請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/39178
完整後設資料紀錄
DC 欄位 | 值 | 語言 |
---|---|---|
dc.contributor.advisor | 駱尚廉,馬鴻文 | |
dc.contributor.author | Shih-Chi Lo | en |
dc.contributor.author | 羅時麒 | zh_TW |
dc.date.accessioned | 2021-06-13T17:06:27Z | - |
dc.date.available | 2005-02-16 | |
dc.date.copyright | 2005-02-16 | |
dc.date.issued | 2005 | |
dc.date.submitted | 2005-01-27 | |
dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/39178 | - |
dc.description.abstract | 傳統生命週期評估通常未進行不確定性量化分析,然而,缺少不確定性資訊,將無法了解評估結果的可靠度。不確定性資訊亦可提供決策者了解生命週期評估之限制,及作為決定是否增加數據收集或研究,以減低其不確定性;因此,發展生命週期評估之不確定性分析有其必要性。本研究之重點主要在發展系統性機率不確定性分析,研究目的區分為三層面,第一是鑑定生命週期評估不確定性之型式及來源,了解不確定性資訊之重要性;第二是發展機率不確定性分析,量化衝擊評估模式之參數不確定性,以及結合專家判斷資訊及適當新收集數據減低其不確定性;第三是進行不同型式不確定性之整合分析,比較結構不確定性(由不同決策及模式假設選擇產生)與參數不確定性之相對重要性。
本研究之主要貢獻為建立系統性機率不確定性分析方法,以解決傳統生命週期評估缺少不確定性資訊之缺點。研究方法以機率分析(蒙地卡羅模擬)為基礎,分別結合敏感度分析、貝氏推論及整合分析架構等理論,有系統地鑑定、量化、減低及整合生命週期評估之不同型式不確定性。本研究以一般廢棄物管理之生命週期評估為研究個案,選擇溫暖化潛勢作為衝擊類別之代表指標,評估不確定性對替代廢棄物處理之影響。 有關生命週期評估之不確定性分類,以定性分析區分為參數不確定性與變異性、模式不確定性、及情境(決策選擇)不確定性等三類。在量化分析方面,以機率分析將傳統生命週期評估轉換成機率式模式,以量化不確定性。結果顯示:機率模式較傳統點估計方法,提供決策者更多不確定性資訊,如均值、標準偏差、完整機率分布等特徵,可能與傳統點估計方法形成不同之決策;此外,結合蒙地卡羅模擬與敏感度分析,以級相關係數鑑定不確定性貢獻高之重要參數。結果顯示:決策者可依兩替代方案之評估結果機率分布之重疊大小,判斷不確定性對生命週期評估結果之影響程度。 其次,在不確定性減低方面,本研究以貝氏蒙地卡羅模擬更新重要參數及評估結果之不確定性,事後機率分布由各參數之事前機率分布與新收集數據之機率分布權重更新。結果顯示:4個重要參數之事前機率分布(IPCC準則專家判斷)結合新收集之統計及焚化場址特定數據貝氏更新後,其事後機率分布之變異係數(CV值)較事前機率分布呈現下降趨勢,評估結果之總不確定性明顯降低。 在不同型式不確定性整合方面,本研究以結合樹狀架構與蒙地卡羅模擬,將決策與模式選擇等結構不確定性整合至機率不確定性分析中,以衡量整合不同型式不確定性之合併效應及相對重要性。結果顯示:結構不確定性之貢獻確實可能影響評估結果,甚至造成評估結果逆轉,因此,此法可鑑定不同型式不確定性對生命週期評估結果之影響,避免不完整之不確定性資訊造成錯誤決策。 最後,本研究在考量不確定性下,進行廢棄物管理決策之情境分析。結果顯示:整合分析可提供替代方案評估結果之完整不確定性資訊,提昇生命週期評估之應用。另外,針對系統性機率不確定性分析方法之應用原則,提供不確定性資訊之考量時機、型式與方法。 | zh_TW |
dc.description.abstract | The traditional life cycle assessment (LCA) does not perform quantitative uncertainty analysis. Without characterizing the associated uncertainty, however, the reliability of assessment results cannot be ascertained. The uncertainty analysis also provides useful information to assess the reliability of LCA-based decisions and to determine the need of adding data collection or research toward reducing uncertainty. This study focuses on developing the systematic approach of probabilistic uncertainty analysis of the LCA. The purpose of the study is threefold: first, to identify types and sources of uncertainty in LCA in order to understand the importance of uncertainty issues; second, to develop probabilistic uncertainty analysis that quantifies uncertainty in impact assessment model of LCA and reduce the uncertainty of LCA results with statistic and sites-specific information; lastly, to perform integrated analysis that quantifies combined results of different uncertainties (due to model and decision choices) and identify the relative importance of comparing parameter uncertainty.
