請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/39171完整後設資料紀錄
| DC 欄位 | 值 | 語言 |
|---|---|---|
| dc.contributor.advisor | 程舜仁(Shun-Jen Cheng) | |
| dc.contributor.author | Yung-Ning Peng | en |
| dc.contributor.author | 彭勇寧 | zh_TW |
| dc.date.accessioned | 2021-06-13T17:06:00Z | - |
| dc.date.available | 2005-02-04 | |
| dc.date.copyright | 2005-02-04 | |
| dc.date.issued | 2005 | |
| dc.date.submitted | 2005-01-27 | |
| dc.identifier.citation | Berele, A.; Regev, A.: Hook Young diagrams with
applications to combinatorics and representations of Lie superalgebras, Adv.~Math.64 (1987) 118--175. Goodman, R.; Wallach, N.: Representations and Invariants of the classical Groups, Cambridge University Press, Cambridge, 1998. Humphreys, J.E.: Introduction to Lie Algebras and Represntation Theory, Springer-Verlag, New York, 1972. Macdonald, I.G.: Symmetric functions and Hall polynomials, Oxford Math.~Monogr., Clarendon Press, Oxford, 1995. Sagan, B.E.:The Symmetric Group, Representations, Combinatorial ALgorithms, and Symmetric Functions, Springer-Verlag, New York, 2003. Sergeev, A.:The tensor algebra of the identity representation as a module over the Lie superalgebras gl(n|m) and Q(n),Math. USSR Sbornik 51 (1985), 419--427. | |
| dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/39171 | - |
| dc.description.abstract | The aim of this thesis is to give a simple proof of the Schur duality without using the usual double centralizing argument.
In fact similar argument along this line can be used to prove Schur duality for the general linear Lie superalgebra as well. We use some facts about the representation theory of the symmetric groups and Lie algebras, what I majored in the graduate course are almost involved in them. | en |
| dc.description.provenance | Made available in DSpace on 2021-06-13T17:06:00Z (GMT). No. of bitstreams: 1 ntu-94-R91221012-1.pdf: 680378 bytes, checksum: 39f69078a948d737fa02d372208c8d31 (MD5) Previous issue date: 2005 | en |
| dc.description.tableofcontents | 1.Introduction P.2
2.Definitions and notations P.4 3.As a gl(n)-module P.8 4.As an Sk-module P.10 5.Symmetric functions and characters P.12 6.Schur duality for the general linear Lie superalgebra P.15 | |
| dc.language.iso | en | |
| dc.subject | 對偶性 | zh_TW |
| dc.subject | duality | en |
| dc.title | Schur Duality and Tensor Products | en |
| dc.type | Thesis | |
| dc.date.schoolyear | 93-1 | |
| dc.description.degree | 碩士 | |
| dc.contributor.oralexamcommittee | 林牛(Ngau Lam),柯文峰(Wen-Fong Ke) | |
| dc.subject.keyword | 對偶性, | zh_TW |
| dc.subject.keyword | duality, | en |
| dc.relation.page | 17 | |
| dc.rights.note | 有償授權 | |
| dc.date.accepted | 2005-01-28 | |
| dc.contributor.author-college | 理學院 | zh_TW |
| dc.contributor.author-dept | 數學研究所 | zh_TW |
| 顯示於系所單位: | 數學系 | |
文件中的檔案:
| 檔案 | 大小 | 格式 | |
|---|---|---|---|
| ntu-94-1.pdf 未授權公開取用 | 664.43 kB | Adobe PDF |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。
