulating factors found in rice endosperm mutant research 14 1.5 Previous research on Du8 17 Chapter 2. Materials and Methods 18 2.1 Plant Materials 18 2.2 Sequence Analysis 20 2.3 CAPs and dCAPs Marker Analysis 22 2.4 Phlyogenetic analysis 24 2.5 RNA preparation 24 2.6 Reverse-transcription PCR (RT-PCR) 27 2.7 Real-time PCR (qPCR) 28 Chapter 3. Results 31 3.1 Du8 candidate genes 31 3.2 Function prediction of Du8 39 3.3 Gene expression pattern of Du8 44 3.4 Gene expression of starch synthesis genes in immature grains 49 Chapter 4. Discussion 62 Cryptic Splicing 62 Tetratricopeptide repeat (TPR) domain containing protein 64 Gene expression variation in TK 8 and Du8 mutants 66 Chapter 5. Reference 69 Chapter 6. Appendix 80 | |
| dc.language.iso | en | |
| dc.subject | 包含tetratricopeptide repeat區域的蛋白 | zh_TW |
| dc.subject | 定位選殖 | zh_TW |
| dc.subject | 半糯 | zh_TW |
| dc.subject | 即時同步 PCR | zh_TW |
| dc.subject | 隱蔽剪接 | zh_TW |
| dc.subject | positional cloning | en |
| dc.subject | dull | en |
| dc.subject | real-time PCR | en |
| dc.subject | cryptic splicing | en |
| dc.subject | tetratricopeptide repeat domain containing protein | en |
| dc.title | 水稻半糯基因Du8定位選殖與基因表現之分析 | zh_TW |
| dc.title | The Positional Cloning and Expression Analysis of the Rice Dull Gene, Dull8 (Du8) | en |
| dc.type | Thesis | |
| dc.date.schoolyear | 99-2 | |
| dc.description.degree | 碩士 | |
| dc.contributor.oralexamcommittee | 吳永培(Yong-pei Wu),洪傳揚(Chwan-yang Hong),張孟基(Men-chi Chang) | |
| dc.subject.keyword | 半糯,包含tetratricopeptide repeat區域的蛋白,隱蔽剪接,定位選殖,即時同步 PCR, | zh_TW |
| dc.subject.keyword | dull,tetratricopeptide repeat domain containing protein,cryptic splicing,positional cloning,real-time PCR, | en |
| dc.relation.page | 99 | |
| dc.rights.note | 有償授權 | |
| dc.date.accepted | 2011-08-20 | |
| dc.contributor.author-college | 生物資源暨農學院 | zh_TW |
| dc.contributor.author-dept | 農藝學研究所 | zh_TW |
| Appears in Collections: | 農藝學系 | |
Files in This Item:
| File | Size | Format | |
|---|---|---|---|
| ntu-100-1.pdf Restricted Access | 2.98 MB | Adobe PDF |
Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.