In this study, the main contribution was to establish the probabilistic uncertainty analysis method that was capable of improving the drawback of lack uncertainty information in the traditional LCA. The method was based on the probability analysis to identify, quantify, reduce and integrate the uncertainty in LCA that was in combination with the method of sensitivity analysis, Bayesian inference, and integrated framework, respectively. A case study of applying the method to the comparison of alternative waste treatment options in terms of global warming potential due to greenhouse gas emissions was presented. In the case study, the classification of uncertainty was qualitatively divided into three types including parameter uncertainty, model uncertainty and scenario uncertainty. First of all, in the quantities analysis, the traditional LCA was converted to probabilistic model by incorporating the probabilistic analysis to quantify uncertainty. The results indicated that the incorporation of quantitative uncertainty analysis into LCA revealed more information, such as mean value, standard deviation, and complete probability distribution than the deterministic LCA method. The resulting decision may thus be different. In addition, the sensitivity analysis in combination with the Monte Carlo simulation, calculations of the rank correlation coefficients facilitated the identification of important parameters that had major influences to LCA results. The results indicate that the overlaps of probability density functions (pdf) were used to judge the influence on LCA results between alternatives. Second, in respective of uncertainty reduction, the Bayesian method in combination with the Monte Carlo technique was used to quantify and update the uncertainty in LCA results. In the case study, the prior distributions of the parameters used for estimating emission inventory and environmental impact in LCA were based on the expert judgment from the Intergovernmental Panel on Climate Change (IPCC) guideline and then updated with using the likelihood distributions resulting from both national statistic and site-specific data. The posterior uncertainty distribution of the LCA results was generated using Monte Carlo simulations with posterior parameter probability distributions. The results indicated that by using national statistic data and site-specific information to update the prior uncertainty distribution, the resultant uncertainty (Coefficient of variation) associated with the LCA results was significantly reduced. Third, in respective of integration of uncertainties, the integrated framework in combination with the Monte Carlo technique was used to identify the importance of structural uncertainties due to model and decision choices, and then to evaluate the combined effect and relative importance of different types of uncertainty. The results indicated that the resultant uncertainty associated with structural uncertainties of the LCA results might be different or reversed. Therefore, the integrated analysis could understand the importance of structural uncertainties to avoid incorrect decision-making with incomplete uncertainty information. Finally, the scenario analysis of alternative waste management decision was performed under uncertainty. The results indicated that the integrated analysis revealed complete uncertainty information to enhance the application of LCA-based decision. In addition, the guideline of this method could be used to determine the timing, types and method to use the uncertainty information. | en |
dc.description.provenance | Made available in DSpace on 2021-06-13T17:06:27Z (GMT). No. of bitstreams: 1 ntu-94-D88541001-1.pdf: 610199 bytes, checksum: fb85863cdd9a6735e9f579d188a721d9 (MD5) Previous issue date: 2005 | en |
dc.description.tableofcontents | 目 錄
摘要 I ABSTRACT III 目錄 V 表目錄 IX 圖目錄 XI 第一章 緒 論 1 1.1 前 言 1 1.2 研究目的 2 1.3 研究架構與流程 3 第二章 文獻回顧 5 2.1 生命週期評估 5 2.1.1 生命週期評估面臨問題及限制 5 2.1.2 生命週期評估架構 7 2.1.3 目的及範疇界定階段 9 2.1.4 生命週期盤查分析階段 11 2.1.5 生命週期衝擊評估階段 13 2.1.5.1 衝擊評估模式之分類 17 2.1.5.2 傳統模式與機率模式之比較 18 2.1.5.3 邊際改變法與等價因子之推導 19 2.1.5.4 不同衝擊類別之特徵化模式 20 2.1.5.5 中點及終點衝擊類別法之比較 22 2.1.6 生命週期闡釋階段 25 2.2 不確定性理論 26 2.2.1 不確定性觀點 26 2.2.2 不確定性之術語與分類 26 2.2.3 變異性與不確定性之比較 28 2.2.4 不確定性分析方法 30 2.2.5 機率不確定性表示方式 32 2.2.6 不確定性與資訊價值 33 2.3 生命週期評估之不確定性分析 34 2.3.1 生命週期評估之不確定性型式與來源 34 2.3.2 生命週期評估之參數不確定性分析 35 2.3.3 生命週期評估之結構不確定性分析 39 2.3.4 不確定性分析之新趨勢 41 2.3.5 生命週期評估與決策分析 42 第三章 研究方法 43 3.1 系統性機率不確定性分析方法 43 3.2 機率不確定性分析 45 3.2.1 蒙地卡羅法模擬及抽樣次數 45 3.2.2 結合敏感度分析 47 3.3 不確定性之降低方法 48 3.3.1 貝氏定理 48 3.3.2 貝氏蒙地卡羅法之推導及模擬程序 49 3.3.3 不確定性變化指標 52 3.4 整合不確定性分析 53 3.4.1 整合不確定性分析架構 53 3.4.2 整合情境、模式及參數不確定性之相對重要性分析 55 3.4.3 結構不確定性之相對變化指標 56 第四章 一般廢棄物管理之生命週期評估模式 57 4.1 一般廢棄物管理面臨問題 57 4.2 廢棄物替代處理之生命週期評估之目的與範圍 57 4.3 廢棄物替代處理之盤查分析模式 61 4.3.1 一般廢棄物組成 61 4.3.2 掩埋處理 62 4.3.3 焚化處理 67 4.3.4 堆肥處理 71 4.3.5 資源回收 71 4.3.6 收集及運輸 72 4.3.7 盤查分析模式 73 4.4 廢棄物替代處理之衝擊評估模式 74 第五章 結果與討論 77 5.1 生命週期評估之不確定性型式與限制 77 5.2 機率式生命週期評估之不確定性分析 80 5.2.1 模式參數之不確定性機率分布之設定 80 5.2.2 傳統點估計與機率不確定性分析之比較 81 5.2.3 以敏感度分析評估參數之相對重要性 87 5.3 不確定性之減低 89 5.3.1 以合成數據驗證貝氏蒙地卡羅方法之效能 89 5.3.2 使用統計數據之不確定性更新 93 5.3.3 使用場址特定數據之不確定性更新 93 5.3.4 使用不同機率分布型式之不確定性更新 96 5.3.5 不確定性更新對生命週期評估結果之影響 98 5.3.6 貝氏方法之優點與限制 100 5.4 生命週期評估之結構不確定性分析 102 5.4.1 整合不確定性分析架構 102 5.4.2 整合情境、模式及參數不確定性之合併效應 104 5.4.3 系統邊界選擇之整合分析 112 5.4.4 整合分析方法之優點與限制 115 5.5 不確定性下之生命週期評估決策分析 116 5.5.1 增加沼氣收集及燃燒或能源回收之情境 116 5.5.2 不同物質資源回收比率之情境 119 5.5.3 增加堆肥處理比率之情境 124 5.5.4 不確定性資訊在生命週期評估決策之應用原則 125 第六章 結論與建議 127 參考文獻 130 附錄一、一般廢棄物基本統計數據 148 附錄二、機率分布型式 151 附錄三、貝氏更新副程式 152 附錄四、作者簡歷 154 | |
dc.language.iso | zh-TW | |
dc.title | 以系統性機率模式鑑定量化與整合生命週期評估之不確定性 | zh_TW |
dc.title | Identification, Quantification and Integration of Uncertainty in Life Cycle Assessment Using the Systematic Approach of Probabilistic Model | en |
dc.type | Thesis | |
dc.date.schoolyear | 93-1 | |
dc.description.degree | 博士 | |
dc.contributor.oralexamcommittee | 李公哲,胡憲倫,楊致行,林素貞,施勵行 | |
dc.subject.keyword | 整合分析,貝氏推論,參數不確定性,結構不確定性,機率不確定性分析,敏感度分析,生命週期評估,蒙地卡羅模擬, | zh_TW |
dc.subject.keyword | integrated analysis,structural uncertainty,Bayesian inference,sensitivity analysis,parameter uncertainty,life cycle assessment,Probabilistic uncertainty analysis,Monte Carlo simulation, | en |
dc.relation.page | 154 | |
dc.rights.note | 有償授權 | |
dc.date.accepted | 2005-01-27 | |
dc.contributor.author-college | 工學院 | zh_TW |
dc.contributor.author-dept | 環境工程學研究所 | zh_TW |
顯示於系所單位: | 環境工程學研究所 |
文件中的檔案:
檔案 | 大小 | 格式 | |
---|---|---|---|
ntu-94-1.pdf 目前未授權公開取用 | 595.9 kB | Adobe PDF |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。